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1. Introduction

Let us consider a singular integral equation of the Cauchy type

(1) a(x)u(x)+ﬂx—) 1 ﬂdt+ l _l[ h(x, Hu(t)dt = f(x),
n t—x T

-1

—1< x <1, where a(x) and b(x) are real-valued Holder continuous coeffi-
cients with a?(x)+b2(x) > 0 for —1 < x < 1. The functions h(x, t) and f(x)
are the given kernel of the regular part of the integral operator defined by
the left-hand side of (1) and the given right-hand side of (1), respectively.
Define a continuous function

1 | a(x)—ib(x)
90 =5 T

and a weight function

_(1=x1+x°  1g()
= . (x) exp —jl :; dt,

o(x)
wherer(x) = (a®(x)+b%(x))"/2 > 0 and 4, and pu, are integers such that
—l<a:=43+g9(), PB:=po—g(-1)<1.
Then the representation

() 0 (x) = (1=2)*(1+x) wo(x)

is valid, where wy(x) is continuous and positive on [—1, 1]. Furthermore,
we make the following assumptions (cf. [1], [2]):

[183]



184 P. JUNGHANNS

1° There is a function
N+1

c(x) = ¢o(x) l__l Ix_le-aj,

-1=x~+1 <x~ <x1<x°—1 —1 X 1 SUCh that

<
B(x)=c(x)b(x), -—-1<

x<1,
is a polynomial.

2° The exponents a; (j =1, ..., N) are greater than —1, and, further-
more, oo —a, dy+g—pf, do+a, ay.+B> —1, and co(x) > 0 is continuous
on[-1,1].

Now, for —1 < x <1, equation (1) is equivalent to

1
A3) a(x)a(x)v(x)+%x) t(t)

Ul(t)dt"' Ihl(x Ho(t)o, () dt = f,(x),

where

u®) =0, (o), o) =0@)c),
hi(x, ) = c(x)h(x,1), fi(x)=c(x)f(x).

If we define a linear bounded operator A in the >pair of Hilbert spaces
(L3,, L%)), where

t(x) = p(x)/c(x),  p(x) =1/o(x)r*(x),

by

(Av)(x)—a(x)o(x)v(x)+—%_ll "0 o d, —1<x<1,
then A"V given by

(A" Vg) (1) = a@) u@®)g () - ‘f py(x)dx, —1<t<1,

is at least a one-sided inverse of A.

LemMa 1 ([7], §5, 5°-7°). Assume that a function Y(x,t) is Holder
continuous with exponent y, 0 <y <1, uniformly in the variables x and t, i.e.

V(s )=y (<7, O < Cy (1 —xP+1t = 1)

(the C, denote positive- constant numbers), x', x" €[a,, b,], t’, t" €[a,, b,].
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— 0 <a_,-, b} < 00 (’=l, 2). Let er[al, bl], 0<5 <'y, and
./’(xr t)—l[’(xo, t)

Ix— xol‘5

o(x, 1) =

Then there exists a constant C, such that
lo(x', )= @(x", t")] < Co(Ix' = x"P 2+ |t' =" %)
for x', x",t',t" as above.

CorOLLARY 1. Assume that Y (x,t) possesses the same property as in

Lemma 1 (a;j=—-1,b;=1), 0<& <y, ¥(x,)=0(k=0,1,..., N+1;
te[—1,1]), and

W (x, t)
IT bx—xd™
k=0
Then
1B (x', )= D(x", t")] < C3y (IX' = x"|" "0+ |'—1""79),
X, x',t,t"e[—1,1], where 6 = max J,.

O<ks<N+1

Proof. We apply Lemma 1 to the intervals

(=1, 30y +xy- )1, [3xn+xn-1), Txn-1 +x8-2)], ..., [B(x2+xy), 1].

Lemma 2. If [f(X)—f(X") < Cq|x'=x")", X', x" €[ay, by], 0 <y <1,
6>0, and x,€[a,y, b,], f(xo) =0, then there is a constant Cs such that

lg(x)—g(x") < Cs|x'=x"]",  x', x"€l[ay, by],

where g(x) = f(x)]|x—xol°.

Proof. In the case & = y the validity of the assertion is clear. Now,
assume 6 <7y. Let xo < x’' <x". If xo = x/, then

lg () =g (") = 1f (") (x" = x0)%| < C4(x"—x0)"*°
< Csy (x"—x).

In the other case (x, < x’ < x”) it follows that
lg (x) =g (x")| = I(x" = x0)* f () = (x" = x0)° f(x")|
= ((x" = x0)’ = (%' = xo°) |Lf (X)| + (x" = xo)° L f (x) = f (x").
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First, let x’—;co < x"—x'. Thus,
g (x)—g (x") < Csz | f (x)+Cs3|f (X)— f (x")]
€ Cs3 C4 (X' —x0)" + Cs3 Co (X" — XY
< Cs4 (x" =X
Secondly, if x”"—x" < x'—x,, then there is an X, x’ < X < x”, with
1 (X)—g (X)) < 8(F—x0)*™} (x" = x) - Ca (x' = x0)' + Cs3 Co (x" = X)"
<

(C4 0 (x' - xO)6 + C53 C4) (x” - x,)y < CS 5 (x" - x')".

In the case x' < x” < xqo, we proceed analogously, and (4) follows.
Corollary 1 and Lemma 2 imply

CoROLLARY 2. Let y(x, t) satisfy the assumptions of Lemma 1. Further-
more, assume O, <7y, Y (%, t)=0(k =0,1,..., N+1; te[—-1,1]), and

P(x, 1) = N+'1ll(x )

n |x— xkl %

Then
[Dx', )= D", €] < Caz (% =X 041 =0,

x,x" t',t"e[—1,1], where 6 = max {0, dq, ..., On+1)-

Proof. Analogous to the proof of Corollary 1.
LemMma 3 ([7], §18, 3°). Let Y (x, t) fulfil the assumptions of Lemma 1 with

a, =a,=—1, b, =b, =1. Then the function
L Y(x, t)
G@= |
S ox—

is Holder continuous with exponent y on [—1,1] if y(=1,t)=y(1,t)=0
(ce[-1,1]).
The fact that a function f (1), —1 <t < 1, has a derivative of order m (m

a nonnegative integer), Hélder continuous with exponent y, 0 <y < 1, will be
denoted by feC™,

Lemma 4 ([2], §3; [5], p. 91). For each polynomial p(x), (A" Y p)(¢) is
again a polynomial.
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2. A regularity property of the solution of
a singular integral equation

Lemma 5. If a, beC®?, then wyeC% (cf. (2)).
Proof. Note that r, geC®’ and write

[ 90, _ [ o0=(+0e+1-0g(-1)2,,

_1t_x 1 t"‘x

1 - -
+1I{(1+x)g(l)+(1 x)g(=1)
27 t—x

+g(1)—g(—l)}dt.

Denote the first integral on the right-hand side by §(x). Then §€C%? in view
of Lemma 3. It follows that

(1= )"0 (1 4 %0 (1 —x \(1 + 2012+ (1~ xg(~ 1)/2
o(x) =
r(x) 1+x
xexp(g(x)+g(1)—g(—1),
or
Wo(x) =(1_x)(l—x)(y(—l)—a(l))/z(l+x)(1+x)(_.‘,(1)—g(-1))/2

exp(@(x)+g(1)—g(=1)
X
r(x)
Because €™ eC%® for s€[0,1] and all £€(0, 1) the assertion follows
immediately.

THEOREM 1. Let a, b, ¢, €C®", and
max {0, a —ag, f—0n4y, =0y, ..., —0y) <y <1.
Assume f €eC™". Then
ACY fecms,

where 6 = min {n, y, y+ag—a, y+ays, —B, )}+a1, coy YHONS
Proof. On taking into account the equality

B(@) ! ’
ATV N =10 [a(t)#(t)— %1 [ #I—(x)de

-1 X—I

_B() j

T -1 X —

1 a—
f(x) tf () 1y () dx
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and Lemma 4 it remains to prove that
@’ BFeC™?,

where

L S LG (U]

Ty

Uy (x)dx.

By induction it can be proved that

(V)]
i - 3 200 |
(x—t)"+l ’

d* [f(X)—f(t)]

|  x—t
k=0,1,..., m. Thus,
) (¢
- zf R

F(k) (t) = ; _.‘1 (x t)k.+ 1 u (X) dxa
and (4) is valid if
) BF™ eC%?,
Setting
"' f ‘ﬁ()
(x, 1) = m! [f(x)— ¥ (x—t)’]/(x "
j=0
we obtain
© Ox, D)= - [/ D) k=9 dy

= m}f‘”’ (st+(1—s)x)s™ " 'ds.
Using the inequality ’
(ry+r)) <2'77(@F 41y, r 20,120
([7], §5), we conclude that
1P(xX, )= @(x", t")] < Ce(Ix"—x""+1t'—1"]"),
x,x",t',t"e[—1,1] (cf. [3], p. 138). Let
Y(x,t)=d(x, )= f™(1).
We define

N+1 N+1 o
P(x,1) = Z 'I’xj,t)]"[
=0 j_xk

k#]
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which is a polynomial with respect to the variable x. Now, we can write
BF™ as follows:

B(r) j(Wx O—PE, O)m ()

M BOF™@= —

—[a(t)u(t)mz, - ;"}P C 0 )dx]

_1 -
+a®)u@)P(,t).

In view of Lemma 5 the representation

N
u(x) = (=27 Q=)™ T Ix=x,1% co (0/(wo () P2 ()

j=1

holds with co/(wor?) €C%". According to Corollary 2 and Lemma 3,
t (P(x, )= P(x, ) py (x)

]

-1 x—t

dx eC%?.

Furthermore, by Lemma 4 the term in square brackets in (7) also belongs to
C%?, Finally, from (6) we obtain &(t, t) = f™ (1), from which we conclude
that P(—-1, -1)=¥(-1,-1)=0, P(1,1)=¥(,1) =0, and (by Corol-
lary 2)

a()u@) P(t, ) eC®
This proves (5).

3. The Gauss quadrature method and rates of convergence

By definition, ¥ = —(4,+ o) is the index of equation (3). In case x > 0 we
require that v(r) fulfils the additional conditions

1 1
8) - ( v()tle,()dt =0 (1=0,1,...,%x—1).
.
In what follows we prove that (3) (with (8) in case » > 0) is uniquely solvable
in L} . Denote by ¢, (k=1,...,n) and x; (j =1, ..., n—x) the zeros of the
orthogonal polynomials of degree n and n—x» with respect to the weights
g, (t) and u, (x), respectively. We seek an approximate solution of (3) in the
form

0a() = 3 ot [T
S
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by solving the algebraic equations
©) z A [, )+Mnn{Puo i) G=1,...,n=2),
k=1 k™

where the weights 4, are given via the Gauss quadrature rule

1 l. n
(10) — [ o@o()dr ~ Y Ao(ty.
L k=1
In case » > 0 we complete (9), for example, by
(11) Y Ao, (t)ti=0(=0,1,...,%—1).
k=1

If x <0 we modify (9) so that the vector
(0 (21), o> Ualts €1y ovs )

is to be determined by solving

, - B (X)

9 > A —
k=1

where the columns (ay, ..., a,_, )" are chosen in such a way that

J
B( ,)

>

—-—x

v )+ Y a;é = fl (x;)

=1

+h()é,-, t)

- X

Zlk

+h( a;=0 (k=1,...,nl=1,..., —x),

and

n—x

Z Vi ﬂapn_(slm (lam= L ..., =%). (1)

J—

THEOREM 2 ([3], Theorem 3.1). Assume c(x) =1 (ie. b(x) is a polyno-
mial), o, f <0, ¢ =06, €C*, and also h(x,-), h(-, t)eC"" (uniformly with
respect to the variables x and t, respectively). Then for sufficiently large n the
equations (9) (with (11) in case x > 0) or (9') are uniquely solvable, and
(12) max |v(t)—v,(t) < C;n ™9 |nn,

1<k<n”
where ¢ = min(y, &,).
Using Theorem 1 and the same arguments as in [3] one can prove

THEOREM 3. Let f, and h, fulfil the same conditions as f and h in Theorem
2. Furthermore, assume a,b,c,€C®" and og—a,ay_;—B, ay, ...,y =0.
Then for sufficiently large n the equations (9) or (9) with (11) or (9) are

() y; are the Christoffel numbers with respect to u, (x).
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uniquely solvable, and

13y max [v(t) —v,(t)| < Cgn™ ™" ?1nn,

1<k<n
where & = min(y, n).

Let us consider the case of constant real coefficients a and b with
a’+b?=1 and b>0. Then, by applying Theorems 2 and 3 it is only
possible to investigate the index case » =1, where

o(x) =(1=x)"(1-x"",

a+ib=¢", 0<e¢ <1. From Theorem 2 we obtain (12) with ¢
= min(y, ¢, 1 —¢’), while Theorem 3 gives (13) with § = 7.
Remark. With the help of Theorem 3 the estimate of the global error

max [|v(1)—wv, ()|

-1<5r<1

can also be improved using the method of [3], §4.
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