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Introduction
Consider differential-delay equation
(1) vx(O)+x@) =f(x@¢-1), v>0,t=0

with continuous real valued function f(x).
Puting formally v = 0, we obtain the continuous time difference equation

() x(t) = f(x(t—1)).
For the latter it is natural to consider the one-dimensional map
) x = f(x).

Let X =C[—1, 0] be the space of continuous functions from [—1, 0]
into R. For any ¢ €X, there exists the unique solution x;, (t) of equation (1)
defined on [—1, c0) with x; (t)|;- 1,0y = @ (¢). This solution can be easily built
up by means of step-by-step integration procedure. Similarly, for any € X
there exists a unique solution x, (t) to equation (2) defined on [—1, c0) with
Xy()-1.00 = ¥ (). In this case the solution is constructed by means of step-
-by-step iteration procedure given by the law (2). So, the two equations (1)
and (2) both generate in a well-known way semiflows on X for ¢t > 0.

The dynamics given by (2) can be studied using the one-dimensional
dynamics of (3). This is done to a good and rather complete extent in [1, 2].
Much less is known about equation (1). Some of its properties can be derived
from the properties of map (3) and may thus be regarded as inherited. The
natural approach to the study of equation (1) is however to consider small
values of parameter v > 0 and to expect some kind of closeness between
solutions of equations (1) and (2). In fact the closeness takes place and this
allows us to conclude that solutions to equation (1) behave in a similar way
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with for solutions of equation (2) but only within a finite time interval. In the
limit as ¢t — oo, the asymptotic properties of equation (1) may differ essent-
ially from those ones to equation (2). The main task of this paper is to point
out some of these principal differences.

Part 1 of the paper deals with inherited one-dimensional dynamics the
equation (1). Closeness results are stated and discussed in Part 2. Principal
differences and the main result (Theorem 3) are contained in Part 3.

1. Inherited one-dimensional dynamics

Stated below properties of solutions of equation (1) may be considered as
retained from the one-dimensional dynamics (3) under singular perturbation
of equation (2).

Invariance property [3, 4]. Suppose that the map x — f(x) has an
invariant interval I (f(x)el for any xel). Then any initial function @ €X
satisfying ¢(s)el, se[—1, 0] generates the solution x} () of equation (1)
satisfying x (t) el for all t > 0 and any v > 0.

Invariance property says that the range domain for a solution to
equation (1) is included within the invariant interval for the map (3) provided
it is so for an initial time interval.

Stability property [3, 4, 5]. Suppose the map x — f(x) has an attracting
fixed point x, with a domain I, of immediate attraction. Then any initial
function @ €X satisfying @(s)ely, s€—[1, 0] generates solution x;(t) of
equation (1) satisfying lim x;,(t) = x,.

t—+w

The stability property says that an attracting fixed point of the map (3)

corresponds to the stable constant solution for equation (1) with “at least the

same” domain of immediate attraction.

Instability property. Suppose the map x — f(x) has a fixed point x, such
that |f(xo)| > 1. Then constant solution x(t) = x, to equation (1) is Liapu-
nov unstable for all sufficiently small v.

In the case when f'(xo) < —1 and f(x) satisfies the negative feedback
condition (x—xo) [ f(x)—f(x0)] <O for x # x,, the instability property al-
lows us to prove the existence of a nonconstant periodic solution to equation

(1) [6].

2. Closeness results

We define the initial function spaces X, = {pcC[—1, 0] |o(s)— @ (®)
< L|s—t| for some positive constant L}, X, =L;[—1,0] with norms

0
I-lly = sup |, lI"llz= { |-|ds respectively. For any fixed T >0, » >0 we
[-1,0] -1
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introduce the corresponding distances between solutions of equations (1), (2)
on [0, T] as follows:

Y O-20ll =sup {yO=2 ), 100, TI= U [ i+4T}s -

ly@—z@)llz = [ly(s)—z(s)lds.
0

Suppose additionally that f(x) satisfies the Lipschitz condition on I, i.e.
If(x)—f (I < K|x—y| for some positive constant K.

THeOREM 1. For any fixed positive constants ¢, T, L, » there exist positive
constants 6, vo such that any @ €X, Y € X, generate solutions x,(t) and x yt)
satisfying ||x;,(t)—x y()ll; <& for all 0 <v <v, provided ||o—y|l, <9.

Note that in the case of Yy €X) = {y €eX,| ¥ (0) = f(¥(—1))} we may
put »x = 0. This means uniform closeness on [0, T] between the solutions
considered.

THEOREM 2. For any fixed positive constants ¢, T there exist positive
constants 8, vo such that any @, Y €X, generate solutions x,(t) and x,(t)

satisfying
Ixg () —x 4(t)ll, <& for all 0 <v <v, provided |l¢—yl|l; <0.

As was shown in [1, 2] solutions of three types are generic for the
equation (2): asymptotically constant, relaxation, and turbulent ones. The
latest type is characterized by increasing (exponentially) oscillation frequency
and unbounded Lipschitz constant on any interval [t—1, t] as t — co, while
the number of oscillations within unit time interval for relaxation solutions is
constant. This points at a rather complicated behavior of solutions for
continuous time difference equation (2). Details may be found in [1, 2].

Theorems 1 and 2 show that within finite time interval solutions to
equation (1) may be as complicated as solutions to equation (2) are there.

3. Principal differences

By the invariance property for the equation (1) we see that every its solution
has bounded derivative: |vx (t)] < |x(t)| +| S (x(e— l))l < const. This means that
equation (1) has no solutions of relaxation or turbulent type. In view of the
stability property we can say that equation (1) may have asymptotically
constant solutions. So, under a singular perturbation of equation (2) relaxa-
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tion and turbulent type solutions disappear while asymptotically constant
solutions still do occur.

We may however expect for small v the presence of solutions of
equation (1) which are “close at infinity” to corresponding relaxation or
turbulent type solutions of equation (2). In general there may be no such
closeness. A simple example constructed in [4] shows the case where
asymptotically constant solutions and relaxation ones are generic for equa-
tion (2) while any solution of equation (1) with the same f is asymptotically
constant. This is due to the fact that the immediate attracting domain for
fixed point of the map (3) is essentially larger than the remaining part of the
invariant interval. The following theorem shows this situation to be generic.

THEOREM 3 [4]. Suppose the map x — f(x) has an invariant interval I
(fI €1) and is Lipschitz on it. Let map f has a single fixed point x, with a
domain 1, of immediate attraction. Then, if mes(I—1,) is small enough, all
solutions to equation (1) satisfy lim x(t) = xo for arbitrary v > 0.

t—

Note that the map (3) may have such a form on I -1, that solutions of
both relaxation or turbulent types will be present for equation (2). Then, due
to the closeness, some solutions to equation (1) can be complicated enough
within a finite time interval where v is small. However, if mes(I —1,) is small
then after some transition regim all these solutions get into domain I, and
thus become asymptotically constant.

I would like to thank Banach Center Officials for their hospitality,
kindness and assistance during all the time of may stay in Warsaw.
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1. Introduction

This text gives some review of numerical studies of three well-known
problems in the theory of dynamical systems, namely

1. Hyperbolicity conditions of the Poincaré mapping for the Lorenz
system.

2. Unstable one-dimensional manifold of Feigenbaum’s fixed point.

3. The construction of KAM-curves for the standard mapping with the
help of renormalization group theory.

Each topic is presented in a separate section.

2. Hyperbolic properties of the Lorenz attractor

The famous Lorenz system is the system of three ordinary differential
equations (see [1])

d_x_ —ox+a
dt - Vs
d

(1 - d—}t)=rx—y—xz,
d
d—:= —bz+xy.

There exists an open domain in the space of parameters o, r, b such that
for each point of this domain the corresponding flow §' has a strange
attractor. We follow closely the analysis of the Lorenz system presented in
the paper by Afraimovich, Bykov, Shilnikov (see [1]). In particular, for, r
=28, b =8/3 and o around 5.8, a neighbourhood of the strange attractor
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can be constructed with the help of the stable manifold of the hyperbolic
periodic orbit which appears as a result of the bifurcation occurring at the
value of the parameter o where the unstable one-dimensional manifold of the
origin is contained in the two-dimensional stable manifold of the origin. In
the paper [2] the following general problem was discussed. Assume that we
have found by computer a numerical trajectory (x;, y;, z;), i =0, ..., n such
that the distance between (xq, Vo, 2o) and (x,, y,, z,) is small. The question is,
under what conditions the flow {S$‘! has a periodic orbit passing near
(x0. Vo Z0). In [2] the corresponding criterium was proposed, which took
into account the round-off errors and numerical estimations of the norm of
the monodromy matrix. Later it was extended by Hibnik (Pushino) and some
other people. The method of [2] can be considered as one of the first
computer — assisted proofs in the theory of dynamical systems.

In [3] the results of [2] were used for numerical checking of the so-
called hyperbolicity conditions for the strange attractor of (1). These condi-
tions guarantee the stochasticity of the attractor. Thereby we mean the
following. Denote by A the attractor and by O a neighbourhood of it such
that almost every trajectory starting in O tends to the attractor as t — co.
Take an initial probability distribution y, concentrated in O and having a
density g, with respect to the Lebesgue measure.

DEeriNniTION 1 (see [4]). The attractor A is called stochastic if the shift p,
of u, tends to a limit, 1 which does not depend on p,. The flow |S*} with the
invariant measure i is mixing.

We shall not give here the precise formulations of the hyperbolicity
conditions. A reader can find the definitions in [4], [5]. Remark that these
conditions are formulated in terms of properties of Jacobi matrices of the
corresponding Poincaré mappings.

The Jacobi matrices were constructed in [2] numerically with some step
in x, y coordinates for ¢ = 6, r = 28, b = 8/3. The results show that hyperbo-
licity really does occur. However it is worthwhile mentioning that in the case
considered in [2] the hyperbolicity conditions are valid only in a very
narrow and small neighbourhood of the attractor and the expanding coeffi-
cient is at the boundary close to 1 exceeding 1 of course (it is equal
approximately to 1.05). This fact can be seen also from the first analysis of
Lorenz [6].

3. Unstable one-dimensional manifold
of the Feigenbaum’s fixed point

The doubling equation in Feigenbaum’s theory of universality of period-
doubling bifurcations takes the form

1
2 @ (x) = -;fp((P(aX)), xe[—-1,1]
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Here ¢ is an even function satisfying the normalization condition ¢(0) = 1.
The existence of the solution of (2) was the subject of many papers we
mention only some of them ([7]-[9]).

The equation (2) can be considered as an equation for the fixed point of
the non-linear mapping defined by the right-hand part of (2). The whole
universality theory of Feigenbaum is based upon some properties of the one-
dimensional unstable manifold of the fixed point.

In [10] this manifold was constructed numerically. The main tool was
the functional equation for it. The needed unstable manifold is a stable fixed
point of this equation. An one-parameter family of one-dimensional map-
pings obeys Feigenbaum’s universality if it is close enough to the one-
dimensional manifold in question.

4. Renormalization group approach to the
construction of KAM-curves

Consider the famous standard mapping T acting on the two-dimensional
cylinder C with the coordinates z, —o0 <z <o @€0,1 (mod1). It has the
form T(z, ¢) = (z’, ¢') where

Z =z+Asin2np, ¢ =¢@+z(modl).

The KAM-theory yields the existence of invariant curves of the form z
= f(¢) where f is-a smooth periodic function (see [11]). The corresponding
rotation number must satisfy some diophantine conditions. One of the
appealing problems is the bifurcation of KAM-curves into cantori. The study
of this bifurcation was started by J. Greene [12] and continued by R.
MacKay in his dissertation with use of the renormalization group theory.
This theory is still too difficult for a rigorous treatment.

In [13], the renormalization group theory was applied to the construc-
tion of KAM-curves. It turns out that the KAM-curves correspond to the
“trivial” fixed point of the renormalization group which is linear and can be
written in an explicit form. The stability of this fixed point has been also
investigated explicitly. A statement of KAM-theory turns out to be a
statement of a convergence of renormalization group transformations to the
stable fixed point of the group. The conditions for such convergence are
formulated in terms of closeness of the initial family to the fixed point.

Precise formulations of these conditions given in [13] have a rather
complicate form. Their advantage is that they can be checked numerically.
The corresponding work is under progress. One can hope that using this
approach it will be possible to get better estimations from below of values of
A for which the golden KAM-curve exists.
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