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Configuration spaces over countable basic sets are suitable to model atomic
and molecular lattice systems as they are found e.g. in statistical physics or in
theoretical chemics (D. Ruelle [6], O. J. Heilmann, E. H. Lieb [4]). In this
paper two forms of such models are considered: spaces of point and of set
configurations (in the sense of D. Ruelle [6] resp. H. Michel [5]) over the
lattice Z¢ (d — any natural number). _

In [5] some basic results on relations between these two kinds of
configuration spaces are proved, especially the fact that every set configura-
tion space is homeomorphic to a point configuration space. Here it is shown
by using a Hausdorff metric that for any lattice dimension d every mixing
point configuration space can be approximated by a sequence of set config-
uration spaces. The given proof demonstrates how the problem for dimension
d 2 2 can be reduced — by a certain projection algorithm — to the one-
dimensional result. S

1. Notation. Let Z? denote the d-dimensional product space of the set
Z of the integers (d — any natural number) and let (¢°), ,, be the set of

translations on the lattice Z¢ defined by
0°(x) = x+a (a, x€Z9.

2. DeriniTioN (D. Ruelle [6]). Let S be a nonempty finite set, % a
locally finite set of finite subsets of Z? with the property

FeF=0'(F)eF (acZ?
and let (Qp)r.# be a system of nonempty finite sets such that

% c[]S (FeH

xeF

[135]
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and
F,Ge% with F = ¢°G for a certain aeZ?=Qp = Q;

are true. Then the set

A= A(Z, (Q)res):= {& = (€, za € [I SIFeF = EQF}
xezd
is called a point configuration space (= PCS) on Z°. (For the elements of A,
the denotion ‘configurations’ is used.)

3. Remark. (1) Regarding the product topology on [] S which is induc-

xezd . ’

ed by the discrete topology on S, one obtains that every PCS A< [[ S is a
xezd

compact topological space with respect to the trace topology determined on

A by the topology on [] S.

xezd .
(2 By (&) = 0°((¢x),pa) = 1), pa€ [1 S (E€]] S, aeZ’) with n,
xezd xezd
=¢,_, (x€Z% the system (6°),.z¢ ©of translations on [1 S is well defined.
xezd

Every PCS A is invariant under the translation group (¢9),_,.

4. ExampLE. On the lattice Z2, let be given the following system % of
finite sets:

F:= {e"(F)IF = {0, 0), (1, 0), (1, — 1)}, aeZ?).

Considering the set S = {0, 1}, let the family (2f)r.s be determined by the

condition
10 01 11
Qp = , , .
F { 1 { O} (Fe%)

Then the PCS A = A(Z? (2p)rcs) is defined.
It is easy to see, that there exists a configuration £ €A such that A
= {a‘(f)}aezz is true. For this fact the following two properties are essential:

— If a (with respect to (Qf)r.s) allowed coloration of (e.g.) the lattice
points (0, 0), (1, 0), (1, —1) is given, then there exists one and only one
configuration n in A4 which has this coloration over F = {(0,-0), (1, 0),
(1, —1)} (= Z?. That means that A contains exactly 3 configurations.

— Each of these 3 configurations is converted into each other under a
suitable translation ¢°. '
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(E.g.) &: ] 1

1 0 1 1 0 1

11011
1#1—0—»

SR

0

5. DeriNiTION (H. Michél [5]). Let ¥ be a nonempty locally finite
system of finite subsets of Z¢ with the following properties:

1) n(9:={2:=(G)esl[G:€¥9 (ieN)]
ALG:NG;# O (i,jeN, i # )] ~[U G =2}
1S a nonempty set, <
2 Ge9=3Pen(9: Ge 2,
(3) Ge%=0"(G) = {x+a|xeG}e¥ (aeZ’,
and let (Sg)g.s be a system of nonempty finite sets such that
Sy =S¢ (a €Z¢ Ge%9
is fulfilled. Then the set configuration space (= SCS) A* on Z¢ is defined by
A* = A* (Zda (SG)GGQ):= U n Se

Pen(¥) GeP

= {&* = (8ol Pen(9) A E2eS; (GEP).
(The elements of a SCS are called set configurations.)

6. Remark. For every SCS A* is a topology generated by the subbasic
sets

G¥:= {{* = (N €A*IGEP A LE =5}.
7. ExampLe. Given the family
9:= {¢"(G)|G = {(0,0),(1,0, (1, —-1)}, aeZ?}

and a class (Sg)g.s With card (S;) =1 and S; =Sy for all G, He %, a SCS
A* on Z? is defined.
Every of the set configurations n* of A*.generates the SCS:

n* eA* = A* = {a”(n%)}

acz?’
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A
(E.g) g*e 4*: .

8. Remark. (1) It is known that there exists a connection between the
notions of point- and set-configuration spaces on a given lattice Z¢
(H. Michel [5]). Using the denotions

L(5%):= {PCS A(Z", (@p)r.5)|Q < [] S},

xeF
L*(57) 1= {4 L(S7)|TSCS A* = A*(Z°, (Se)ges) A
3 homeomorphism ¢: A* > A with o’ ¢ = o (acZ%},
one can prove the following relations (see [5]):

— If A* is a given SCS on Z? then there exists a finite set S with the

property: There exist a PCS Ae,?(SZd) and a homeomorphism ¢: A* - A
such that ¢°¢ = @a° (a€Z? is true. '
— For every nonempty finite set S the following connection holds:

7*(5%) ¢ 2(57).

(2) For the comparison of the sets Z(S?") and #*(S%’) (where S is any
given nonempty set) it is useful to regard a suitable metric. For this in the
following a Hausdorff metric d is considered on ,?(Szd):

d(Ay, A,) := max (max mind (&, ), maxmind (&, n))(4,, 4, E.S"(Szd))

Sed] neAy neAy $edy
where
d(é7 7]) = d((éx)xszds (n")xeld):= Z Card (gl)_, Z 5(6::7 ”x)
=1 xe 2

with

gl = {x = (Xl, ey xd)GZdl max le-l = l}

i=1,..d

and

1 if ¢ # n,,}

(o m)={0 if & =n
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It is easy to prove that this metric is compatible with the product topology
on S%.
Using this metric, one obtains ‘that from the property

~ 1
d(A1, 49 < 5=

it follows that for the configurations of A, over the central cube Q:= {x
= (X1, ..., X)€Z% —n< x; < +n (i=1,...,d)) of the lattice Z% the same
colorations and only these are allowed as for the configurations of 4,, i.e.:
for every element ¢ €A, there exists a configuration n €A, (moaz) (k =1, 2)
such that ¢, =n, for all xeQ.

With respect to the topology induced by the metric d, #(S%) is a
compact metric space.

9. Remark. For the one-dimensional lattice Z' one can prove that for

any finite set S the space #*(S?') is dense in Z(S%'): £(5%") = #*(5%").
(For the proof see [1]) In the case of dimension d > 1 one can find an
approximation result for the relation between PCS’s and SCS’s under the
additional condition that the regarded PCS’s are mixing.

10. DeFINITION ([5]). A PCS A = A(Z%, (Qp)pe5) € L(57) is called to be
mixing if the dynamical system (4, (¢°),_,d) is mixing, i.. if for any two open
sets U, V in A the following relation is true:

Une*VnAd#@ for almost all aeZd

11. ExampLE. (1) The PCS A of Example 4 is an element of
2*(10, 1)2%), because the SCS A* of Example 7 is homeomorphic to A
under the transformation ¢: A = A* defined by ¢(&) =n* and ¢(6°¢)
=0"¢(¢) (aeZ?. Since (eg) G a3 *20(G) N A* = @ is true for all
integers n, the system A* and, therefore, also A are not mixing.

(2) Considering the space A’ €. Z({0, l}zz) which is generated by %’
:= & (in the sense of Example 4) and '

00
Qr:=Q
F FU{ 0}

(F € #'), one obtains a PCS of much more rich structure than in the case of
the system A regarded in Example 4. It is possible to prove that A’ is mixing.
It is not clear whether there exists a homeomorphic SCS to A’ or not. But
the following theorem shows that A’ can be approximated at least by a
sequence of SCS’s. '

12. THEOREM. For any finite set S and for any dimension d > 1, the
following relation between the set &, (Szd) of the mixing systems of & (Szd) and
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the set .?*(Szd ) is true:
Z,.(87) = #*(5%%).

(Remark. One can even prove that #* (SZ°) N £,,(S%)) = £ (S%) is true (see
[2]). The renunciation of the mixing property of the approximating systems

from ,Z’*(SZ") allows an essential simplification of the idea of the proof.
Therefore, here the reduced form of the relation is regarded.)

Proof. (1) In the case d = 1, one can deduce the result directly from the

proof of the relation Z(Szl) = _?“(Szl) which is given in [1].
(2) In the following, the assertion will be proved for d = 2. One can
"generalize this proof by induction for any dimension d > 2. Let be d = 2. The

content of this proof is to construct for any fixed PCS Aeff,,,(Szz) a
sequence (A*),.y < Z*(S?%) with the property

~ 1

d(4, A3) < 1 (neN).

(3) Let now n be a fixed natural number. The following scheme illus-
trates the steps of the proof:

Ae 2, (5%
e
3¢eA: (1) & is periodic,
1 pM-*Zl 9 es?!
2 d (A (078,02 ) < <z _1}
ey
= {d 8}, 1
1)
IAY e 2*(57):

d4, A}) <
1)

3 a set configu-
ratlon 9* on Z!:

set configuration n* on Z?2 4’3— A = {¢" 9*}

1(6)
A* = {o°n*

2n—1

\.,.4

ez2:

d(A, A% ) <,
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One regards all sets of the configurations

(- n,n) [(s(il,iz))ij= (= 1,2)]
= {‘f GSZZK(:'I.:Z) = S(iq,iq) (ij =—N,..,n =1, 2))} (S(il.iz) €S)

which have a nonempty intersection with A. (Let us denote these sets by

Q5. Q) .

As a consequence of the mixing property of A, there exists a configura-
tion £ €A with the following two properties:

(i) There exists a natural number m such that for all ke{l, ..., r} one
can find a point g = (a;,, &,)eZ? with

Q:=(-mm [(f(il,iz))if —myam(i=1,2)] € Uak(Qk),
1e.

— A%
Qlixelzlaki—nSx,-Sakl,+n(i=1,2)}_0 (Qk)

(i) The configuration & is periodic with respect to at least one of the
two directions of the coordinate axes. (In the following it is assumed that
(e.g) & =a®Cm* VD) is true for all [€Z.)

(4) One can prove that there exists a transformation p which assigns to
every point of the set M := {x =(x,, x,) €Z*| —m < x, < m} one and only
one point of the lattice Z' such that every translation on Z' corresponds
under p~! to a translation o over M where aeZ?mod (1, 2m+1).

(For the definition and for the properties of this transformation p see

[(31)
Using the transformation p, one can assign to ¢ a configuration 9es?'.
(5) The PCS Ae2(S?") which.is generated by {o"(9},,1 can be

approximated by a sequence (/‘1';"),6N c $*(Szl). (See Remark 9.
Let the natural number h be fixed such that

p(Qln) = {e €Algli-nn = Hi-nn)

is true. One chooses now a natural number [, with the property

i.e. there exists a generating configuration 3* of /T;"o which has (at least) over

the central part [—h, h] of Z! the same coloration as 9 (= the Fenerating.
configuration of A) and which corresponds (because of A% € #*(57)) to a set
configuration on Z!.

(6) Regarding the transformation p~!, the configuration 9* eS?’' corre-
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sponds to a unique coloration of the points of the set M and — by periodic
iteration of this coloration in the direction of the second coordinate axe —
to a unique configuration n* €S%>.

One considers now the PCS A* on Z2? which is generated by

\0”(n*)},42- From the construction it follows directly that A* e,?*(Szz) is
true: by p~! and by the periodic iteration in the direction of the second
coordinate axe one assigns to the set configuration which corresponds to $*
a set configuration on Z? which is in correlation with n*.
Moreover, one obtains:
— pn*
él{x=(x1.x2)elzl -mSx;$Smi=1,2)} n |£x=(x1.x2)522| -m<x;<mi=1,2))
because 3 and 3* have the same coloration over [ —h, h]. That is enough to
show that d(A, A*) <

used as the wanted PCS A,’:‘.

1
2,'_ is true. Therefore, the system A* can be
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