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1. Let B be a real nondegenerate indefinite quadratic form in n variables.- It
is well known that if n>5 and the coefficients of B are rational then B
represents zero nontrivially, i.e. there exist integers x,, ..., x, not all equal to
0, such that B(x,, ..., x,) = 0. Theorem 1 stated below can be considered as
an analogue of this assertion in the case when B is not proportional to a
form with rational coefficients. Note that in Theorem 1 the condition n > 5 is
replaced by a weaker condition n > 3.

THEOREM 1. Suppose that n > 3 and that B is not proportional to a form
with rational coefficients or, it is the same, the ratio of some two coefficients of
B is irrational. Then for any ¢ > 0, there exists integers x,, ..., x, not all equal
to 0, such that |B(x,, ..., x,)| <e.

One can easily inderstand that if Theorem 1 is proved for some n, then
it is proved for all n > ny. So it is enough to prove this theorem for n = 3.
Let us note if n = 2 then the analogous assertion is not true; to see this one
can consider the form x?— AxZ where 1 is an irrational positive number such
that \,/I has a continued fraction development with bounded partial quo-
tients.

Theorem 1 gives the answer to Davenport’s conjecture (see [4]!). It has
been earlier proved in the following cases: (a) n > 21 (see [5]); (b) n =5 and
B is of the type

B(x;, ..., xs) = Ay xi+ ...+ s x2

(see [4]). Proofs given in [4] and [5] are based on the use of methods of
analytic number theory.

M For the case n > S this conjecture is due to A. Oppenheim (see The minima of indefinite
ternary quadratic forms, Ann. of Math. 32 (1931), 271-288).

[399]
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In Section 2, Theorem 1 will be deduced from a result on the action of
the group preserving B on the space of lattices. It should be noted this result
(Theorem 2) is essentially equivalent to Theorem 1.

2. Let as usual, C, R, Q and Z denote the sets of complex, real, rational and
integer numbers respectively and let SL(n, R) (resp. SL(n, Z)) denotes the
group of unimodular matrices of order n, with real (resp. integer coefficients).
Let G- =SL (3, R) and I' = SL (3, Z). Let us denote by Q the space of lattices
in R® having determinant 1. The quotient space G/I' can be naturally
identified with © (under this indentification the coset gI' goes to the lattice
gZ3). For yeQ = G/T let G, denotes the stationary subgroup |g€G| gy = y}.
Note that if y =gZ? then G, =gl'g~".

Let us denote by H the group of elements of G preserving the form
2x, x3 —x3. The group H is locally isomorphic to SL(2, R) and the number
of its connected components is equal to 2 (besides H is connected in the
Zariski topology).

THEOREM 2. If z€Q = G/I" and the orbit Hz is relatively compact in Q
then the quotient space H/H NG, is compact.

Remark. Let P — G be a closed subgroup :and z€G/I'. Then the quotient
space P/P NG, is compact iff the orbit Pz is compact.

Theorem 2 will be proved in Section 6 with the help of some assertions
from Sections 3, 4 and 5. Now we give the reduction of Theorem 1 to
Theorem 2. As it was noted in Section 1, it is enough to prove Theorem 1
for n = 3. Let Hg denotes the group of elements of G preserving B. Since n
= 3 and the form is indefinite, we have, in some basis of R>, the form B has
the type A(x, x3—x3) where A= +1. So H=ggHggs' for some gz €G.

Suppose now the assertion of Theorem 1 is not true, ie. |B(x)| > ¢ for
some ¢ > 0 and all xeZ?, x # 0. Then, as Hy preserves B, we have |B(x)| > ¢
for any heH and xehZ? In view of Mahler compactness criterion, this
implies the set Hp Z3 ist relatively compact in Q. Now we apply Theorem 2
for z = gy Z* and get that the quotient space H/H NG, and, consequently,
the quotient space Hg/Hz NI are compact. Then, in view of Borel’s density
theorem (see [1]), HynTI' is Zariski dense in H. On the other hand, I
consists of matrices with integer coefficients and (see [2] chapter AG, p. 14.4)
if in an affine manifold the set of Q-rational points is Zariski dense then this
manifold is defined over Q. So Hy is a Q-subgroup of G. Hence, Hy = H,p
for any automorphism ¢ of C over Q where oB is obtained from B by
applying of ¢ to coefficients of B. It follows forms ¢B and B are proportional
for any o. But this contradicts to the assumption “the ratio of some two
coefficients of B is irrational”.

3. In this section, G is an arbitrary second countable locally compact group
and Q is a homogeneous space of G. Let us denote by A the closure of



G. A. MARGULIS 401

.a subset A of a topological space, by .4#;(F) the normalizer of a subgroup
F <G in G, by e the identity element of G and by N* the set of positive
integer numbers.

LEmMA 1. Let F, P and P’ (F = P, F < P’) be closed subgroups of G. and
let Y and Y' be closed subsets of Q and let M — G. Suppose that

(I) P Y=Y and PPY' =Y,
(II) mY Y # @ for any meM,
(III) Y is a compact minimal F-invariant subset (minimality means that Fy
is dense in Y for any y€Y).

Then hY < Y’ for any he ¥ ¢(F)n P MP.

Proof. Set S = {geG| gY nY' # Q}. Conditions (I) and (II) imply that
" § > P"MP. On the other hand, as Y is compact and Y’ is closed, the set S is
closed in G. So S o P"MP. Hence, hY Y # Q, i.e. hy =y’ for some yeY
and y'eY. But heAN (F), FY=Y and FY' =Y'. Therefore, hgy
= (hgh~YYhyeFy = FY’' = Y’ for any g €F. In other words, hFy = Y’. But the
orbit Fy is dense in Y and Y’ is closed. So hY c Y".

LEMMA 2. Let F be a closed subgroup of G and let Y be a closed minimal
F-invariant subset and let ge N ¢(F). If gYNnY# @ then gY=Y.

Proof. As ge.#(F) and FY = Y we have FgY = gY and, consequently,
F(gYnY)=gYNY But gYnY # @ and Y is a minimal closed F-invariant
subset. So gYNnY =Y. Hence, gY =Y.

Lemmas 1 and 2 immediately imply

LEMMA 3. Let F and P (F < P) be closed subgroups of G and let Y < Q
and M c G. Suppose that (I) PY = Y; (Il) mY nY # @ for any meM; (III) Y
is a compact minimal F-invariant subset. Then hY =Y for any

he A G(F)n PMP.

LeEMMA 4. Let F be a closed subgroup of G and let y €. Suppose that the
quotient space F/F NG, is not compact (equivalently, the orbit Fy is not
"compact) and that Fy is a compact minimal F-invariant subset. Then the
closure of the subset {geG—F| gy €Fy} contains e.

Proof. Suppose the contrary. Then there exists a relatively compact
neighbourhood U < G of the identity such that Uy " Fy = (U nF)y. Let us
represent F as the union of increasing sequence of compact subsets K,,
neN*. Since F/F NG, is not compact, for any neN" there exists z,€Fy
such that K,z, "(UNnF)y=Q.But UynFy=(UnF)y and K,z, = Fy. So
K,z,nUy = @. This fact and the fact that the set Uy is open in Q imply

that the closure of the set ¥ = () K,z, does not contain y. Further as
- neNt
Fy is compact, we can assume (replacing {z,} by a subsequence) that the

26 — Banach Center t. 23
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sequence {z,} tends to zeF_y as n »o00. Then as K,z, <y, K, < K,,; and
F= |) K; we have Fz c V. But y¢ . So y¢ Fz. In view of the inclusion

neNt

z€Fy, this contradicts to the fact that Fy is a minimal closed F-invariant
subset.

4. Till the end of the paper, G, I', 2, H and G, denote the same as in Section
2. In this section, we shall formulate Lemmas 5-7 about closures of subsets
of the type P MP where P’ and P are subgroups of G and M is a subset of
G, satisfying the condition e e M. These lemmas will be proved in Section 8.
We have to fix some notations. Let

[+ 00
dpy=|010 |,
[ 00 71 |
[ 1 ¢ 122 010
v, ()=]1011¢ =expt]{ 001 |
001 | 000
[10:¢ 001
0,t)=]1010 |=expt] 000
(001 000

Let D={d@®) t>0}, Vi={v,(t) teR}, Vo= 1{v,(t) teR}, V;' = (v, (1)l
t >0} and Vy, = {v,(s)| t <0}
Further, we set
1 vy v,
V=W-V,= 01 o vy, U, ER
00 1

and denote by W < G the group of unipotent upper triangular matrices. It is
clear that D normalizes each of subgroups V;, V,, V and W and that V is
commutative. Let us also note D cH and V; =HnW.

Lemma 5. (I) Let U be a connected unipotent subgroup of G and let
M < G. Suppose that ee M — M.

@ If M cG—.Ag(U) then the connected component of e of the set
A (U)nUMU differs from U.

(b) If M =« G—U then the closure of the subgroup generated by the set
Ng(U)NUMU contains a one-parameter subgroup which is not contained
in U.
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(I) If Mc G-V, and ecM—M then the closure of the subgroup

generated by the set .4 ;(V;) NV, MV, contains either V or a subgroup of the
type vDV,v™! where veV.

LEMMA 6. If M c G— A (V) and eeM then W " VMV generates W.

Lemma 7. If M cG—H and eeM then HMDYV, contains either V,
or Vy .

5. As in [3], by the horospherical subgroup corresponding to an element
g €G we mean the subgroup

(ueG| g'lug™/ —e as j > 0}.

This subgroup will be denoted by U,. It is well known U, is a closed
unipotent subgroup and g normalizes U,. If U, # {e}, F denotes the sub-
group generated by U, and g and A is a lattice in G then the orbit Fz is
dense in G/A for any z €G/A (see Propositions 1.1 and 1.2 in [3]); recall that
a lattice in G is a discrete subgroup such that the corresponding quotient
space has a finite volume with respect to Haar measure). But I’ = SL(3, Z) is
a lattice in G = SL(3, R) (see [6], Corollary 10.5) and, as can be easily
checked, W = Uy, for any 0 <t <1. So we have

LEmMMma 8. For any yeQ = G/I' the orbit DWy is dense in Q and,
consequently, is not relatively compact in Q.

As it was noted, W = U, for any 0 <t < 1. On the other hand (see
[6]) Theorem 1.12), if yeQ = G/I', y€G,, y #e, {g) neN"} =G and g,yg, !
—e as n = oo then the set {g,y| neN"! is not relatively compact in Q. So
we have

LEMMA 9. Let y €Q. Suppose the orbit Dy is relatively compact in Q. Then
WG, = le} and consequently the quotient space U/U NG, is not compact for
any nontrivial closed subgroup U of W.

LemmA 10. For any y < Q, the orbit DVy is not relatively compact in Q.

‘Proof. Suppose the contrary i.e. that DVy is compact. Then the DV-

invariant subset DVy contains a minimal closed V-invariant subset Y. One
can assume that yeY. Let us denote the subgroup {ge A4 ¢(V)| gY = Y} by
F. As Y is closed, F is closed. Let us denote the connected component of
identity of the group F by F° One can easily check that the connected
component of the identity of the group A4 (V) coincides with DW. This
easily implies that any closed unimodular connected subgroup of A7 (V)
containing V is itself contained in W. Thus either F® « W or F° is nonuni-
modular. But a nonunimodular group does not contain a lattice. In view of
Lemma 9, this implies that the quotient space F°/F° N G,.and, consequently,
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the quotient space F/F NG, are noncompact. Now we use Lemma 4 and see
that the closure of & < {geG—F| gY nY # @} contains e. On the other
hand, it follows from Lemma 2 that P n.4g(V) = Q. So the closure of the
set M & geG—.4c(V) gY nY # Q] contains e. Then in view of Lemma 6,
VMV n W generates W. This fact, Lemma 3 and the inclusion W < .1 ; (V)
imply WY = Y. Now in view of Lemma 8, the set DVy > DY = DWY is not
compact. Thus we arrive at a contradiction which shows that the lemma is
true.

LemMa 11. For any yeQ, the sets DV, V,"y and DV, V, y are not
relatively compact in Q.

‘Proof. If neN*, teR and |t| < n then v,(t)v,(n)yeV,' y. This easily
implies that if z is a limit point of |v,(n)y| neN*) then V,z = V' y and
consequently DVz = DV, V,z < DV, V," y. But if V;" y is relatively compact in
Q then the set of limit points of {v,(n)y| neN*} is not empty. Therefore and
in view of Lemma 10, DV, V,” y is not relatively compact in Q. The fact
DV, V,y is not relatively compact one can prove analogously.

6. Proof of Theorem 2. Since the set Hz is compact and H-invariant, it
contains a minimal closed H-invariant set X. Then as H> V; and X is
compact, the set X contains a minimal closed V;-invariant set Y. Let us
choose yeY. As Hy < X is relatively compact and D < H, Lemma 9 implies
that V;/V; nG, is not compact. Therefore and in view of Lemma 4, the

closure of M, o {geG—Vy| gY nY # 0} contains e. Let us denote by ¥ the
closure of the subgroup generated by .4 (V;)nV; M, V;. Lemma 3 implies

(1) PY =Y. '

As HX = X, Y < X and DV; < H we have DV; Y < X. So and in view
of (1), DV; YY < X. Using this fact, the compactness of X and Lemma 11 we
get |

@ DVy¥p 1, V,;y and DV,¥ p V, V,.

According to Lemma 5 (II), ¥ contains either V or vDV, v~ ! where veV.
But if veV—V, one can easily check that DV, (vDV,v™!) contains either
DV, V," or DV, V; . Therefore and in view of (2), ¥ o DV,. This fact and (1)
imply

3 DY =Y.
Set

(4 M ={geG—H| gyeHz!.
Suppose that ee M. Then in view of Lemma 7, HMDV, contains é€ither v,
or V;-. On the other hand in view of (3) and Lemma 1, gY < Hz for any

geNq(V) nHMDYV, . So either V,* Y « Hz or V; Y c Hz. This fact, the
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equalities DV, V," =V, DV, and DV, V; =V, DV; and equality (3) imply

that Hz contains either DV, V," Y or DV, V,” Y. In view of Lemma 11, this

contradicts to the compactness of Hz. This we have shown
(5) e¢ M.

We have yeY c X < Hz and X is a minimal closed H-invariant subset. So

and in view of Lemma 4, (4) and (5) imply that H/H n G, is compact. On the

other hand, as yeHz and in view of (4) and (5), yeHz. So H/HNG, is
compact.

»

7. In the proofs of Lemmas 5-7, we shall need some assertions about
unipotent groups of linear transformations. Let us formalate them in the
form of the following lemma; we only recall beforehand that (see [7]) all
orbits are closed for linear actions of connected unipotent groups.

LEMMA 12. Let U be a connected unipotent group of linear transformations
of R" and let Y = R". Let L= |xeR" Ux =x].

() If peLnYand LY = @ then the connected component of p in the
set UY AL is not compact.

(I) Let X < R" be a closed subset. Suppose for any xe(ﬁr\ X)—L the
connected component of x in the set Ux N X is not compact. If peLNnY X

and LY = @ then the connected component of p in the set UY "X nL is
not compact.

Proof. The connected unipotent group U is isomorphic to its Lie algebra
% as an algebraic manifold (this isomorphism cah be realized by the
logarithmical mapping In: U — . On the other hand, (a) for any x eR", the
coordinates of ux are regular functions of ueU; (b) the set of values of any
nonconstant regular function on a linear space is noncompact. Therefore, for
any xeR"—L, the connected closed set Ux is not compact. Hence, (II)
implies (I).

Let us prove (II) using induction on n. Since U is unipotent and in view
of Lie-Kolchin theorem, there exists a U-invariant linear subspace S in R" of
codimension 1 such that S > L and U acts on R"/S trivially. Further, let us
choose a sequence {y;eY nX| ieN"} tending to p. Let us denote by ¥ the
upper topological limit of sets Uy; N X, i.e. ¥ is the set of limit points of all
sequences of the type {z;€eUy, nX| ieN™}. Since peL <SS, y; »>p as i > ©
and U acts on R"/S trivially we have ¥ < S. On the other hand, since y; = p
as i >o0 and the connected component of y; of the set Uy, X is not
compact for any i e N* it follows that the connected component of p in the

set ¥ is not compact. So, and in view of the inclusion ¥ «c UY nX the
connected component of p in the set UY N X NS is not compact. Then either
the connected component of p in the set UY n X n L is not compact or p



406 INDEFINITE QUADRATIC FORMS

contains a point g which belongs to the closure of the set (W NXnNS)—L.
But UANXnNnScUYNXNS for any A cUY. So we can replace X by

XS and Y by UY nXNS—L and assume that X S and Y < S. This
gives the possibility to produce the desired induction.

8. Proof of Lemma 5. (I) (a) Let n: G — G/U be the natural projection and T
= {xeG/U| Ux =x}. Since AN(U)=1{geG| UgU =gU}, we have
(AN 6(U) =T So (I) (a) follows from

(x) the connected component of m(e) of the set TnUn(M) is not
compact and consequently differs from = (e).

The connected unipotent subgroup U is algebraic and has no rational
characters. So, and in view of a theorem of Chevalley (see [2], Theorem 5.1),
there exist meN™, a faithful rational representation a: G - GL(m, R) and
Xo €ER™ such that U = {g €G| a(g) xo = xo). According to the lemma on the
orbit closure (see [2], Proposition 1.8), a(G) x, is a smooth manifold which is
open in its closure. This implies that the map gU —a(g) x, is a homeomorp-
hism of G/U onto a(G) x,. Now to prove (x), it remains to apply Lemma 12
(I) for Y=a(M)x, and p = x,; we should only note that (1) as eeM, M <
G—AN¢(U)and T = n(A(U)) we have n(e)eT nn(M) and T nn(M) = Q;
(2) as U is connected and unipotent and the representation « is rational, o (U)
1s connected and unipotent.

(b) Let us denote by ¥ the closure of the subgroup generated by

Ng(U)ymnUMU and by P° the connected component of identity of the Lie
group Y. It is enough to prove ¥° # U. In view of (a), one can dssume
Mc Ng(U). Then ¥ > M. But eeM—M. So Y "M %@ and as M =G
—U we have ¥° # U. '

(IT) One can directly check that the connected component of identity of
the group .#;(V;) coincides with DV. This easily implies that, for any one-
parameter subgroup S <. ¥ (V;), S ¢ V;, the subgroup SV, contains either V
or a subgroup of the type vDV, v~! where veV. Now it remains to use the
assertion (I) (b).

Proof of Lemma 6. Let us denote by a;;(g) the coefficient of a matrix g
standing on the intersection of ith row and jth column. Set W* = lweW|
a;,(w) = ay3(w)] and W~ = (weW)| a,,(w) < a;3(w)]. One can easily see
that each of the sets W* and W~ generates W. So it is enough to prove

(Al) VMV contains either W* or W~.

The Lie algebra & of G is naturally identified with the space of real
matrices of order 3 having the trace zero. Let E;; denotes the matrix such
that g;;(E;;) = 1 and a,,(E;;) =0 if k # i or [ #j. Set xo = E;,+ E,; €®.. Let
us denote by Ad the adjoint representation of G and note that (Adg)x
=gxg~' for any geG and xe®. According to the lemma on the orbit
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closure, (AdG)x, is a smooth manifold which is open in its closure. This
implies the map sending gV onto (Adg) x, is a homeomorphism of G/V onto
(Ad G) xo. So (Al) is equivalent to

(A2) (AdV)(Ad M) x, contains either (Ad W *)x, on (AdW ") x,. -

Let B, B, and B, denote the Lie algebras of V, V| and V, respectively.
Note B; = {rxo| t R}, B, = {tE,3| teR} and B = B, +B,. Set B," = {tE,,|
t >0} and V, = {tE,3] t <0}. Direct calculations show that (Ad W*)x,
= xo+ B, and (AdW7)x, = xo+ B, . Further, one can easily check that
Ae(V) = geG| (Adg)xo€B}. But M =« G— A (V). So Vn(Ad M) x, = Q.
As eeM we have x,€(Ad M)x,. In view of aforesaid, (A2) is a particular
case of

(B1) if. Y =(AdG)x, xo€Y and VY =@ then (AdV)Y contains
either xo+ B3 or xo+ B3 .

Set X = {xe®| a;,(x) =1 and denote by N the set of nilpotent
elements of (. We have xoeX NN, (AdG)x, = N and y/a,,(y)eX NN if
yeN and a;,(y) # 0. So (B1) can easily be deduced from

B2 if Yc XN, xoeYand BnY = @ then (Ad V)Y contains either
Xo+ B3 or xo+ B; .

Since N is closed and invariant under Ad G, we have (Ad V)Y < N for
any Y < N. On the other hand, one can easily check that (a) X "B = x,+ B,
and if S < xy+ B, is a connected closed noncompact subset and x, €S then
either S o xo+ B3 or SO x,+B;; (b) U= {xe® (AdV)x =x}; (¢) the
group V and consequently the group AdV are connected and unipotent.
Therefore and in view of Lemma 12 (II), (B2) follows.

(C) for any xe(X N N)—V the connected component of x in the set
(AdV)x n X is not compact.

Let us denote by .7 < G the space of upper triangular matrices with the
trace zero. If xe(Z N X " N)—V then x = xq+sE,;+tE;; where s # 0. In
this case direct calculations show that (Ad V)x = x,+ B, < X. So one can
assume x¢ 7. One can easily check that the isotropy subgroup V, = (veV|
(Adv)y =y} is trivial for any y e ®— 7. In particular ¥, = {e}. On the other
hand, since (see [7]) all orbits are closed for linear actions of connected
unipotent groups, the set (AdV)x is closed. So the orbit mapping v
—(Adv) x, veV, is proper. Now to prove (C), it remains to show that the set

L fveV| aj(vxv™Y) =1}
is not compact. It is directly checked the polynomial

st st |!
P(s,t)d=da12 0Ols x| O1s
001 001
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is linear with respect to ¢ for any s. But P(0, 0) = 1. So either P(0, t) =1 for
any t €R or, for any but a finite number s €R, there exists ¢(s) eR such that
P(s, t(s)) = 1. Hence, & is not compact,

Proof of Lemma 7. Let a;;(g), ®, Ad, B, B;, B,, B," and B, be as in
the proof of Lemma 6. Further, let us denote by § < & the Lie algebra of H
and by P =  the orthogonal complement to § with respect to the Killing
form. One can easily check

(WP = xe® a;;(x) = a33(x), a;2(x) = —a,3(x) and a,,(x) = —az,(x);.

We have $+P = 6 and §n P = |0}, and hence e (resp. 0) has a neighbour-

hood A in § (resp. B in P) such that the map (a, b) »a-expb is a

homeomorphism of A xB onto a neighbourhood of e in G. On the other

hand, the conclusion is not altered if we replace M by a set of elements

h(m)-m (meM, h(m) eH). It follows that it suffices to consider the case where

M cexpB. Let us consider two cases: (a) MV, =0Q; (b) MV, # Q.
(a) Set M, =1log M. As eeM and e¢ M, we have

(2 0eM, and O0¢M,.

It is immediately checked that B = {xe® (Ad V})x = x}. But B, = BN P.
Thus

(3) B, = {xeP| (AdV})x = x}.

The subalgebra § and the Killing form are invariant under Ad H. Therefore,
P is invariant under AdH. In particular, (Ad V;) P = P. Now applying
Lemma 12 (I) and using (2), (3) and the equality M nV, = @ we see that the
connected component of zero in the set (AdV;) M, NV, is not compact.
Consequently, (Ad V;) M, contains either B; or B;. But exp By = V',
exp B, =V, and

HMDV, o VMV, o> |J (vMv~") = exp(Ad V;) M,

veVy

So HMDVI‘ contains either V," or V, .
(b) Let v,(to)eM NV,. Then

HMDV, > DMD > Dv,(to) D o {d(t)v,(te)d()”"| t > 0!
= {v,(t%to) t > 0).

But t, # 0 (because e¢ M). Thus HMDV, contains either V," or V, .

9. Concluding remarks. The study of closed subsets of invariant under
unipotent subgroups plays the main role in the proof of Theorem 2. In this
connection we note that Raghunathan has formulated the following.
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ConJecTURE. Let F be a connected semisimple Lie group, 4 be a lattice
in F and U c F be a closed subgroup. Suppose that U is unipotent i.e. that
Adu is unipotent for any u eU. Then, for any x e F/A, there exists a subgroup
P c F containing U such that the closure of the orbit Ux coincides with Px.

Raghunathan also noted the connection of his conjecture with Daven-
port’s conjecture (which was proved at the present paper).

Raghunathan’s conjecture was proved by Dani (see [3]) in the case
when U is a horospherical subgroup. Using methods of the present paper, it
is possible to prove this conjecture in the case where F = SL(3, R) and Ux is
relatively compact in F/A.

Let us also note that Raghunathan conjecture can be generalized if we
omit the assumption that F is semisimple and replace the condition “U is
unipotent” by the condition “U is generated by unipotent elements”.

The results of the present paper were announced in [8].
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