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We discuss examples of one-dimensional lattice spin systems of classical
statistical mechanics whose generalized zeta function has all its poles and
zeros on the real axis. The close relation between certain hyperbolic dynam-
ical systems and these spin systems let one expect that similar things are true
for some of these dynamical systems also. In fact we have found several one-
dimensional expansive systems among them the Gauss map whose zeta
functions have their zeros, respectively their poles, on the real axis. Such a
behaviour is closely related to spectral properties of the systems transfer
operator which in the cases considered is some positive nuclear operator in a
Banach space of holomorphic functions. We formulate a general conjecture
concerning the spectrum of this class of operators.

I. Zeta functions of one-dimensional spin systems

We consider classical spin systems on the one-dimensional lattice Z. Let F be
the set of values the classical spin ¢ can take. A configuration ¢ of the system
can be described by a two-sided infinite sequence & = (£;);.z of spin values on
every lattice site i eZ. It happens very often in physical applications that not
all such configurations ¢ are indeed realised but only certain of them, which
we will call allowed ones. For simplicity we consider only the case where
there are only restrictions on spin values on neighbouring sites. Then the
allowed configurations can be described by a transition matrix ¢ all of whose
entries t;;, i, j€F, are either zero or one: configuration ¢ is said to be
allowed if

teg ., =1 for all ieZ, where { = ()2

* Heisenberg Fellow.
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102 ON THE LOCATION OF POLES

If FZ denotes the set of all allowed configurations the system (FZ, t) with

(&) = Cie1

defines a two sided subshift of finite type.
Let us then consider the numbers N,(r) which count the periodic points
of the shift map 7 of period n:

(1) N,(t)= # {(eF?: "¢ =&}

and their generating function

¥ {.(z) = exp ; z2"/nN, (7).

It is a special case of the zeta function introduced by Artin and Mazur [1]
and was calculated the first time by Bowen and Lanford [2] to be

3) L. (z) = 1/det (1 —z1).

If the transition matrix ¢ is symmetric, which at least physically is natural to
assume, all the poles of {, lie on the real axis. A special case being t;; = 1 for
all i, jeF which leads to the zeta function

4 {(2) = 1/(1-n2)

where n = |F|. ,

Because the Artin—-Mazur function for an arbitrary Axiom-A system can
be written via the thermodynamic formalism of Bowen, Ruelle and Sinai [3]-
[4] as a quotient of products of functions of the above kind (3) with different
transition matrices t, also their zeta functions have all zero’s and poles on
the real line as soon as the corresponding matrices t, have only real
eigenvalues. It would be certainly interesting to find a simple characterisation
for this to happen.

From a physical point of view the function {, as defined in (2) is rather
uninteresting: it can be interpreted as the generating function of the so called
finite system partition functions Z, with periodic boundary conditions of a
lattice spin system without interactions at all. If £, denotes a configuration on
a finite interval of length n on Z then this configuration determines a unique
periodic configuration of period n on the whole lattice Z which for brevity
we denote again by &,. If H(¢,) is the energy of the finite configuration &,,
periodic boundary conditions taken into account, the partition function
Z,(H) is given as

(5) Z,(H) =Y exp—H(,)
Sn

where the sum is over all allowed configurations £,. The trivial case is
certainly where H(&,) =0 for all &é,. Then Z,(H) = N,(t) as defined in (1)
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and therefore {,(z) is indeed the generating function of all these free partition

functions. It is clear that boundary conditions do not play any role in this

case. They play however a role in the interacting case where H # 0 which

alone is of interest in physics. This lead Ruelle [6] to an at least from the

physical point of view very natural generalisation of the zeta function of

Artin and Mazur. Let us start from a finite system with periodic boundary

conditions. The energy H(&,) of any configuration &, can then be decompo-

sed into the different contributions coming from the interaction of the spins ’
& at the lattice sites say i =0, ..., n—1 with all the other spins of the

periodically extended configuration £, on Z as follows

n—-1
(6) Hi) = ) AE'E)
i=0

where A (,) describes the interaction energy of the spin &, at the lattice site
i =0 with all other spins ¢;, jeZ, self interaction included. The partition
function Z, = Z,(H) = Z,(A) can therefore be written as

n—1
(7) Z,(4) =Y exp— ¥ A@E).
én i=0

Inserting this instead of N,(t) into the definition of the function {; in (2), we
arrive at the function

a0 n—1
®) (. A)=exp Y 2%/n ¥ exp— ¥ A('0).

n=1 ¢5Fix,n i=0
This can be generalized immediately to any dynamical system T: M - M
and ¢: M — R some function to give Ruelle’s generalized zeta function for a
dynamical system

© n—1 :
©) (rz, @) =exp ) z"/n Y ] o(T*x).
n=1 xeFixTn k=0
Analyticity properties of this function both in z and ¢ have been studied both
for spin systems and dynamical systems by several authors [7]-[13]. Contra-
ry to the Artin—-Mazur function the function {r(z, ¢) is for instance not
meromorphic in z for arbitrary Axiom A systems [14] or systems of
. statistical mechanics with even exponentially decaying interactions [15]. Our
main concern here is a point which in the above mentioned works was
completely ignored namely the location of zero’s and poles of this function in
cases where meromorphy in the z plane could be established. This is a rather
obvious question in the study of zeta functions of the different kinds [6].
Meromorphy of {r(z, ¢) is closely related to the existence of nuclear transfer
operators L in some Banach space of holomorphic functions which allows
one to express the numbers z H(p(T" x) as traces of such operators L"
xeFixTh k
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and therefore the function {;(z, @) as quotients of Fredholm determinants
generalizing this way formula (3). There are now several examples available
where this program could be carried through both for spin systems and
dynamical systems. Let us consider first spin systems.

For both discrete and continuous spin systems on a lattice with finite
range interactions the partition functions Z,(A4) can be written in terms of
the so called Kramers-Wannier transfer matrix L [16] as

Z,(A) = trace
such that for these systems the function {,(z, A) is again simply given as
(10) (. (z, A) = 1/det (1 —zL).
In the case of continuous spin variables this matrix L is an iniegral operator

in a Hilbert space of square-integrable functions [16]. The general form of
the transfer operator L of a spin system is as follows: if Z, denotes the

positive half lattice Z, = {ieZ: i >0} and F Z+ the allowed configurations
on Z, (we assume t;; = 1 for all i, jeF) then L is a linear operator on the

space €(F°*) of all continuous observables on F** defined as

(11) Lf (¢*) =) exp—A(n;) f(n5)
oecF
where 7, denotes the configuration (n}), =0, (n}); =&_,, i=1,2,... on

Z, . The sum in the above definition of L has to be replaced by an integral
for continuous spins. It was shown in [16] how L reduces to the transfer
matrix L for finite range interactions. For symmetric interactions like the
Ising system the transfer matrix has only real eigenvalues and the poles of
the corresponding zeta function all are located on the real axis.

A much more interesting case arises when the interaction is of long
range but decays exponentially fast with the distance on the lattice. This is
just the kind of interaction appearing in the thermodynamic formalism of
hyperbolic dynamical systems. A well known model in statistical mechanics is
the so called Kac-model [17]: It is an Ising like model leading to the
following function A:

(12) A= —Jeg Y rer
i=1

with some constant J, 0 <1 <1 and F = {+1, —1}. It was shown in [9],
respectively [16], that the corresponding transfer operator can be restricted
to the Banach space B(Dg) of holomorphic functions over the disc Dg
= {z€C: |z] <R} for some R > i/(1—4) leading to a nuclear operator

(13) Lf(z) = e f (A+A2)+e 2 f (— A+ A2).
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The partition functions Z,(A4) can be expressed via the traces of this operator
as

(14) Z,(A) =(1—-AYtrace L
which leads to the zeta function
det(1—-zAL)
(15) (e(z, A) = det(—zD) ‘

To say something on the location of the zeros and poles of this function we
have to know the eigenvalues of the operator L. It was shown in [16] that
symmetry and positivity properties of L allow one to prove that at least the
two leading eigenvalues A, and A, are positive and simple. What about the
other eigenvalues? In fact we expect, even if we cannot prove it at the
moment, that all eigenvalues are positive.? This is based on the following
argument: there exists an at least at the first glance completely different
approach to the transfer operator for this system by Kac [17]. He found that
the partition functions Z,(A) with free boundary conditions can be expressed
as the traces of some positive definite symmetric integral operator K in some
Hilbert space of square summable functions. All its eigenvalues therefore are
positive. Even if the exact relation between the two operators is not clear at
the moment, especially for the different boundary conditions, it nevertheless
supports our conjecture. In fact Baker treating the same model with free
boundary conditions as Kac did arrived at a transfer operator very similar to
our one [18]. Another support to our conjecture comes from the limiting
behaviour of the operator L in (13) for J = 0. In this case the spectrum is
explicitly known and consists of the numbers 24, i =0, 1, 2, ... . Therefore
our conjecture is true in this limit. Indeed, because boundary conditions do
not play any role for J = 0 Kac’s integral operator has in this limit up to the
factor 2 exactly the same spectrum, as one expects from physical grounds.

II. Zeta functions for expanding maps

The simplest dynamical systems with zeta function meromorphic in the
whole complex plane are the piecewise monotone Markov maps T of the
unit mterval I. Let us consider especially the piecewise linear ones under
them. For such a T there exists a finite partition I = ) I; into subintervals I;

J
with int I; nint I, = @ for j # k such that T(I;)) = I and T),; is linear for all j.

If ¢ denotes any holomorphic function on the disc Dg of radius R > 1 in C
then the zeta function {;(z, ¢) defined as in (9) for this system turns out to
be given by

M Added in proof: This we can show now.
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det(1—zL,)

(16) (e 9 = G =Ly

where the operators L;: B(Dg) — B(Dg) are nuclear operators whose explicite
form is given as

1
(17) Lif()= ¢(Z)Z;f0%(2),
respectively
(18) L f@) = o@D XS oY;(2).

1

Thereby y; denotes the local inverse Tl,‘j‘ and p; " its slo.pe. The explicite

form of y; therefore is
llll(z) = pI_IZ,
¥j(2) = p; 'z+(pr ' +...+ i)

Even for this rather simple operators almost nothing is known about their
spectra. If the function ¢ however is positive on Dg N R then at least the
leading eigenvalue of the operator L, is positive saying just that the pole
nearest to the origin is real

A rather trivial but nevertheless quite informative case is when the
function ¢ = 1. Then the Ruelle zeta function is identical with the Artin-
Mazur function: in fact the eigenvalues of the operators L, and L, are

AW =Ypt k=12 ..,
J

respectively
A =Yp% k=0,1,2,..,
i

leading to the zeta function
(19) {r(z, 1) =1/1—nz)

where n denotes the number of intervals I; in the partition of I. If one
considers the simplest case n =2 and p; = p, =2 and takes for ¢ the
function ¢(z) = exp(Jz) then the operators L; and L, are rather similar to
the transfer operators of the Kac model discussed earlier and we therefore
expect them to have real eigenvalues only. Presumably this is true for all ¢’s
which are real on Dg "R as will be discussed later.

Let us next discuss a slightly more complicated system which is known
to have a meromorphic zeta function. It is also locally expanding but allows
for much stronger results as we will see. It is the Gauss map T: I —1 with
Tx = 1/xmod 1 for x # 0. Its generalized zeta function was discussed in some
detail in [12] where it was shown that it can be written as
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det (1 —zL,)

(20) {r(z, @) = det(1—zL,)

where ¢ is any holomorphic function in the disc D = {zeC: |z—1| <3/2}
and vanishes at least like z2 for z = 0. The corresponding transfer operators
L;: B,(D) = B,(D) are again nuclear and given by

(21) ) Lifz)=9@ X Vi) foyi(2),
i=1

respectively

(22 L,f(2) = ¢(2) .; foyi(2),

for feB,(D) = {f: f(z) =z%g(2), geB(D)}, where ;: D =D are the holo-
morphic mappings

(23) Vi(@) = (z+0)~".

Consider now the case ¢(z) = z2. The spectrum of the operator L, obviously
coincides with the spectrum of the following operator L in the Banach space
B(D):

a

(24) Lg@) = ¥ (z+i) 2g(z+D)7").

i=1

In a recent paper with Roepstorff [19] we showed that this operator L has
indeed only real eigenvalues. This was achieved by relating the spectrum of L
to the spectrum of the following operator V ‘

(25) Vf(z) = f:l E+) Me+i+ ) (z+D)7Y)
acting in a certain Hardy space H?(v) of holomorphic functions f in the half
plane H_,,;, = |z = x+iy: x > —1/2}:
H?*(v) = {f: f holomorphic in H_,,,, |(1+2)~!f(z)| bounded in
every half plane H_,,,,, for ¢ > 0 such that
A2 = fav@)|f @) < o}.
Thereby dv denotes the measure
dv(z) = 1/n((1+x)2+y?)" ' dxdy

on the strip —1/2 <x <0.
It turns out that the operator V in this space is isomorphic to the
following integral operator K: L,(R,,dm) = L,(R,, dm):
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(26) Ky (s) = [dm(@) T (2(s1)"2)(st)" 2 (1)
0

where m denotes the measure dm(t) = (¢'— 1)~ ! tdt on the positive real axis
R, . Since K is symmetric, all eigenvalues of K are real and, therefore, also
those of V respectively L. But then all the poles of {;(z, ¢) are again on the
real axis. Unfortunately, we cannot say much about the location of the
function’s zeros. Positivity properties which we will discuss a little bit more
in detail later show that the leading eigenvalue of the operator

[+ o]
27 © Lige) = — 21 +)7*g(z+)7")

i=
is negative and therefore the zero next to the origin of the function {r(z, z?)
is real. Up to now ® we did not succeed in relating the spectrum also of this
operator L, to some symmetric Hilbert space operator as it was the case for
L,. It is interesting to remark that the above zeta function for ¢(z) = z? has
been used quite recently by Pollicott to prove a prime number like theorem
for the distribution of closed geodesics on the modular surface [20].

III. A conjecture about the spectrum of a class of composition
operators in Banach spaces of holomorphic functions

In all cases where meromorphy of a zeta function in the whole complex
plane could be established for a system to the present day this property
derived from nuclearity properties of the corresponding transfer operators
respectively analyticity properties of their Fredholm determinant as shown
by Grothendieck. In all the examples discussed above these transfer oper-
ators act in a Banach space of holomorphic functions in one or several
complex variables over some bounded domain D in C" with D N R" # @ and
are of the quite general form

(28) Lf ()= @@ ) foyi(2)

ieJ

where y;: D = D are contracting holomorphic mappings with their unique
fixed point z* in D N R". The function ¢ is also a holomorphic function on D.
If the index set J consists of exactly one element then we showed in [21] that
the spectrum of the operator L in (28) is determined by the value ¢(z*) and
the eigenvalues of the linear operator Dy (z*) that means the derivative of ¥
at the fixed point. If, therefore, ¢ is real on D N R" and all these eigenvalues

@ Added in proof: We can show now: L, is related to the kernel J;(2(st)!/?) replacing J,
in (26).



D. H. MAYER 109

of Dy (z*) are real then also the eigenvalues of L are real. This is trivially
true for n=1 and ¢ real on DN R" Surprisingly enough the examples
discussed above show that this property seems to be valid also in the case
where J consists of several elements. Such a property would follow immed-
iately when we could show that under the above mentioned assumptions the
operator L in (28) can be related to a symmetric Hilbert space operator as it
was the case for the operator L in (24) and is presumably the case for thg
operator L corresponding to the Kac model. Unfortunately we do not have
any idea if something like this can be true. Indeed, the following example
and also the fact that in some of the examples discussed before we could
prove reality of the two leading eigenvalues by restoring to positivity
properties of the corresponding transfer operator in the Banach space, can
throw some light on these problems from a different side.

Consider the map Tx = kxmod 1 for any integer k > 2. For simplicity
restrict the discussion to the case k = 2 but all we have to say is also true for
arbitrary k. The transfer operator for the function ¢ =1 reads

(29) Lf (2) = 3f (/2 +3f (z + 1)/2).

This operator is uy-positive in the sense of Krasnoselskii [22] in the space
B(Dg) with respect to the cone K; = |f: f >0 on DNR}. Therefore there
exists a unique eigenfunction f; of L in K, with dominant eigenvalue 4; > 0.
The operator L can then be written as

(30) L=i,P,+N,

with P; the projector onto f; and N,; a linear operator with spectral radius
strictly smaller than A, such that P, N, = N, P, = 0. Denote by Ke P, the
kernel of the operator P;. It turns out to be given by

KeP, = {f: }f(x)dx=0}.
0

On this space the operator N, is again u,-positive now with respect to the
cone K, = {f€KeP,: f' 20 on DNR}. Therefore also N, can be written
as

Nl =A.2P2+N2

where A, is now the leading eigenvalue of N, and P, the projection onto the’
corresponding eigenfunction f, in K, and P, N, = N, P, =0. This can be
continued for general i: the operator N;_, is uo-positive with respect to the

i—1
cone K; = {fe N KeP;: f¢"V(x) >0 on DR} Therefore there exists a
j=1

positive leading eigenvalue of N;_, in this cone which furthermore is even
simple. This way one can prove simplicity and positivity of any eigenvalue 4
of the operator L in (29) in a rather complicated way. But the hope is that
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this way one could prove reality of all the eigenvalues of the transfer
operators discussed in the examples before and also quite generally the
following conjecture.

Conjecture. If all the eigenvalues of the operators Dy;(z¥) in the operator
L in (28) are real and ¢(z) > 0 on D N R" then the operator L has only real
eigenvalues.

Presumably it would be even enough that the function ¢ is real on the
set DN R".

There seems to be no theory equivalent to the theory of symmetric
operators in Hilbert spaces for operators in Banach spaces which could be
applied in the above case. What one is looking for is an extension of the
work of Krein and Gantmacher on positive matrices of the oscillatory type
and generalizations thereof [23] which ensures relatity of the spectra of such
matrices. Progress in this direction would certainly help us in understanding
better, if our examples are very exceptional or belong to a class of operators
with such nice spectral properties.
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