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The autogenerator with tunnel diode is described in [1] by the following
system of ordinary differential equations:

(1) X=y—0z, Y= —x+2yy+az, ui=x—7f(2),

where f is of type z3—z.

In [1], values of parameters «, y, 5 are discovered for which the limit
dynamical system as g — +0 is mixing. For various f and positive g,
numerical results show the strong scattering of trajectories. The chaotic
behaviour has also been experimentally investigated; see [2].

In this paper we take for f the function given by formula (2) below and
we look for a domain 4, in the parameter space (a, y, ) such that the
Poincaré mapping of the plane z = —2/3 has a smooth Smale horseshoe for
all positive u small enough. This domain will be described in geometrical
terms. The existence of a Smale horseshoe implies the quasistochastic beha-
viour of oscillations. Moreover, the limit theorem proved in [3], [4] is
applicable to this case. The results of this paper have been published in my
previpus paper [S] and [6] (Russian).

Let f be the continuous piecewise linear function

(2) A) f(@)=20=-1), B)f@=-z (Of@=20+),
the formulas holding in the domains
A z>23, (B) -23<z<23, (O z<-23,

respectively. Let 2, be the part of R® defined by the inequality (A) for z.
Parts 5y and . of R® are defined by inequalities (B) and (C), respectively.
The solution of the system in the whole of R® belongs to class C!*!. In

[327]



328 THE DISCOVERY OF SMALE HORSESHOE

each part »#,, I = A, B, C, the solution is an analytic function. The system
for ¢, has a fixed point p, = (x4, V4, Z4) With coordinates

_ 2(x+2y0) _ 26 . = 2
AT e AT 22w’ AT 2-2p-a

The system for #p has a fixed point ps = (0, 0, 0). The point pg belongs to
Hg. The system for . is symmetric to the system for #,, so pc = —p,,
where pc is a fixed point of the system for .

DeFiNITION 1. The domain 4 is défined by the following conditions: 1°
The fixed point p, belongs to J#,; 2° The fixed points p,, pg, Pc are unstable
focuses. These conditions are equivalent to the inequalities:

—2y<d <4y, -—-1<a+2y<2,

—1+(y—=06/2)? <a <2-2(y+6/4)%.

We assume these inequalities to be fulfilled.

The limit dynamical system as u — +0 displays two kinds of motion:
fast and slow. Trajectories of fast motion are parallel to the OZ-axis and
trajectories of slow motion belong to the surface x = f(z). The plane x = —z
in #p is repelling, the plane x =2(z—1) in ), is attracting. The slow
motion in ., is given by the system

(3) Xx=y—0z(x), y=-—-x+2yy+az(x), z(x)=1+x/2.

It is convenient to inspect it using the orthogonal projection.onto the plane

z = 2/3. The slow motion along the plane x = 2(z—1) terminates on the

boundary of #%. i.e. on the line x = —2/3, z = 2/3, when x(t) < 0. The last

inequeality is equivalent to y(t) < 20/3. So the break loose ray is L, =

(—2/3,y,2/3): y <23/3}. The fast motion begins on L, and finishes on the
plane x = 2(z+ 1) in ¥, where the slow motion begins. The boundary point
M of the ray L, with coordinates (—2/3, 26/3, 2/3) is the point of nonuni-
queness: slow motion may continue either in the plane x = 2(z—1) or in the
plane x = —z. The slow motion in the repelling plane x = —z may finish at"
any moment to give start to fast motion. The latter may finish attaining
either the plane x = 2(z—1) or the plane x = 2(z+1). All motions m¢ntioned
above are limits as u — +0 where the distance to the limit trajectory as a set

is O(uln1/p) in order. It is convenient to study the limit dynamical system
using the Poincaré mapping of the ray L into itself. (p is mapped into g if p,
g belong to the same trajectory and this trajectory consecutively intersects L¢
in p and g.) In view of central symmetry it is enough to consider the
transformation n of the ray L. into the ray L,. This function has a gap at
the point M. If p, € #, and x, = 2/3 then the transformation = is expanding
for all y such that n(y) is defined. This condition is equivalent to o+ 2y

=1/2.
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DeriNiTION 2. We shall say that (a, y, 6)ed, if («, y, d)€d and the
following four conditions formulated in geometric terms are fulfilled; see [4].
Let us fix on the ray L. the interval I = |(2/3,y, —2/3): d, <y <d,] in
such a way that (I) —6d, <46 < 3d,. Assume that: (II) the projection I'" of
the spiral I' finishing in M intersects the projection I of I at least three
times; (III) the turn of its continuation in 3, intersects the projection of L.
and comes to L, at the point G with coordinates ps = (—2/3, y,, 2/3) with
Y« < —d,. The inequality (I) ensures the transversal intersection of trajectory
projections and intervals. The condition (III) and the left-hand inequality in
(I) give I, =« GM. So the n-image of I covers the interval I, at least twice. It
is also demanded (IV) that the transformation n be strongly expanding on
Icnnt1,. .

The region 4, is non-empty because, if a =y=1/4, § =1/2 and I,
= {(2/3, y, —2/3): 0.7 <y < 1.3}, all the four conditions are fulfilled. This
proposition is verified by numerical calculations.

Let us assume that (a, y, §) €4, and u is positive and small enough. We
shall estimate the main terms and the order of the remainder terms as y —
+0. If (x, 7, 8) €4 and u > O is small enough then the fixed point O, has two
complex-conjugate eigenvalues A, ,(A4, p) = »%,(u)+w,(y), where »,(p) and
w,(n) are positive, and one real eigenvalue 1;(A, p), which is negative.

%q(u) =7—6/4+0(w >0,
wa(p) = (1—0/2—(y+0/4?*)"*+0(w) > 0
As(A, p) = —2/it+6/2+ (62 + 20) u/8 + 0 () < 0.

The invariant line A, = {p=p,+{ €5(A, n)}, where &5(A, p) is the eigen-
vector corresponding to A3(A4, p) with coordinates

e3(A4, W= Op/2+o(y), —ap/2+o0(w), 1), -

and the invariant plane I1,= {p=p,+&g,(A, W+n-g,(4, 1)}, where
gi1(A, w and g,(A, p) are the real and imaginary parts of the complex
eigenvector ¢, (A, u), respectively,

g2 (A, ) = 0 W2, 0+ %4 1, 0,

pass through the fixed point O,. The line A, is almost parallel to the axis
OZ, the plane Il is close to the plane x = 2(z—1). In s, the trajectory
exponentially approaches the fixed point O, along the line A,. A trajectory
starting in IT, is a spiral belonging to II, with unstable focus O, until it
leaves »#,. The motion in ¥, may be decomposed in the direct sum of fast
motion along A, attracting to IT, and slow motion along IT,. Let us denote
by I the matrix with columns formed by the coordinates of vectors g, (I, u),
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g.(I, p). €3(1, p), and introduce

100 010 000
G,=|lo10] G,=| -100], G,=|o000
000 000 001

E=G,+G; and for I = A
N, (t) = (cos(w; - t) Gy +sin(w; - t) G;) exp (¥, - 1)
+exp(A3(1, ) 1)Gs.

Then the general solution of (1-2) in 3, is
B(t) = Pat+ A Na(®) A~ (F(0) = Ba).

To follow the trajectories in s, let us use their projections along the vector
¢;(A, u) onto the plane z =2/3
4 F(t, @) = (X(t, w), §(t, p), 2/3)

= Pat(2/3—24)&+(E—AG3)-A-Ny(t): G- A™"-(F(0, p)—Pa).

If the two trajectories project onto the same point at the initial moment ¢,
then their projections will coincide until one of these trajectories leaves .
Such two trajectories lie on the cylindric surface with element parallel to
€3(A, p) and directrix r(t, p). If z,(ty, @) > z5(to, ) then the inequality
z,(t, p) > z,(t, p) will be valid until one of these trajectories leaves #,. Let
v’ be the moment of the arrival at ', and " be the moment of the departure
from #,; then 1t} <7, <ty <t{. In limit, as u — +0, this projection
becomes the orthogonal projection of the limit motion onto the plane z
= 2/3. The projection 7(t, u) and its derivatives are Lipschitzian, in u, t and
initial position ¥(0, p). If z(0, g) = 2/3 then z(t, p) = lo+ 1, - x(t, W+1, y(t, p
+((0, p)-exp(4s(A, p)-t) for all ¢: z(t, w) = 2/3.

If (a, 7, ) €4 and u > 0 is small enough then the fixed point Og has two
complex-conjugate eigenvalues and one real eigenvalue A;(B, p), which is
positive:

A3(B, p) = 1/u—6+(@—0° - u+o(w) > 0.

The invariant line Az = {p = (&5 (B, u)}, where €5(B, p) is the eigenvector
corresponding to 4;(B, u) with coordinates
e3(B, p) = (—du+o(w, au+o(y), 1),

and the invariant plane IT; = {p = &G, (B, w)+ng, (B, p)}, where g, (B, u) and
g,(B, u) are the real and imaginary parts of the complex eigenvector,
respectively,

gl (B,#) = <1_xB.us xB—é'—(;{g_wg)us _1>9
g2(B, p) = {(—wp- yu, wg-(1—2x5"p), 05,
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pass through the fixed point Oz = (0, 0, 0). The line Ay is almost parallel to
the axis OZ, the plane ITg is close to the plane x = —z. The general solution
of (1-2) in H#y is

p(t) = B-N(t)- B! p(0).
The typical trajectory departs from ¥y very quickly repelling the invariant
plane IIg.

The frontier between 5, and 5 is the plane z = 2/3. Let us describe
the transition. (I) A trajectory leaves 5 through the half-plane (x >
—2/3,z =2/3). A trajectory leaves ¥, through the half-plane {x < —2/3,
z = 2/3}. In such a frontier point #(¢, u) has a discontinuity of the first type.
(IT) If a trajectory intersects the line {x = —2/3, z = 2/3} then it is tangent to
the plane {z = 2/3} in this point. Such a trajectory stays in #p if y < 26/3
and it stays in 5, if y > 26/3. (III) At the point M the trajectory leaves .
and arrives in J¢,.

Let us say that pe.#, is situated below the plane IT,, if

((P) = a5V (x—x)+a3 " (y—y)+a3" (z2—2z,) <0
where a; ! is an element of the matrix A~

A trajectory which has reached ¢, below the invariant plane IT,
cannot intersect it inside s ,. Such a trajectory leaves »#, trough the angle

P, = \(x,y, 2/3): (y=26/3) p—(xi+wd) (24—2/3) p*
<21+x,4-p)-(x+2/3) <0}.
This angle &, is the intersection of the plane z =2/3 and the two half-

spaces: {p: {(P) <O}, {p: x(p) < —2/3}. Let us denote by M ,(u) the vertex
of &,. Then

My (p) = (—2/3, 26/3+ 0k + 0D (2a—2/3) 1, 2/3)

nit, g
Mylu)

Folt, i)

Llg)
¢,

N

{x=-2/3, z=2/3}
Fig. 1 Fig. 2
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Let us denote by [, (u) the line of intersection of the plane z = 2/3 and the
invariant plane IT,. Denote by r, (t, u) the projection (4) which is tangent to
the line I, (u) at the point M ,(u) and by r, (¢, u) the projection (4) which is
tangent to the line {x = —2/3, z = 2/3} at the point M.

Let D(u) be the set on the plane z = 2/3 lying between r; (t, u) and the
line {x = —2/3, z = 2/3} (the shaded area in Figure 1). Let us parametrize
Fi(t, u) and 7, (t, u) in such a way that 7, (0, ) =K (u) and 7, (0, u) = M. Let
us parametrize every projection r(t, pu) intersecting the interval MK (u) in
such a way that F(0. x) is a point of this intersection. Consider the projec-
tions 7(t, u) for t < 0. The ambiguous corridor M (u) is thus introduced (the
shaded area in Figure 2).

If a trajectory enters s, through 9 (u) below the invariant plane IT,
then it is impossible to predict in terms of its projection where this trajectory
will leave s#,. If a projection r(t, u) intersects the angle @, out of D(u) at
first time then all trajectories lying below the plane IT, and projecting into
r(t, ) leave 3, before r(t, p) intersects I, (u).

' y=—d1

y=-d;

Fig. 3

Let us denote by S,(u) the trapezoid cut out from the angle @, by
planes y = —d; and y = —d,; see Figure 3. Let us denote by P,(u) the
rectangle cut out from the plane z = 2/3 by planes y = —d,, y = —d,, x =
—h,, x = —h,, where

hy = 2/3+[(dy +2/3) p+0ck + 03) (24— 2/3) L2 V[4(1 +24- )],
hy = 2/3+[(d2+2/3) p+ 0k +03) (24— 2/3) ) V[2(1 +24- )]

Let us denote by Sc(u) the trapezoid centrally symmetric to S,(u) and
by P.(n) the rectangle centrally symmetric to P, (u).

Trajectories of the system (1-2) generate a mapping of one plane into
another plane. It is convenient to choose planes z = —2/3 and z = 2/3. Let
us introduce the Poincaré mapping occ of the plane z = —2/3. We look for
two consecutive moments ¢, and t, when a trajectory p(t, u) leaves . to
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generate occ: p(ty, ) = p(t,, p). By consecutive moments we mean t,, ¢,
such that t, <t, and there is no moment t; between t, and ¢, at which this
trajectory p(t, u) leaves .. This mapping is defined not for all points. Let
us introduce the mapping o, of the plane z = —2/3 into the plane z = 2/3.
o4 is generated by two consecutive moments of time, ¢, when a trajectory
leaves ¥, and t, when this trajectory leaves #,. oc4 is introduced
analogously with the roles of 4 and C reversed. There is a domain such that
Occ = Oca*Oac- Moreover, occ(x, y, —2/3) = —64c(—04c(x, y, —2/3)), by
central symmetry.

Let us study the trajectories beginning in Pc(u), crossing g, entering
#, and leaving #, through P,(u) for the first time. Such trajectories
generate the mapping o, of a subset of P (u) into the corresponding subset
of P4(p).

Let us consider the transition through 5. For sufficiently small
positive u the plane IIz does not intersect P-(u) and the distance between
them is about u in order. Thus for sufficiently small positive u the behaviour
of trajectories beginning in P (y) is almost the limit one. If p(0, y) = (u, v,
—2/3) belongs to P-(u) then there exists a value T (u, v) such that

z(T(u,v), p))=2/3 and ulnl/u—puC, <T(u,v) <plnl/u+uC,
Moreover,
x(t, W) =u+O0(pnl/y, y(, p)=v+0(pinl/y
and z(t, u) monotonically increases in ¢ for all 0 <t < T(u, v). Let us write
U=x(T(u,v),pn), V=y(Tu,v), u.
Thus we have a mapping opc: (u, v) = (U, V) defined in Pc(u).

THEOREM. og¢ is a diffeomorphism of the rectangle P-(p) into the curvili-
near rectangle on the plane z = 2/3 lying below the invariant plane I1,, and we
have

%U = (u—2/3)/[u—2/3+ p(v+25/3]+0 (uIn 1/p),

%V = pu(—2yv+20/3+2/3)/[u—2/3+ p(v+26/3)]
+O0(uln1/p)

0 ov

EU =0(inl/p, —-=1+0(ulnl/p,

Jacoge = (u—2/3)/[u—2/3+ u(v+26/3)]
+0(uln1/p) > 0.
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oU o
The partial derivatives —— and —— are uniformly bounded. The partial derivati-

Ou Ou
ves of the second and higher order exist and are bounded in Pc(u), but their
values increase as u decreases.

We assume till the end of the paper that («, y, ) belongs to 4,. Let us
consider the trajectories entering #, below the plane IT, and leaving 7,
through the the trapezoid S,(u). Their projections r(t, u) onto the plane z
= 2/3 parallel to e;(A, u) cover some spiral domain R(u). Let us call R(p)
the strip region of departure; see Figure 4.

\
=

\
\
'\'

Fig. 4

Let us study the limit strip region R(0) of departure covered by
projections r(z, 0) of trajectories of the system (3) ending in points of the
segment [ ,.

Let us call 7(¢, 0) ending in the point (—2/3, Y, 2/3) the accompanying
limit spiral for the trajectory p(t, u) leaving ¥, through S, (u) at the point
(X, Y, 2/3). As follows from the conditions (I) and (III), the projection I of
the spiral I' does not intersect the segment I,. The limit strip region of
departure R(0) lies between the turns of I'" and thus intersects the segment
I- twice at any rate. Let us parametrize r(t, 0) belonging to R(0) in such a
way that 7(0, 0) belongs to I,. If ¢, and ¢, are two consecutive moments of
intersection of r(t, 0) and I then there is a natural k such that:

—2k=1)m >t w0 (0)> —2knm, —2kn>ty, w,(0) > —2(k+1) 7.

This number k is the same for 7(t, 0) belonging to R(0). Let us denote these
turns by R_,(0) and R_,_, (0).

LemMa. For all positive u small enough the strip region of departure R (1)
behaves as the limit strip region of departure R(0), where IM(0) = I".
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(a) The strip region R(w) lies between turns of the region W(u).

(b) The ambiguous corridor WM(p) intersects agc Pc (1) three times at any
rate.

(c) The strip region of the departure R{(u) intersects ogc Pc(y) twice by
R_.(w) and R_,_,(w) at any rate. ’

Each trajectory p(t, u) beginning at a point (U, V, 2/3) either in
R_, (W) Nogc Pc(p) or in R_,_, () Nopc Pc(u) leaves ), through R(w)
NP, () >S,(u) at a point (X, Y, 2/3) for the first time at t = T(U, V).
These trajectories define a mapping o, of the plane z = 2/3 into itself,

04t (U’ V) —')(X’ Y)

LEmMA. Let a trajectory p(t, u) begin in R_,(u) Nopc Pc(p). Then it
leaves #, at a moment T such that

2k-n <T-w, () <2(k+1)-m.

If T, (U, V) is the time moment when the analytic continuation of its projection
r(t, p) intersects the line 1,(u) then

T, (U, V)= T(U, V)| = O(exp[ —4kn/(uw, (w)])-

The accompanying limit spiral begins in the point (2/3, V*(U, V), 2/3) and
makes the same natural number k of rounds about O’ before attaining the point
(—2/3,Y,2/3). If T,(U, V) is the moment of attaining this point then

(U, V)-T(, V)l = 0(pinl/y.

For u > 0 small enough, trajectories beginning in R_, (u) N ogc Pc(u) leave # 4
for the first time in the narrow strip region along l,(u) belonging to the
neighbourhood of S ,(u) N P,(n). The width of this strip region is

O(exp[ —4k /(1w (1)])-

THEOREM. For p > 0 smal enough the following inequalities are fulfilled
uniformly in the domain R_, (u) " opgc Pc(W):

oX aX oY
oY dn

w =5,V V))+0 (uln1/p),

Jaco, = —4-25-exp(A5+2x%,) x(1+O0(uln1/w)/(3Y —26) <O0.

The mapping n: Lo — L, is generated by the limit trajectories. The point
(2/3, V*(U, V), 2/3) is the origin of the accompanying limit sptral for the
trajectory p(t, p).
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MAIN THEOREM. If (a, y, 0) €4, and u is positive and small enough, then
the Poincare mapping occ of the plane z = —2/3 into itself produces the
generalized Smale horseshoe. The corresponding dynamical system is quasi-
stochastic, according to Alekseev [7].

To prove the main theorem let us note that the rectangle P.(u) contains
two curvilinear rectangles Q% and Q**1V, The y-sides of these two sets lie on
the y-sides of P.(u) and the o c-images of their x-sides lie on the x-sides of
Py(1). apc QP < R_;(u) Napc Pc(w) for i =k, k+1.

See Figures 5, 6, 7.

The elements of the Jacobian matrix of the mapping 6 ,¢: (¥, v) = (X, Y)
for each Q% are

[7).¢ 0X oY

= 0W. =0, a2 = oM,
Y d
i—=-—7r([/*)‘i'0(l‘lln 1/#), JaCO‘AC <0.
ov dy
Ropelpe)
R el
[ —
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For i = k, k+ 1 the mapping 0, for each region Q¥ is a difffomorphism and
satisfies there the sufficient conditions for uniform hyperbolicity. It follows
from paper [4] that the mapping ¢ = —0,¢c gives rise to the generalized
Smale horseshoe with SC V(1) = Q® and SV (2) = Q**1; see Figure 8.

. a(k)
S g
[+ [+
© ®
a(k-tﬂ

— e —————— ——— ———— — ——

Fig. 8

El4) Al4) EI8) A(8) EI2) A(2) EI6) Al6)

e(8) als)
= -
el7) [’ Jl , al7)
1 —
e(6) T J ’ l ] al6)
(L1 | 1] l
e(tS) } l, , } I 1 | ! a(s)
el4) ‘ 1 ‘ ] ‘ 1
I | l l I atd)
RSN ss:inis:
e(3) ’ ’ , , l I al(3)
el2) al2),
1] | } I
e(1)! 1{ I[ ' al1)

E(3) A3} ET7) A7) EN) A1) EB)  AlS)
Fig. 9. acc(a(i)) = A(i), o, (e())=E(@) for i=18

22 — Banach Center t. 23
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The mapping occ is equal to o2 on each Q9 noQY for i, j =k, k+1.
Thus o, makes generalized Smale horseshoe with four components; see
Figure 9.
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