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1. Introduction and results

Let (X, d) be a metric space and let = be a dynamical system on X. 7 is
called parallelizable if there is a global section S, for =, i.e. a subset S, c X
such that for every x €X, there is a unique 7,(x) eR for which xnz,(x)€S,
and that the mapping 7,: X =R, x1,(x) is continuous.

The problem of parallelizability has a long history. For a survey of this
development, see [3], [8], [6].

. It is well known [3] that parallelizable dynamical systems cannot have
compact invariant sets. Recall that the closure of an invariant set is invariant.
Therefore, if a dynamical system in R" has a bounded trajectory (or, more
generally, if a dynamical system in an arbitrary metric space has a trajectory
with compact closure) then it is not parallelizable.

The question naturally arises: given an infinite-dimensional Banach
space (E, {|-|)), does there exist a parallelizable dynamical system n on E with
bounded trajectories, i.e. a parallelizable dynamical system with the property
that sup {||xnt—x]|| t eR} is finite for each x €X?

The aim of the present paper is to show that the answer is affirmative:

TueoReM 1. Let (E, |I']) be an infinite-dimensional Banach space. Then
there exists a parallelizable dynamical system m on E with bounded trajectories.

The proof of Theorem 1 is given in Section 2. The proof is based on a
simple application of various homeomorphism (continuous onto bijection
with continuous inverse) results of infinite-dimensional topology. More preci-
sely, we make use of the following

LEMMA. Let (E, ||'||) be an infinite-dimensional Banach space. The origin
and the unit sphere {e€E| |le]| =1} of E are denoted by Og and S, respect-
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ively. Then

(a) [2, Prop. V1.6.1] E ~ S, i.e. there exists a homeomorphism J: E — 8.

(b) [2, Cor. II1.5.1] E ~ E\ {Og!}.

Moreover [4, Cor. 1.], there exists a homeomorphism K: E —E\ {Og}
such that K (e) = e whenever |le|]| = 1.

(c) [2, Th. VI.6.1] E ~ E xR, i.e. there exists a homeomorphism L. E
—E xR.

In case of E = L,(— 0, o), 1 < p < oo, constructive examples for paral-
lelizable dynamical systems with bounded trajectories are given in Section 3.
A preliminary version of these examples has its own interest: it is formulated
here as

THeoREM 2. For p>1 arbitrarily chosen, let F = L,(—o0, ). Then
there exists a dynamical system ¢ on F satisfying the following conditions:

(i) o is linear;
(ii) o restricted to F\{Og} is parallelizable;
(i) for each Of # f€F, the function V;: R >R defined by V,(t)
= ||fotll, is strictly decreasing and
(iv) for each O # f €F, there holds

0 <inf{V;(t)| teR} <sup{V;(¢)| teR} < 0.

Theorem 2 points out that even for dynamical systems satisfying (i) and
(ii), the existence of a strict Liapunov function need not imply any attraction
and/or repulsion property of the origin nor that of the point at infinity.

It is worth to note that Theorem 2 with condition (i) removed, can be
generalized to all infinite-dimensional separable Banach spaces:

CoroLLARY. Let (E,||:|]) be an infinite-dimensional separable Banach
space. Then there exists a dynamical system 6 on E satisfying conditions (ii),

(i), (iv).

Proof of the Corollary. By the famous Kadec—-Anderson theorem, .all
infinite-dimensional separable Banach spaces are homeomorphic [2, Cor.
V1.9.1]. Consequently, a twofold application of Lemma (a) yields the exist-
ence of a homeomorphism

H: E—>F=L,(—,-0)
with the properties that
llel] = ||H(e)||p' ‘and H(ie) = AH(e) for all eeE, A > 0.
The desired dynamical system can be defined by
est =H '(H(e)ot), e€E,teR.
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For a similar application of the Kadec—Anderson theorem in topological
dynamics, see [5].

Remark. The problem of existence of parallelizable dynamical systems
with uniformly bounded trajectories (i.e. of parallelizable dynamical systems
with the property that

sup Jsup {[|Ixnt —x||| teR}| xeX)

is finite) seems to be much more complicated.

In cp, the Banach space of real sequences converging to zero, we have
constructed [7] a parallelizable dynamical system with uniformly bounded
trajectories (and with global section homeomorphic to cp). This particular
example gives rise to similar examples in those separable Banach spaces
(F,|-]) for which there exists a homeomorphism H: cp — F that satisfies a
Lipschitz-condition for large distances, i.e.

|H (x)—H(X)| < M||x—x|l

for some constants M, L > 0 whenever x, X ecp, |[|x—X|| = L. Unfortunately,
to the best of our knowledge, it is not much what is known [10] about the
existence of such homeomorphisms.

2. The proof of Theorem 1
(A) For (e, u)eE xR, t €R, define

(e, wat = (e, u+t).

It is clear that o is a parallelizable dynamical system on E x R. In fact,
S, = (e, yeExR| u=0] is a global section for a and t,((e, u)) = —u.
(B) For e€E, teR, in virtue of Lemma (c), define

eft = L™ (L(e)at).

It is clear that B is a parallelizable dynamical system on E. In fact, S,
= L™1(S,) is a global section for B and t4(e) = 1,(L(e)).

(C) Recall that S = {e€E]| |le]l = 1}. For s€S, t €R, in virtue of Lemma
(a), define

syt = J(J~1(s) Br).

It is clear that y is a parallelizable dynamical system on S. In fact, S, = J(Sp)
is a global section for y and t,(s) = t4(J ' (s)).
(D) For e€E, teR, define

w50 = Jell-(@/llelhyt) if e # O,
OE if e = OE- .
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It is easy to see that J is a dynamical system on E. The continuity of § at Og
follows from the invariance of the spheres

{AseE| seS}, A>0.
Further,
Ss; ={AecE| e€S,, 1 >0}
is a global section for ¢ restricted to E\{Og} and t;(e) = 7,(e/|le|)). Thus, &
restricted to E\{Og} is parallelizable.
(E) For e€E, teR, in virtue of Lemma (b), define
ent = K~ '(K () 6t).

It is easy to see that m is a parallelizable dynamical system on E with
bounded trajectories. In fact, S = K~ !(S,) is a global section for = and 1, (e)
= 14(K (¢)). Further, for arbitrary ¢ >0, we have that

llent]] < max {1, ¢}  whenever l|le|]| =c, teR.

Concluding the proof of Theorem 1, we remark that S, ~ E. In fact; an
easy application of Lemma (c) yields that

E~S,~8>~8,~8;~8,.

3. Examples. The proof of Theorem 2

Throughout this section, for p > 1 arbitrarily chosen, let F = L,(— o0, 00),
the Banach space of Lebesgue measurable functions f: (— oo, o) =R such
that

@

1fll, = ( § 1/ (Pdx)'? < oo

= @

Let ¢;, c;€R, 0 <c¢; <c, <oo and let w: R =(c,, ¢;) = R be a contin-
uous function.
By letting

(e, N)(X) = ft+x) w(t+x)/w(x)
for teR, feF, xeR, we define a mapping
o=0Ww): RxF —F.
By definition,
e(t, f+g) = e, N)+e(, g), et, &) =2-¢(t, f), (0, /) = f
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and
o(t, 0(s,f)) =o(t+s,f) for all f,geF, A€R, t,s€R.

It follows easily from basic integration theory that g is continuous. Thus, g is
a linear dynamical system and we are justified in writing o(t, f) = fot. In
case of w(x) =1 for all x€eR, g is the well-known [9], [11] shift dynamical
system on F = L,(— o0, o)

By elementary computations,

(1) iz Ilf=gll, < |l fet—getll, < ci ' ez Il f—gll,

for all f,geF, teR.
Since O ot = O for all t eR, inequality (1) implies that ¢ has bounded
trajectories.

ProPOSITION 1. g restricted to F\ |Of) is parallelizable.

. Proof. In virtue of [8, Cor. 11.], it is sufficient to prove that g restricted
to F\|Or} is Poisson-unstable as well as Liapunov-stable.

A dynamical system is called Poisson-unstable if no point of the phase
space belongs to its alpha— or omega— limit set. The Poisson instability of
o restricted to F\ |Og! follows from the inequality

lim |If—fotll, = (1 +¢5 -c2 D7 £,

t—+

which, in turn, is a consequence of the simple fact that

)3im If=full, =0
where
_)f( if xe[-N, N],
Sulx) = {0 otherwise

for all feF, N=1,2,...

On the other hand, as a consequence of inequality (1), ¢ is Liapunov-
stable on F (in the sense that, for every ¢ > 0, there exists a 6 > 0 with || fot
—gotll, <& whenever || f—gl|l, <9, t€R).

Thus, by [8, Cor. 11], ¢ restricted to F\{Op} is parallelizable. In
particular, the usual shift dynamical system [9], [11] on F = L,(— o0, o), p
> 1, restricted to F\{Og} is parallelizable. (The case p = c0 must be exclud-
ed. In fact, the usual shift dynamical system [9], [11] on F = L, (— o0, o)
restricted to F\ {Of} is not Poisson-unstable and therefore [3], [8], it is not
parallelizable.) It is worth to mention that we are not able to give S,, the
global section of o restricted to F\ |Of!, in an explicite form, although g is
constructed explicitely.
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From now on, assume, in addition, that w is strictly decreasing. Then o
= o(w) has the additional property:

2 I fetll, <Ilfll, for all feF\{Ofj, t > 0.

ProrosiTioN 2. If w is strictly decreasing, then S,, the global section of ¢
restricted to F\{Op} can be given explicitely. Namely, one can put

= 1S €F\10s}| Ifll, = 27" -((infw) ™' +(supw) ") || finll,,}
= {f €F\{O}| Ifll, =27"-( lim || fetll, + Lim || fetll,)}.

t—— t—ao

Proof. For f €F\{OF}, teR, let N(f, t) = || fot|l,. For all f eF\{OF}, the
monotonicity hypothesis on w implies that N is strictly decreasing in t —
this is equivalent to inequality (2) — and, by basic integration theory, it
follows that

L™ (f) = lim N(f, 1) = (infw)”" || fw,,

t——

L*(f) = 'h_’m N(f, 1) = (supw) ™[l fl,.
Consequently, L (f) and L* (f) depend continuously on f.

Since L™ (f) = L™ (foto,) and L* (f) = L* (fot,) for all fixed t,€R, it
follows that, given f € F\ 0F] arbitrarily, there exists a unique © =17,(f)€R
such that for,(f) €S, or, equivalently, N(f, 7,(f)) =2"'(L™ (f)+L* (f)). Re-
call that N is strictly decreasing in its second variable. By elementary real
analysis, the continuity of L~ and of L* implies that the mapping
7,: F\\0r} =R, f1,(f) is continuous.

ProrposiTiON 3. Let (E, ||-]|) be an infinite-dimensional Banach space and
let n be a dynamical system on E. Assume that n is Liapunov-stable on E (in
the sense that, for every ¢ >0, there exists a 6 >0 with |lent—ent|| <e¢
whenever |le—¢é]| <9, t €R) and satisfies conditions (iii) and (iv) of Theorem 2.
Then (E\{Og} < E is invariant and) n restricted to E\{Og} is parallelizable
and

= {f €E\{Og}| IIfIl =27"-( lim [\ fnell+ Lim || firell) }

t—+— t—w®
is a global section for n restricted to E\{Og).

Proof. The proof is similar to the one of Proposition 2. No essential
changes are needed. (Applying' the method used in [6, Section 3.1.], it is not
hard to show that, in general, the requirement “n is Liapunov-stable on E”
cannot be dropped.)

Proof of Theorem 2. Summing up the properties of g, especially inequal-
ities (1) and (2), we conclude that our dynamical system g satisfies conditions
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(i)Hiv). Thus, Theorem 2 is proved. In virtue of Proposition 3, the proof does
not require [8, Cor. 11.].

Now we turn back to Theorem 1 and, in case of E = L,(—oc, o), p
> 1, we construct examples for parallelizable dynamical systems with bound-
ed trajectories. Starting from Theorem 2, we apply the homeomorphism
method used in Section 2.

In virfue of Lemma (b), there exists a homeomorphism K: E - E\ O]
with the property that K (e) = e whenever |le|| = 1. It is emphasized that, in
case of E =1[,, K can be constructed [1, Lemma 8.2] explicitely. Since [, is
linearly isometric to L,(— oo, o), the Mazur homeomorphism

M,: L,(—, 0) = L,(—, ), fi|f|*" sgn(f)

gives rise to an explicite construction of K in case of E = L,(— 00, o), p > 1
as well. Finally, given p > 1 arbitrarily, for f€E = L,(— o, ), t €R, define

frt =K Y K(f)ot).

* As in Section 2, it is easy to show that = is a parallelizable dynamical system
with bounded trajectories.
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