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1. Introduction

This text gives some review of numerical studies of three well-known
problems in the theory of dynamical systems, namely

1. Hyperbolicity conditions of the Poincaré mapping for the Lorenz
system.

2. Unstable one-dimensional manifold of Feigenbaum’s fixed point.

3. The construction of KAM-curves for the standard mapping with the
help of renormalization group theory.

Each topic is presented in a separate section.

2. Hyperbolic properties of the Lorenz attractor

The famous Lorenz system is the system of three ordinary differential
equations (see [1])

d_x_ —ox+a
dt - Vs
d

(1 - d—}t)=rx—y—xz,
d
d—:= —bz+xy.

There exists an open domain in the space of parameters o, r, b such that
for each point of this domain the corresponding flow §' has a strange
attractor. We follow closely the analysis of the Lorenz system presented in
the paper by Afraimovich, Bykov, Shilnikov (see [1]). In particular, for, r
=28, b =8/3 and o around 5.8, a neighbourhood of the strange attractor
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can be constructed with the help of the stable manifold of the hyperbolic
periodic orbit which appears as a result of the bifurcation occurring at the
value of the parameter o where the unstable one-dimensional manifold of the
origin is contained in the two-dimensional stable manifold of the origin. In
the paper [2] the following general problem was discussed. Assume that we
have found by computer a numerical trajectory (x;, y;, z;), i =0, ..., n such
that the distance between (xq, Vo, 2o) and (x,, y,, z,) is small. The question is,
under what conditions the flow {S$‘! has a periodic orbit passing near
(x0. Vo Z0). In [2] the corresponding criterium was proposed, which took
into account the round-off errors and numerical estimations of the norm of
the monodromy matrix. Later it was extended by Hibnik (Pushino) and some
other people. The method of [2] can be considered as one of the first
computer — assisted proofs in the theory of dynamical systems.

In [3] the results of [2] were used for numerical checking of the so-
called hyperbolicity conditions for the strange attractor of (1). These condi-
tions guarantee the stochasticity of the attractor. Thereby we mean the
following. Denote by A the attractor and by O a neighbourhood of it such
that almost every trajectory starting in O tends to the attractor as t — co.
Take an initial probability distribution y, concentrated in O and having a
density g, with respect to the Lebesgue measure.

DEeriNniTION 1 (see [4]). The attractor A is called stochastic if the shift p,
of u, tends to a limit, 1 which does not depend on p,. The flow |S*} with the
invariant measure i is mixing.

We shall not give here the precise formulations of the hyperbolicity
conditions. A reader can find the definitions in [4], [5]. Remark that these
conditions are formulated in terms of properties of Jacobi matrices of the
corresponding Poincaré mappings.

The Jacobi matrices were constructed in [2] numerically with some step
in x, y coordinates for ¢ = 6, r = 28, b = 8/3. The results show that hyperbo-
licity really does occur. However it is worthwhile mentioning that in the case
considered in [2] the hyperbolicity conditions are valid only in a very
narrow and small neighbourhood of the attractor and the expanding coeffi-
cient is at the boundary close to 1 exceeding 1 of course (it is equal
approximately to 1.05). This fact can be seen also from the first analysis of
Lorenz [6].

3. Unstable one-dimensional manifold
of the Feigenbaum’s fixed point

The doubling equation in Feigenbaum’s theory of universality of period-
doubling bifurcations takes the form

1
2 @ (x) = -;fp((P(aX)), xe[—-1,1]
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Here ¢ is an even function satisfying the normalization condition ¢(0) = 1.
The existence of the solution of (2) was the subject of many papers we
mention only some of them ([7]-[9]).

The equation (2) can be considered as an equation for the fixed point of
the non-linear mapping defined by the right-hand part of (2). The whole
universality theory of Feigenbaum is based upon some properties of the one-
dimensional unstable manifold of the fixed point.

In [10] this manifold was constructed numerically. The main tool was
the functional equation for it. The needed unstable manifold is a stable fixed
point of this equation. An one-parameter family of one-dimensional map-
pings obeys Feigenbaum’s universality if it is close enough to the one-
dimensional manifold in question.

4. Renormalization group approach to the
construction of KAM-curves

Consider the famous standard mapping T acting on the two-dimensional
cylinder C with the coordinates z, —o0 <z <o @€0,1 (mod1). It has the
form T(z, ¢) = (z’, ¢') where

Z =z+Asin2np, ¢ =¢@+z(modl).

The KAM-theory yields the existence of invariant curves of the form z
= f(¢) where f is-a smooth periodic function (see [11]). The corresponding
rotation number must satisfy some diophantine conditions. One of the
appealing problems is the bifurcation of KAM-curves into cantori. The study
of this bifurcation was started by J. Greene [12] and continued by R.
MacKay in his dissertation with use of the renormalization group theory.
This theory is still too difficult for a rigorous treatment.

In [13], the renormalization group theory was applied to the construc-
tion of KAM-curves. It turns out that the KAM-curves correspond to the
“trivial” fixed point of the renormalization group which is linear and can be
written in an explicit form. The stability of this fixed point has been also
investigated explicitly. A statement of KAM-theory turns out to be a
statement of a convergence of renormalization group transformations to the
stable fixed point of the group. The conditions for such convergence are
formulated in terms of closeness of the initial family to the fixed point.

Precise formulations of these conditions given in [13] have a rather
complicate form. Their advantage is that they can be checked numerically.
The corresponding work is under progress. One can hope that using this
approach it will be possible to get better estimations from below of values of
A for which the golden KAM-curve exists.
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