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We consider the system of differential equations

d d
(1 “r=ale. =A@

dt
where
(P=((pl,'-°a (pm)a x=(x,,..., x,,),

a(op) is a vector-valued function, A(¢) — n x n-matrix-valued function, conti-
nuous in variables ¢, ..., ¢, and 2z-periodic in ¢;, j =1, m.

In addition we assume that a(@) is a function such that the Cauchy
problem do/dt = a(p), ¢|,=o = @o has a unique solution ¢,(¢,) for every
fixed ¢,€R™, continously depending on ¢,. We shall use the following
notations.

1. @(¢o; A) — the resolvent of the linear system dx/dt = A(¢,(¢o))x,

(¢, A),=. =1, — n-dimensional unit matrix
n

2. {(x,y>= ) Xy — the usual scalar product in R", {x, x) = ||x]|*.
i=1.
3. C°7,) — the space of functions F(¢), (vector-or matrix-valued),
continuous in variables ¢, ..., @, and 2r-periodic in each of there;
4. C'(J,;a) — the subspace of C°(.7,) consisting of functions F (¢)

such that the superposition F(¢,(¢,)) considered as a function of the variable

d .
t is continuously differentiable in ¢ and IF (cp,(<p))|,=0 L (p) €eC%(T,).

DEerINITION 1. We say that the system of equations

do _ d_x _ o
) I—a(qo), I =A(@)x+f(p), [f(9)eC’(T,)
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has an invariant torus x = u (o), if u(¢)eC* (7 ,,;a) and the following equality

3 u(p) = Al@)u(@)+f(9)
holds for all ¢ eR™

DEeriNiTION 2. Suppose that C ((p)ECO( m) 1S an n xn-matrix-valued
function such that the function

Q°(¢; A) C)o.(9)), <0,

4) G°(T’¢)={QS’(¢;A)[C(wf(q)))—’n]’ v>0

satisfies the estimate

(3) 1Go(z, @)l < Koexp(—1yoltl), Ko, yo—const >0, rt€R,

then the function (4) is called the Green function of the problem of invariant
torus for the system (1) (or simply — the Green function).

Obviously, the existence of a Green function G, (¢, t) for the system (1)
guarantees the existence of an invariant torus of the system (3) with the
vector-valued function

(6) X = ‘ Go(z, (p)f(go,((p))dt

The converse is not true: it is possible that for any vector-valued function
f (p) the system (3) has an invariant torus x = u(¢), but the Green function
(4) for the system (1) does not exist. The following assertions hold.

THeEOREM 1. Suppose that the system (1) admits a Green function (4)
satisfying estimate (5). Then there exists an n-dimensional matrix-valued func-
tion S(¢) = ST(p) eC (T ,; a) satisfying the condition

(7 (S(@) =S (@) AT (@) - A(9)S(9)) x, x> < —|Ix]|?
for all x eR". Moreover, if the Green function (4) is unique then
(8) detS(p) #0, VpeR™

As an example of such a function one can choose the following

S(9) =2 [ Q(@; A(C(¢.(0))—1,)[2°(¢; A)(C (o (¢)—1,)] dr

0

0
=2 [ Q(¢; A)C(0.(0)[20 (0; A C (0. (0)]" dr.

THeoREM 2. Let n-dimensional symmetric matrix-valued function

S(p)eC' (T ,; a) satisfying (7), then the Green function (4) with estimate (5)

exists. Moreover, if S(¢) satisfies condition (8) then the Green function (4) is
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unique and the following identities hold
) C2(p) =C(9), Clo(9) = 2(0; A)C(9) QX (0; A)

If the matrix S (o) is degenerate for some @ = @, €R™ then there are mﬁmtely
many Green functions (4) with estimate (5).

THEOREM 3. Assume that there exist two symmetric matrix-valued func-
tions S; () €C' (T ,; a), i =1, 2, satisfying the conditions

(S1 (@)= S1 (@) AT (@) — A(9) S, (@) X, x> < — ¢ lIx|?,
(S:(@)+5:(@) A(@)+ AT (9) S2 (@) x, x> < =7, 1Ix1%, % > 0.
Then det S;(p) # 0 Y@ €R™ and the Green function (45 exists.

THEOREM 4. Assume that the assumptions of Theorem 2 are and 3¢
= o €R™, detS(¢po) =0. Then:

1. There exists a unique n-dimensional symmetric matrix valued function
# () eC°(T,) with the following properties:

(a) the operator M, acting on n-dimensional functions by the forhmla

Mg = _I H(0) (2% (0; ) g(o,(@)dt

turns out to be projective, ie. M* = M;
(b) the identity

H (0,(9)) = Qo (@; A) H (0) (2% (@; A)T
and the estimate
”Q'o((P; A) o (9) (25 (; A))T“ < Koexp { —yolt—1l}
hold for ail t,t€eR, @ €eR™; K,, yo-const > 0;

(c) every invariant torus of the system (1) is defined by the equation x
= My;

(d) the identity
H(p) = I K (9) (2o (@; A)T Lo (0; A) H#(p)dt

holds for all @ eR™;

(¢) every restriction to R of the solution of the linear system dx/dt
= A(o,(po)) x is defined by the equality

x = 26(po; A) H(po)n, neR".

2. Every invariant torus of the system (2) is defined by the equality

x =g+ | Go(s, 9)f(o.(0)dr,
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where g(¢) is an arbitrary vector-valued function from the space C°(7 ).
3. The system of equations

d
a(p), == —AT(Q)y+F(9)

do _
dt

(19 dt

has an invariant torus not for all vector-valued functions F(p)eC°(T,). A
necessary and sufficient condition for the existence of an invariant torus for the
system (10) is the identity

a0

[ #(0)(Q5(0; A)" F(o.(p))dr =0,

it is equivalent to the identity

- o)

[ (o (0), Fo(@)>dt =0

= Q0
Jor every nontrivial invariant torus x = u(¢p) of the system (1).

Remark. Under the conditions of Theorem 4 the extended system of
equations

do dx dy T
— = —~ =B —A4 , eR"
;o a(p), ; A(p)x, ; (o) x (p)y y

with arbitrary matrix-valued function B(¢)€C°(Z,,) satisfying
(B(@)x, x) < =BolIxll>, Bo = const >0,
has a unique Green function for the problem of invariant tori.

THEOREM 5. Assume that the system of equations

d(p _ dx _
—d—t——a((p), I—A((D)X‘FB((P)}’,
(11)

dy
i D(p)x—AT(p)y, x,yeR",

is such that

(12)  <B(@)y, y)> = Bollyll>,  <D(9)x, x> = dolIxll>,  Bo, do-const > 0.

Then for every fixed matrix-valued function A(p) eC°(T,) the system (11) has
a unique Green function.

Remark. In Theorem 5 the quadratic matrices B(¢) and D(¢p) can be
non-symmetric. In this case conditions (12) should be replaced by the
following ones

B@y,y>< —Bollyl’, <D(P)x; x> < —dyl|xl|?>,  Bo, do-const > 0.
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To conclude this note we consider the example

d . d .
% = P, Sin @, + p, €08 20, % = p38in3¢; + p4 cos @,
(13) .
dx .
7 = (PsCOS @1+ pesin @) x+ £ (@1, ¢2).

The problem is to choose nonzero values of parameters p;, i = 1, 6, for which
the system (13) will have an invariant torus for every function

f (@1, 92) €C°(T)).
If we choose S(¢,, ¢,) to be the scalar function cos ¢, then we obtain
the conditions '

p1ps >0,

min(lplla 2'p5|) > |p2|+2|p6|’ P3s Pa €R.
If we put S(p,, ¢,) =sin¢g,, we get the conditions

(14)

PaDe <
min(|pyl, 2|psl) > p3+2Ipsl, p1, P2 ER

Therefore, the conditions (14), (15) are sufficient for the existence of an
invariant torus of the system (13) for every function f €C°(J,).

(15)

Remark. The problem of choosing the optimal function S(¢) (in order to
obtain the largest set of parameters p) remains open.
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