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This paper is the completed version of a series of lectures given during the
semester. After a section on (part of) the historical developments, the attention
is focused on simultaneous rational approximation with common denominator
(so-called German-polynomials or type II polynomials) and the connection with
recurrence relations of the Jacobi-Perron type, generalising the well-known
continued fraction algorithm.

1. History

The rogts lie in Number Theory: it was Ch. Hermite [103] who introduced two
sets of polynomials in the study of approximation of a set of exponential
functions, connected with the transcendency of e. Using the notations that are
customary nowadays, the approximation problem can be formulated as
follows. Let n be a natural number and consider

Jos f1»-o0s f,  n+1 formal power series in z,
Q¢) 01 ---» @, Nn+1 non-negative integers, o =gqo+¢,+ ... +0,.
Find polynomials P,, P, ..., P, in z, satisfying

(0) degP;<; (0<jsm), Y P,f,=0(0"""
J=0

(so-called Latin- or type I polynomials) and an (n+ 1)-tuple satisfying
degP;<o—¢; O<j<n), Pofi~Pfo=0("") (1<j<n)

(so-called German- or type 1I polynomials). From a simple counting argument
(number of unknowns, the coeflicients of the polynomials, versus the number of
equations) we infer that there always exists a non-trivial solution (i.e. not all
polynomials do vanish).

(51]
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For n =1 (here type I and type Il “coincide” on taking f, = 1) there is an
enormous list of references (only several are contained in the list at the end of
this paper). The name Padé table was introduced in the beginning of the
twentieth century, mainly on basis of the important pioneering work done by
H. Padé [156]; he also looked into the type I case for n > 2 in [159].

At first not so much attention was paid to the concept outside the field of
Number Theory (construct rational approximants having high order of contact
at the origin with certain functions, leading to an approximation of numbers by
rationals too good to satisfy the famous Thue--Siegel-Roth theorem, thereby
proving irrationality or even transcendency), except for an isolated generalisa-
tion into the direction of type II for a set of Stieltjes functions by A. Angelesco
[17-[4]. In 1934 there was a thesis by a student of Perron, J. Mall [148],
a reference that surfaced a few years ago (during the continuing search by
Claude Brezinski for references for his Padé bibligraphy), but as far as is known
now, there was no follow-up from that source.

In 1934/1935 K. Mahler (finding shelter at the University of Groningen
with his friend Jan Popken) wrote a long manuscript on the algebraic
approximation of functions pointing out the intimate connection between the
two types of polynomials. It was in 1968 that this manuscript was finally
published [147] (it was the notation from this paper that led to the names
German- and Latin- polynomials); the algebraic approach was continued by
J. Coates [63], A. J. Goddijn [85], H. Jager [119], J. H. Loxton and A. J. van
der Poorten [137], [138], A. J. van der Poorten [170], {171].

In the mean time the physicists had “rediscovered” the Padé approximant.
and its importance (cf. G. A. Baker jr. [12], who also wrote two books on the
n = 1-case with P. R. Graves-Morris (vol. 11 and 12) in the series “Encyc-
lopedia of Mathematics” edited by G.-C. Rota). It would be outside the scope
of this paper to go into more detail regarding this case of the so-called
“ordinary Padé table”, but there are many important contributions of which
only some will be mentioned here to give the reader a point of entry into the
vast literature: A. I. Aptekarev [5], R. J. Arms and A. Edrei [9], A. Edrei [82]
connected with [177], Peter B. Borwein [20], C. Brezinski [23], [25], M. G. de
Bruin [27], A. A. Gonchar and G. Lopez L. [86], V. A. Kalyagin [125],
G. Lopez L. [132]-[136] and many others, whose contributions can be found
all over the literature and the fact that they are not mentioned here, has only to
do with the aim of this paper to treat simultaneous approximation and does
not by any means imply anything about the relevance of their work.

After 1970 the developments did run along several lines.

Type I and type II polynomials. A. I. Aptekarev [6], [7], A. 1. Aptekarev
and V. A. Kalyagin [8], G. A. Baker jr. [12], G. A. Baker jr. and D. S. Lubinsky
[13], Peter B. Borwein [18], [19], M. G. de Bruin [26], [28], [29], [33],
[35]-[39], D. V. Chudnovsky [51], D. V. Chudnovsky and G. V. Chudnovsky
[52], G. V. Chudnovsky [59]-[61], J. Della Dora [76]-[78], J. Della Dora and
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C. Di-Crescenzo [79], [80], E. M. Nikishin [1517], V. N. Sorokin [186], H.
Stahl [187]-[189].

Vector-valued interpolants. P. R, Graves-Morris [89], [90], P. R. Graves-
Morris and C. D. Jenkins [92], [93], P. R. Graves-Morris and E. B. Saff [94],
P. R. Graves-Morris and J. M. Wilkins [95], J. van Iseghem [107], [108],
[110], [112], D. E. Roberts and P. R. Graves-Morris [174].

Using orthogonal polynomials. M. G. de Bruin [37], S. K. Burley, S. O.
John and J. Nuttall [44], G. V. Chudnovsky [62], A. A. Gonchar and E. A.
Rakhmanov [87] (E. A. Rakhmanov [173]), J. van Iseghem {109], [111], A.
Iserles and S. P. Nersett [113]-[115], A. Iserles and E. B. Saff [116], J. Nuttall
[153], [154], V. A. Kalyagin [124], J. Nuttall and G. M. Trojan [155], E. M.
Nikishin [152], V. N. Sorokin [[85].

Algebraic Hermite—Padé approximants. G. A. Baker jr. and D. S. Lubinsky
[13], Peter B. Borwein [18], [19], R. E. Shafer [180], H. Stahl [187]-[189].

Differential Hermite—Padé approximants. G. A. Baker jr. and D. S.
Lubinsky [13], G. S. Joyce and A. J. Guttman [122], H. Stahl [187]-[189].

The last two types mentioned construct polynomials of type I for the set of
functions 1, f, 2, ..., f" resp. 1, £, /', ..., f®. In the order condition (0) on the
previous page the functions are replaced by j/ resp. y) and the resulting
algebraic resp. differential equation (put the order term equal to zero) is solved
for y, leading to an approximation for f.

The role played in Number Theory can be viewed into by consulting
papers by F. Beukers [15], D. V. Chudnovsky and G. V. Chudnovsky
[54]1-[56], [58]. G. V. Chudnovsky [62], K. Mahler [144]-[146], V. N.
Sorokin [184], [185] (don’t forget the famous irrationality result on {(3) by
Apéry) and some sidelines into the theory of differential equations by looking
at D. V. Chudnovsky and G. V. Chudnovsky [53], [57].

Parallel to this development there have been several generalisations to the
multivariate case cf. C. Brezinski [24], ClL. Chaffy [45], J. S. R. Chisholm [46],
[47], J. S. R. Chisholm and P. R, Graves-Morris [48], J. S. R. Chisholm and
R. Hugh Jones [49], J. S. R. Chisholm and J. McEwan [50], P. R.
Graves-Morris [88], P. R. Graves-Morris, R. Hugh Jones and G. J. Makinson
[91], R. Hugh Jones and G. J. Makinson [105] (and many other publica-
tions from the Canterbury group), A. M. Cuyt [68]-[73], A. M. Cuyt and
B. M. Verdonk [74], A. M. Cuyt, H. Werner and L. Wuytack [75], G. John
and C. H. Lutterodt [120], J. Karlsson and H. Wallin [126], D. Levin [130],
C. H. Lutterodt [139, 140], P. Sablonniere [176], H. Werner [194], [195]. We
will not look into this subject here.

Returning to the one variable case, we recollect that an important tool in
the study of convergence is the study of (solutions of) recurrence relations: in
the ordinary Padé table there is a fruitful connection between sequences of
approximants and continued fractions! It already started with G. Frobenius
[84] and there have been important results as early as for instance R. de
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Montessus de Ballore [149], R. Pringsheim [172], E. B. van Vleck [191]. There
have appeared several books on continued fractions cf. A. Ya. Khinchin [106]
(of course also Hovanskii), W. B. Jones and W. J. Thron [121], O. Perron
[167], H. S. Wall [193] (it is good to realize that usually the inverted Padé
denominators — for a polynomial of degree k look at z* P(z™!) — are nothing
else but polynomials orthogonal with respect to a (sometimes indefinite)
innerproduct on the space of all polynomials).

Looking at simultaneous approximants, it is obvious to try to [ind
a generalisation of the continued fraction concept (already H. Padé [158]
found all “regular algorithms” in a Pade table of type I for n = 2; in [159] he
gave several regular algorithms in the case of general n). Here we have to turn
to C. G. J. Jacobi [117] (the length of the recurrence relation is increased by
1 compared to the ordinary continued fraction) and O. Perron [166] for the
general case. We also have to mention P. Bachmann [10], Ch. Hermite [104],
S. Pincherle [168].

After the introduction of what is nowadays called the Jacobi-Perron
algorithm, the interest went into several directions.

One of the main areas of interest was in Number Theory (recovering linear
or algebraic dependence, transcendency, calculation of units in number fields,
calculation of best (simultaneous) rational approximants, etc) cf A. J.
Brentjes[21], [22], V. Brun [42], [43], H. R. P. Ferguson and R. W. Forcade
[83], R. Giiting [96]-[98], W. Jurkat, W. Kratz and A. Peyerimhoff [123],
N. Pipping [169], E. S. Selmer [179], G. Szekeres [190], G. F. Voronoi [192].

The Jacobi-Perron algorithm was studied (and extended) by L. Bernstein
[14], M. G. de Bruin [26], [307-[32], [34], M. G. de Bruin and L. Jacobsen
[40], [41], P. van der Cruyssen [64]-[67], E. Dubois [81], L. Jacobsen [118],
P. Levrie [131], H. Padé [157]-[159], R. Paysant Le Roux and E. Dubois
[165], H. Riitishauser [175], F. Schweiger [178].

Other generalisations (vector- or matrix valued, more variable-case
sometimes) were treated by M. Hallin [99]-[102], J. van Iseghem [1097], [111],
Alphonse Magnus [141]-[143], J. A. Murphy and M. R. O’Donohue [150],
V. 1. Parusnikov [160]-[164].

Finally, special attention must be paid to the concept of a branched
continued fraction, almost automatically leading to multivariate approximation:
D. 1. Bodnar [16], P. I. Bodnarchuk [17], Kh. 1. Kuchminskaya [127], [128],
Kh. I. Kuchminskaya and W, Siemaszko [129], V. Ya. Skorobogatko [181]
— a very valuable source and important entry point for the vast amount of
publications on the subject, of which only very few have been translated up to
now — [182].

As the reader can see, it is necessary to restrict ourselves something in the
choice of material for the sequel (I'embarras du choix): from now on we will
look into the type IT polynomials for general n (the Padé-n-table) and one of
their “regular algorithms” (the C-n-fraction) only. For the proofs the reader is
referred to the references (a.0. [26]-[41]).
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2. The Padé-n-table

Consider n (n > 1) formal power series in z with complex coefficients

)

M f@=Y d 01 <j<n),
k=0
(the condition that the constant terms do not vanish has been added for sake of
simplicity only, a simple change in the definitions in the sequel will make it
possible to treat those cases where one (or more) functions vanish at the origin.)
Define for the non-negative numbers ¢, @, -.., 0, Witho =g,+¢,+ ...
eeo +0,, for j=1, 2, ..., n the “building blocks” DV = D® (g,, 0,, ..., @,) BY

ey, g -1 e o 41
() )] 9]
Co=g;+1  Ca- Coo—oy+2 ,
(23) D — TR g0y go—ey (1 <j< n),
W, o4

(for_ o;=0 the block is empty) and the “augmented” blocks e
= D(D(Qo, Q1s--4» Qn) by

_Cf:j)—gjﬂ Cy)—aj Cg)—aj—l C(gjg—e,n
C(aj)—gj+z Cgii)—g,ﬂ Csrj)—g, ngg—aﬁz
(2b) D= | o ],
e i, ch
sy c) ey i1

Furthermore we introduce the (¢—9,) X (0 —¢,) determinant D = D(g,, ¢,, -.
. @) bY

pw)
(3a) D =det L I

pm

and the (6—g,+n)x(0—g,+1) matrix D by
H

(3b) D= | :

pim

Throughout this paper it is tacitly assumed that ¢’ =0 for k <0 and that
empty building blocks are omitted.
Consider now the type Il problem of finding polynomials

Pj(z)=Pj(Q07Q1a""Qn;z) (j=0517---5n)5
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satisfying

(42) deg P)(z) < o —g, (j=0,1,...,n),
(4b) Po(2) fiz)—~Piz)=0(""") (j=0,1,...,n).

Then we have the following theorem:

THEOREM 1. If D(0q, 04, ---» @4) # 0, then the solution of (4a, b), which is
unique after the normalization Po{(Qg, @45 ..., @q; 0) = L, is given by

1 z 22 z°7e0
)] )
1 c(uj)—aﬁl an—ej Cvj—ej—l - Cao—gy+1
)
(5) PO(Z) = BdCt cy)-gj+2 cs:rj)—g,+1 cirj)—oj ceo—gj+2 »
. . ) 0
c¥ cL ), cih
© P& n
et cf’ k2 ko go
1 0-e Cy)—a_,ﬂ Cg;’)_“ cg)“ﬂj_l ng—gjﬂ
. i : . ' _
=— ¥ det | ¥y .z ¢y 41 iy, ) o2 | 2 A<ign,
k=1
b, )
(7 Pol2) fil2)— Py(2)
prr I' i [ -
P Py Pegs ngﬂc
1 » Cg‘!)—01+1 Cg-'n‘aj C%-’)—gj—-l C%’O)_(H"‘l
j j +k ;
=5 Yodet | e, io e Yy, e | 27T (1€ign) -
k=1
¢ iy, T

From now on we will assume that we are always in the situation of having
a unique solution after the normalisation used before.

DeriNITION 1. The n-tuple (f;, /5, ..., f,) will be called regular if

(82) D(ggs 01 +vr @) # 0

for all (g4, 04, .-+, 0,)s
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and semi-regular if
(8b) Dleg: €4s--0) #0  forall (g, @y, ..., 0,) With g 2 @)= 1(1 <j < n).

Placing at each point with non-negative integer coordinates in
(n+ 1)-space the unique solution (5, 6) of problem (4a, b), we arrive at the
configuration that will be referred to as the Padé-n-table; for a semi-regular
n-tuple of functions only the “upper half” of the table is defined. Introduce the
concept of normality in the same way as was done for the ordinary Padeé table
(this is actually the case n =1 in the preceding formulae!) by

DEFINITION 2. The point (g4, 0, ..., 0,) in the Padé-n-table for the n-tuple
(1, f3» -, 1) 18 called normal if the solution (5, 6) belonging to the point, does
not appear at any other point in the Padeé-n-table.

An important result is now the following:

THEOREM 2. For a point (04,04, ..., @,) in the Padé-n-table for a (semi-)
regular n-tuple of formal power series the following properties are equivalent:

(@) (¢g, 015 ---» 0,) S normal.

(b) deg P;(z) = 0—g, (0 <j < n), Py(z) f(2)— P;(2) # O(z°"?) for at least
one je{l,2, ..., n}.

(c) The determinants D(g,, 04, ---, 0,), D(eo+1, 04, ---, 0.)» D(@g, 04, ---
e Qj-1, @31, 05415 0 0) (1 <j<n) are different from zero and rank
D=o0—gy+1 =

Very few situations of completely regular or normal Padé-n-tables are
known, most of them appear in the following list:

(a) the exponential function system (e*?, I <j < n) with 4, #0, 4, # 4;;
normal, explicit formulae known (Ch. Hermite, H. Jager).

(b) the binomial function system ((1-2z)%, 1<j<n) with A¢2,
A,—A;¢%; normal, explicit formulae known (H. Jager).

(¢) the logarithmic function system (log/(1—z), 1 <j < n) with g, <@,
< ... € g,; normal (H. Jager; (b) and (c) together in one normality theorem by
A. Baker).
N

-,

(d) Angelesco-systems; explicit formulae (A. Angelesco, E. M. Nikishin, V.
. Sorokin).

(¢) the hypergeometric function systems (,F,(a;, 1; a;+b;2),1 <j< n)
with a;, a;+b¢I\AN, a,—a;¢Z, (\F,(1;¢;2),1 <)< n) with ¢;¢ \A",
ci—c; 8%, (;Fola;, 15 2), 1 <j<n) with a;¢ Z\ N, a;—a,¢ Z; semi-regular,
normal for g, 2 g;, for the second and third system explicit formulae (M. G. de
Bruin). )

(D) the hypergeometric function system (,F,(1;¢;4;2), 1 <j< n) with
A;#0, A; # A; semi-regular, explicit formulae known (A. L Aptekarev).

(g) the g-hypergeometric function systems (,@,((4, y;+ ), (1, 1); (C, v)); 2),
1<j<n) with Asguto*rk C#gu*h, Cqg? # Ag* for k=0, grw*h
# 1(i#j)for keZ, (@,((1, 1);(C, y,);2), 1 <j <n)with C#g"**fork >0,
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g IR 1 (i # ) for ke Z, (,P0((4, &), (1, 1);2), 1 <j < n), with A4 # g™+
for k20, g %k %1 (i#)) for ke Z; in all three cases also ge %\{0, 1},
q" # 1 (k= 1), semi-regular, normal for g, > ¢;, for the second and third
system explicit formulae (M. G. de Bruin).

In the last example the g-hypergeometric functions are introduced
according to the following notation:
l_,[ A,, &5 Q)k Zk

i
: (l,l;q)’
l:[ i 'yj: “

with the generalization of the ascending factorial (Pochhammer's symbol) given
by
(4,0 =1, A 0q,=A-g)A-q")..(Ad=g""") (n=]).

One might wonder how the block structure of the ordinary Padé table is
translated for the type of multidimensional table that has just been defined.
A simple example shows the problem we have to face.

Suppose that the point (¢4, 04, ..., @,) 1S normal and has as solution to
problem (4a, b) a set of polynomials with actual degrees (p,, p;, ..., p,), then
automatically ¢ —g, = p; for 1 < j < n. Adding all the equations and inserting
the definition of o, we find the condition

[

"MB

rdjs((Al’ ’ (A 1’ 7”1) -y ( $° r)”s);z) -

Po+p,+ ... +p,=0(mod n).

The difference between the case n =1 and n > 2 is obvious: for the ordi-
nary Padé table this is no restriction at all! When n > 2, however, we have to
put po+p;+ -..+p, = kn, to satisfy the condition and we find ¢; = k—p,,
1 <j<n. Here we see another condition on the p’s:
nmax p; S Po+py+ ...+p,.
0<€j<n

(note that this problem of having conditions on the p’s does also not arise in
the case of the type I polynomials.)

Looking better into the subject, it is a matter of simple inequalities to
prove the following theorem

THeOREM 3. Let {P/(z)/Py(z), 1 <j < n} appear at (gq, 04, ..., ©,) in the
Padé-n-table for an n-tuple of formal power series such that (4a, b) has a unique

solution up to a multiplicative constant. Write this solution in its simplest terms
and define

GCD(Pg, Py, ..., P)=1; Py0)=1, P(O)=cf (1<j<
degPy=p;(0<j<n), Pofi—P;=d;z%+ ..., d;#0,k < oo(l
r; Jollows from nk;=po+p,+ ... +p,tr, /20 (1<j<n).
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Finally define
¥ = min rj
1<jsn
Then we have

(@) If po+p,+ ... +p,=0(mod n) and Q;={@o+p,+ ...+p,)n—p;,
1 <j<n, then

(00> 015 --+ 0,) is normal < r=0.

(b) If r 2 1, the set to which the n-tuple belongs, consists of at least two
points. They are just the points having all coordinates non-negative, taken from
the following sets.

A. For py+p,+ ... +p,=mn with m 20 fixed:

(@o+Vos @1 tVisons @ty With §5=m—p; (O<j<n),r=m@=1)

and (1) vo+v, + ... +v, =w, (2) maxv; < min(w, v), (3) minv;, > w—nv where
ogsw<(n+1)o.
B.For po+p+ ... +p,=mn+n—kwithl <k <n—1,m 2 0 both fixed:
<

(@o+Vvo, @1+ Vs ey Op+yy) With §;=m—p, (0<j<n), r=nv+k(v>0)

and (1) vot+vi+ ... +v,=wt+n—k+1, (2) maxv,<min(w,pv)+1, (3)
minv; 2 w—nv—k+1 where 0 Sw < (n+1)v+k. »

Remark. The conditions follow from the fact that there should exist
a non-negative integer x, such that x+p;<o—¢; (0<j<n), x+k; 2 0+1
(1<j<n)

Adding the last set of inequalities, inserting ne = (6—g4)+(6—0,)+ -..
...+(0—g,), and inserting the first set of inequalities, we find r; > 0 and with
r = min r; it turns out that the coordinates of the points where the rational
functions appear should satisfy p;+x<o—g,<p;+r (0<j< n).

For n =2 (a three dimensional table) we easily deduce the following
pictures:

- -—- -
- ! - /I ~ 1 -
N l —_ i / AN R I N R
\\ / . | / AN // s e
N Y S 7
AN Y N /) ’ !
N7 / |-/
N i/ v 4 i
N, |/v -~ /
N . ,
\"/ s “\ :/
ANY
N

v=0, k=1 v=1, k=0 veil k=1
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Now we turn our attention towards walks in the table. Restricting
ourselves to the case n = 2 for sake of simplicity, an algorithm connected with
the path (o(k), ¢,(k), 0, (k) will be called regular (cf. [158]) if we have the
following situation

(a) the points (,(k), 0,(k), 0,(k)) admit a unique solution to problem
(43’ b)’

(b) o(k) = @o(k)+o,(k)+e,(k) is strictly increasing in k,

(c) the determinants

Potk; z) Pytk+1; z) Po(k+2;2)
det | P,(k; z) P,(k+1;2) P,(k+2;2)
P,(k; z) Py(k+1;2) Py(k+2;2)

all are monomials in z,
(d) the three sequences of polynomials satisfy the same recurrence relation

Pyk+3;2) = a,(2) Pk +2; 2)+ b, (2) Pk +1; 2)+c,(2) Plk; 2)
(j=0,1,2 k3 1),

where the coefficients are polynomials in z of fixed degrees and orders.

Using the same method as H. Padé did, it is possible to find all regular
algorithms in the Padé-2-table. It turns out that there are basically only three
regular algorithms in the table (although of course relaxation of the conditions
leads to other, quite interesting algorithms: for instance when walking along
a path of constant o, i.e. an anti-diagonal, cf. [95]) which are given below

A. coefficients 1, f,z, y,z> with y, # 0, a generalised stepline, the
coordinates of the points show a relative increase of (1, 0, 0), (0, 1, 0), (0, 0, 1) ad
inf. (a C-2-fraction).

B. coefficients 1+a,z, f,z, y,z° with y, # 0; an ordinary stepline in
a plane perpendicular to one of the axes, the coordinates of the points show
a relative increase of (1, 0, 0), (0, 1, 0) or (1,0, 0), (0, 0, 1) or (0, 1, 0), (0, 0, 1) ad
inf.

C. coefficients 1 +a, z, B, z+7, 22, §, 2% with §, # 0; a walk parallel to one
of the axes, the coordinates of the points show a relative increase of (1, 0, 0) or
0, 1, 0) or (0, 0, 1) ad inf

The method of deriving the result quoted above, shows that there is no
hope to achieve anything when solving the problem for general n in that way
(the first step is to find all admissable triplets of points (a) that satisfy (b, c),
combine these amongst themselves to find all quadruplets of points such that
the first three and the last three points both satisfy (b, ¢) — this already leads to
261 quadruplets, giving 87 basic situations if we allow for cyclic permutations
of the coordinates — and finally the pattern for the coefficients of the
recurrence relation has to be calculated; this gives 6 different patterns, of which
only 3 satisfy the requirements for regularity given above).
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In the Padé-n-table there exist of course variants on the algorithms B and
C (this time there are more choices, but the reader has to bear in mind, that
keeping one or more of the coordinates fixed — barring the first coordinate g, —
means nothing else than not using the function(s) having the same index as the
coordinate(s): we are in the situation of a table for m < n functions!)’

Now the restriction will be made to one special type of algorithm: the
generalisation of the ordinary stepline (type A given before). It is possible to
prove the following theorem.

THEOREM 4. Let k be a non-negative integer and let the stepline
(k,0,...,0), (k+1,0,...,0), (k+1,1,0,...,0),
cenk+1,1, .00, (k+2,1,...,1), (k+2,2,1,...,1),...

in the Padé-n-table for the functions

3}

i)=Y ' A<j<n)

k=0

be normal. Then the polynomials P,(m; z), P,(m; 2), ..., P,(m; z) (the points are
numbered consecutively 0, 1, 2, ...,n, n+1, n+2, ...) all satisfy the same recur-
rence relation

(9a) Xm = Xm—l+a1(r:)Xm—2+a$r':_1)Xm—3+ +a$n1)Xm—n—l (m = l)a
with for each sequence a different set of initial values

P(—m;2)=0p+ju+1 O <j<n I <m<n),

x
Py(0;2)=1, Pf0;z)=) 2 {(1<j<n)

i=0

(9b)

The coefficients in the recurrence relation have the form

A 25t 1<m<j<n),
(9¢) afl = < @y Z™0TEIM (1< j<m<n),
Ay 2" "1 (=n+l),

where the constants in the monomials satisfy a;,€% and a; , #0 (m=1). =

Here we see clearly the connection with recurrence relations of length
greater than or equal to three; this subject will be treated in the next section. As
a final remark — a matter which will not be elaborated upon — it must be
mentioned that the concept of Padé approximation can be introduced through
so-called Padé-type-approximants, using a straightforward generalisation of the
theory of C. Brezinski [23] (cf. [37]).
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3. Generalised Continued Fractions

The type of generalisation to be considered here is inspired by the Jacobi
—Perron algorithm, which actually stems from a Euclidean algorithm for the
simultaneous approximation of »n real numbers by n rational numbers with

a common denominator.

There are many ways to introduce the concept that plays the main role in
this section, due to space limitations only one method will be given; for other
methods (consecutive linear fractional transformations in n variables etc) the

reader can consult for instance [26], [30].
Let n+1 sequences of complex numbers be given

b,,a®,a? v, .. ,ad m=1), b,#0 (m=1),
along with n starting values
T 1

The set of data will usually be given by the notation

[~ a(,ll) a(zl) ail-ll) 7]
2 2
o o o
B2 g3 o83 a®
ng— 1) a(ln) am af,’,')
b b, b, b, ...

DEerINITION 3. Given a set of data (10), an n-fraction is defined by its
sequence of n-tuples of approximants (AY/A®, 1<j<n), m>0. All se-
quences (AY, m > 0), 0 <j < n, satisfy the same recurrence relation

Xy =bp X1 +aP X,y +a% VX s+ . +aP Xy (m= 1),
with for each sequence a different set of initial values
A =0pmijnrr O<j<Sn1<m<n),
A =1, AP =bf (1<j<n).

We then have the formalism to calculate the numerators and denomina-
tors (for the moment only formally, existence and convergence will be treated
lateron) using matrix-multiplication. Introducing the following matrices

1 0 0 0]
B{? 1 0 0
Ay= | b 0 1 0l;

b 0 0 1]
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b, 1
a9 0
Bo=|.....
a? o
al> 0

it is a simple matter of mathematical induction to prove

0 0

i 0
0 1
0 0|

Q
AQ

ﬂmz‘ﬂm—l'@m
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The concept of a terminating n-fraction is now defined easily: there is just
a finite set of data, terminating with a certain index, say k. The sequences of
denominators and numerators — defining the approximants — then are also
terminated after index k; the value of a (non) terminating n-fraction is then
nothing else but the n-tuple of values A{/A?, 1<j<n (or — in the
non-terminating case — the limit for k — oo of these expressions). Fundamental
for existence/convergence is the following theorem

THEOREM 5. Consider a non-terminating n-fraction (10) with finite limits.

1 1
Ifab, o, ..

third:
é&l)‘
(11a) :
&g
&b
(11b) 3
&
&)
(11¢) | =
&

r

L by

1
al’ ...
1 2
by  a®
bgl-l) a(ln)
by b
L Y0 1
r 1
afdy ...

a? af},

(1) g T

--------------

v, al

a2, g

o, g

bk -1 éin) J

ald

al?

. af) # 0, then any two of the following formulae imply the
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There is an important connection between convergence of these
n-fractions and the behaviour of the solution space of the linear recurrence
relation that plays the key-role in the definition of the approximant n-tuples.
We have the following theorem due to P. van der Cruyssen [64].

THEOREM 6. Consider the recurrence relation
(12) X =b Xy +a" Xy +af " VX5t .. +af Xyon-1,
with a® 20 (k= 1).

The solution space is an (n+ 1)-dimensional linear space over the complex
numbers and a basis can be given by those solutions that for instance satisfy
A = 8isjnry O<k<n, 1<j<<n+1). Then the fractions (AP/AP* Y,
1<j<n, k>0), we use suffix n+1 here instead of 0, are the approximant
n-tuples of the n-fraction

[ al) &P al ..
0 a® a? a? ...
13 ,
0 a afb al?
L 0 b, b, b, ]

and the following statements are equivalent:

(a) There exists a dominant solution of (12) (i.e. X,/D, —0 for k — oo for all
sequences (X,) in an n-dimensional subspace of the solution space), for which the
dominated subspace has a basis (X\"), (X{?), ..., (X!™), satisfying

x4 o0 x®

ce .| #N0,
x= o XP

(b) The n-fraction (13) converges to finite limits

A
A’("+ 1)

Here we see a method to derive convergence results for an n-fraction (13)
from the knowledge about the solution space of a linear recurrence relation (12)
and vice versa.

The reader might wonder why the type of continued fraction given before
is of interest for simultaneous approximation in the Padé sense. The answer to
this has already been given in Theorem 4: approximants along a generalised
stepline th a normal Padeé-n-table give rise to an n-fraction! Therefore it is now
about time to introduce the analytic aspects of generalised continued fractions
and this will be done together with the algorithmic aspects of the correspon-

lim =¥ (1<j<n. =

k=
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dence between n-tuples of formal power series and a generalisation of the
C-fraction algorithm (cf. {1067, [1217, [167], [193] for the ordinary C-fraction).

Consider an n-tuple of formal power series iV, 742, ..., /i with complex
coefficients (here the notation has been changed sllghtly from what happened
up to now: the suffix is used to number the functions in an n-tuple and the
index is used to number the steps in the algorithm).

Step 0. We start with k= 0.

(a) Take the first and second non-zero terms in f§ — in case this power
series is @ monomial or identically zero, we turn to “interruption handling”
denote these terms by by o 2" resp. a, , 2"V, Use these to define f{ by
inverting the tail of the function

S (@) = by 27D+ 0<r(l,0) <r(, 1), fPz) = 140(2).

(b) Take the first non-zero term of f{ and force the tail to have the same

denominator as in (a), thereby defining f¥~Y, 2 <j<n,

700
()
0 <r(j,0), 17 V(z) = 0(z") with p>r(j—1, 0).
We now have an n-tuple of functions with index 1 and f(z) = 1+ O(2).
Step k. We start from an n-tuple i, %, ..., .
A. £{V(z) is not a monomial nor identically zero.

(a) As in step 0, we use the function with suffix 1, index k, to define the the
function with suffix », index k+1

féj’(z) - bj, Z27 0 ¢

(Lk+1)
A1 x+12

1 2.k ,
J@) = az, 2" %*H +

k(:-)l(z) ’

1<r2, k) <r(l, k+1), i, (2)=1+0(2).

(b) As in step 0, the functions with suffix j, index k, are used to define the
functions with suffix j—1, index k+ 1.

, : (2
(J) = A+1, k r(1+l'k)+ k+l
hP@) =a(j )z o (2)°
4P (2) = 0(z%) with p>r(j+1,k) 2<j<n-1),
(n—1)
Sz =1 f"fnf (z) &17(2) = 0(zF) with p>r(n, k).

k+1

B. /i (z) is a monomial or identically zero.
The first function cannot be used to define the denominator as in the
previous cases. We assume that £, ¥, ..., £ all are monomials or

5 — Banach Center t. 24
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identically zero. But f;**! is the first power series having at least two terms.
This is called an interruption of order s at index k. There are now two

possibilities.
B1. It happens that s = n: all power series have at most one non-zero term.
Put ., 29" =£00) (1<j<n—1), by=1 — the term a;,2z"""* has

already been found in the previous step — and the algorithm terminates,
Calculating backwards, we find that the original series must be the Taylor
series of an n-tuple of rational functions for which z = 0 is a regular point in
the complex plane.

B2. Now 1<sg<n—1. Put a;,29"W=f"0z (1</j<y),

UM =0(1<j<gs;m=k+1), and define fi?, using two non-zero terms
(s + 1)1

Qjm
from f}
Now repeat case A for the functions that are left over, ie. for fiF*1),
SIS SR
The algorithm now goes on until another interruption occurs; either it
terminates or it does not, the result is called a C-n-fraction. A compact notation

for the result of the algorithm is given below:

K a4 Zr(1.1) a, Zr(Lk)
fé”(z) bio Zr1.0) as s Z(2.1) s gz
(14) : = |
fo(n) (z) bn 1.0 Zn=1,0 Ay 1 ZHm1) Ak Zrlmk)
bno 2 ™0 1 1

The following two theorems shed some light on what happens in general.

THEOREM 7. The correspondence between a C-n-fraction and an n-tuple of
formal power series has the following properties:

(a) To each n-tuple there corresponds a C-n-fraction.

(b) To each C-n-fraction without zeros, except those that arise from
interruptions, there corresponds an n-tuple of formal power series in the following
way:

(1) If the C-n-fraction terminates at index k, then

(J) 5‘1) A(O) (1 \<.j < n)’

and the order in z of the difference between these functions and the m-th
approximant of the C-n-fraction is increasing in m, thus at least O{z"*"').
2) If the C-n-fraction does not terminate, then

9@ AL @A) = 00 (1<) <),

with a(k) monotonically increasing, thus at least a(k) = k
3) If the C-n-fraction for f§V ..., f§ has interruptions of total order k, then
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there exist at least k linearly independent relations
oD+ P, @52+ ... +P,(2)ff"(z2) =0
with polynomial coefficients. wu

TueOREM 8. Consider a C-n-fraction connected with an n-tuple of formal
power series.

(A). The following statements are equivalent:

(a) The C-n-fraction terminates.

(b) The C-n-fraction has interruptions of total order n.

(c) There exist n linearly independent relations with polynomial coefficients
as in Theorem 7 (b), (3).

(d) The n-tuple of functions consists of n rational functions.

B. If 1, f§Y, ..., /¢ are linearly independent over %[z], the C-n-fraction
algorithm has no interruptions (and thus does not terminate). m

Before turning towards convergence matters, first a diagram — in which
also a special type of C-n-fractions is introduced — and some examples (for
detailed information the reader is referred to [26], [30], [31]). Introduce the
following notations

F,: n-tuples of formal power series over %;

n-

Frec F o 1, f§Y, .., f§V are linearly independent over the polynomials
over €;
C,: non-terminating C-n-fractions with all coefficients different
from zero;

Cy¥® = C,: C-n-fractions with b;o =1, a;, # 0, r(j, k) = min(n+1—j, k);
¢: the construction of a C-n-fraction from an n-tuple of functions;
x: the construction of an n-tuple of functions from a C-n-fraction.
We then have the following inclusion and mapping relations:

xc) o« FE c E
Tr l" T:(
C::F‘.’ C '1"-71“‘ : C Cn
with y¢| o FL”“) oxl cpre = Ic,(.mgh'

An interesting question now surfaces immediately: does the absence of an
interruption in the C-n-fraction algorithm automatically imply the absence of
a dependency relation as introduced in Theorem 7 (c), (3)?

For the Euclidean algorithm for n real numbers (the Jacobi-Perron
algorithm) the answer is as follows (cf. [166]): n=1: yes; n=2: % n = 3: no.

Choosing the construction method in the context of non- archlmedean
valuations and a special set of “integers” (replace the polynomials in z by
something a little different), the number of relations is always equal toc the
number of interruptions (cf. [165]). In the context of the straightforward
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generalisation of a C-fraction, however, we have for C-n-fractions (cf. [31]).
n=1: yes (irivially); n>2: no.
Some examples of these special n-tuples are given in the following theorem.

THEOREM 9. In the sequel we assume that n is an integer with n 2 2.
A. Let g be the unique formal power series with constant term equal to 1
that satisfies

YV'+z—1)Y" " 4z(z—2)Y" 24 22(z—3) V" 3+ ...
e+ z— (1)} Y+2" =0,
(with ae4\{0}, r 2 1) and define the n-tuple of functions as follows
=g, P =g g g 422+ L+ 2<) <),

then we have
(1) There exists precisely one relation over the polynomials, given by

n

Y 27 M)+ 2" = 0.

i=1
(2) The C-h-ﬁ'action has the form
r zn+1 zn+1 .. ."
—(m=Dz""1 —(n—1)z""! —(n-=-0z""1 ...
Zu—2 Zn-2 Zn—2
z z z
i 1 J

B. If f is the unique formal power series with constant term equal to 1 that
satisfies
YE—Y*¥"1—az =0 (ke \{l},ret, ac®\{0}),

then the n-tuple f, f,...,/" has a C-n-fraction with the properties:

(1) For n = k—1 there are no interruptions, nor does there exist a relation
with polynomial coefficients for 1, f, £, ..., /"

(2) For n = k there are interruptions with total order n—k+1 and there
exist n—k+1 linearly independent relations with polynomial coefficients for 1, f,
fz, . -,f"-

The form of the C-n-fraction is best described by giving the entries in an
upwards slanting (under 45°) “diagonal” starting with the top-entry in the first
column (which in (10) has second index 0). Thus the first “diagonal” has two
entries, the second three and so on, till we reach the “diagonal” that starts at the
bottom entry in the first column and which has n+1 entries, afier that the
“diagonals” all start on the bottomline of the array and have n+1 entries.
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(a) For n = k—1 the entries on “diagonal” number j (1 <j < n—1) are the
monomials that arise from expanding (1 + az'} using the bionomial theorem; after
that they are the monomials that arise from expanding (1+az')*~ L.

(b) For n = k the entries on “diagonal” number j (1 € j < n—1) are the
monomials that arise from expanding (1+ az") using the binomial theorem; after
that they are the monomials that arise from expanding (1 +az"}*~ !, supplemented
by zeros.

There are, of course, other types of examples with n-tuples showing
different behaviour — for many readers a matter of academic interest only
maybe — and before looking into convergence just a final example.

Let g be the unique formal power series with constant term equal to 1 that

satisfies
g2 —(1+26z%g+26*2>*=0 (xe N, 5eB\{0}),
and define the functions f§1, /&2, /¥ by
p
az

f3h = 1+7 (Be A, ae®\{O]), f5¥ = (f¢"), 6 = (fE").

Then there are two linearly independent relations with polynomial coefficients
for 1, f§V, f§3, £ and the C-3-fraction for f§, £, f§* has no interruptions
and is of the form:

azl a?z? adzF 484z ... —46%z* ...
1 2azf 3a?2z%F 26272 252z7% 262 7%
1 3azf 26z 26z° 262" 20z%
1 1 | 1 1 1

For the remaining part of this section, we will consider C-n-fractions that
show the same “minimal”-degree behaviour as regular C-n-fractions (i.e.
elements of C;°), but where only the top- and bottom-line in the array (10)
have to be defferent from zero:

r(,00=0 1<j<n), r(,l=min@a+1—j,k) (1<j<n k1),

(13) bio#0 (1<j<n), b #0, ax#0 (k1.

Furthermore we need a special real number ¢ = g, defined by
Qn+2—1 Qn—1+2—zgn—2+ +2—n+lg_2*n—1 = 0’ 1/6 <0 < 1/4
(simple analysis shows that ¢, = 1/4, ¢, monotonically decreasing, ¢, — 1/6 for

n— 00.)
Then we have the following convergence results:

THeorREM 10. Let ({A§(z)/A%(2), 1 <j < n}, k> 0) be the approximant
n-tuples of a C-n-fraction satisfying (15), moreover

(16) a;=suplal<oo (1<j<n).
k=2



70 M. G. de ‘BRUIN

Then the n sequences converge to an n-tuple of analytic functions, uniformly in
z on each compact subset of
(17) 9 = {ze¥: |z <g, min a;j M TN

1<j€n
(a; = 0: omit this term from Lhe minimun..) =
TueoreM 11. Consider a C-n-fraction as in Theorem 10 with

(18) a; = limsupla;l <o (1<j<n).

k- o
Then the n sequences converge to an n-tuple of functions which are meromorphic
on D from (17), uniformly in z on each compact subset of 9. In the poles of the
limit functions, the C-n-fraction shows a very special divergence behaviour, i.e.
there exists at least one value r, 1 < r < n, such that

lim Af2(2)/40(zo) = 0,  lim A (2)/AP(z,) exists for j#r (1<j<n). »

k— a0 k—a

THEOREM 12, Consider the situation of Theorem 10 and let

hm AP (z)/ AP (2) = g(z) (1 <j<n)on 2.

k—+w
Then the functions g,, ..., g, are analytic on 2, together with the function
1 linearly independent over the polynomials and if we apply the construction y on
the C-n-fraction (i.e. we derive the n-tuple of formal power series that shows
agreement in order as described before) then the Maclaurin series of the functions
gis-.-» g, are recovered. m

THEOREM 13. Consider the situation of Theorem 11 and let

lim AP (2)/A[?(2) = g,(z) (1 <j< n) on D, except for the singularities.

k=
Then the functions g,, ..., g, are meromorphic on 2, analytic at the origin,
together with the function 1 linearly independent over the polynomials. Moreover,
if we apply the construction x on the C-n-fraction (i.e. we derive the n-tuple of
formal power series f,, ..., f, that shows agreement in order as described before)
and if & is the domain of meromorphy of these formal power series, then @ < &
and fi=g; (1<j<non 2. u

Remark. For n =1 we recover from Theorems 12 and 13 old results
due to E. B. van Vleck [191] and A. Pringsheim [172]. Exploiting the
connection between certain walks in the Padé-n-table and C-n-fractions, it
is possible to derive convergence results for sequences of simultaneous rational
approximants, In the case that we do not have a C-n-fraction, but some other
form of the coefficients for the recurrence relation, convergence theorems better
suited for that situation can easily be given; after some examples connected
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with the previous theorems, one of these will be given (dealing with so-called
“limitperiodic n-fractions™).

ExamPLE. A. Consider the pair of functions f,(z)=(1—2z)2,
fo(z) = (1—2)%. They give rise to a regular C-2-fraction with coefficients

bl.O = bZ.O = 1,
ag =1,
(k+1/2)(k+1/4)
== >
a1.3k+1 (3k—1)3k-3k+1) (k= 1),
12 = 1/8,
(k+1/2)(k+1/4)
= =
1.3k+2 3k-(3k+ 1) (3k+2) (k=1
(k+1/2)(k+3/4)(k+1)
== >
@1.3k+3 (3k+1)-(3k+2)-(3k+3) (k= 0),
azy =1,
_ 3k+3/4
Q2,3k+1 = —3(3k+1) k= 1),
dy o = '—]/4,
3k®4+-9k/4+1/2
z,3k+2 = — Gkt 0k+2) (k= 1),

k+1
Az 3k+3 = —6k—+2) (k = 0).

Thus a, = 1/27, a, = 1/3 and @ = {ze % |z| < 3(3,/3—1)/4}; the radius is
approximately 0.549, still “far away” from the expected unit disk.

B. Let »n real numbers be given: o, ..., a,e Z2\{1, ..., n—1}. Introduce
real numbers B,(B,, ..., B,) by

l—[ (Z+ﬁ1)— n ﬁj = Z Bk(ﬁl’ LR ﬂn)(z_k+ l)k’
j=1 j=1 k=1
Again the ascending factorial is used: (z—k+1), =(z—k+1)... (z—1)z. In-
troduce the following n-tuple of combinations of quotients of hypergeometric
functions

n Bk(al _j, Ve oy CX,,'—j)Zk__l oF"(a1+k_j+ ]., ey Cl,|+k—j+1; Z)

f" =¥
=i "' - F"(a +1""’a"+l;z)
k= H(ai_.])k+1 ° !

i=1

(1<gj<n-1),

OFn(al! ot an; Z)
oF (e +1, .., a,+1;2)

S) =



72 M. G. de BRUIN

Then this n-tuple has a regular C-n-fraction with coefficients

Bj(dl—ja sy cxn_j)

brro= " (I<j<n=1), bpo=1,
H(ai—j)k+l
i=1
; —Jy iy k—j )
%Hﬂ*=EWrM Js s g tk—)) A<i<n k> ).

n Ok =D+t
=1

As a;=0 (1 <j< n), the C-n-fraction converges to an n-tuple of functions,
meromorphic on € and analytic at the origin.

As a final contribution to the theorems concerning convergence, we turn
to the subject of modification of a generalised continued fraction (cf. [40], [41],

[118]).

THEOREM 14. Let the coefficients of an n-fraction be given by

[ g a ab ...
0 a? o a® ...
0 & af a .
L0 b, b, by -]
Assume that this n-fraction is limit-periodic, i.e.
(19) limaf) =a¥ (1<j<n), limb,=b,
k=0 k—* o

and that the zeros z,,..., zy+, of the “auxiliary equation”
(20) M =b a2 4 L +a®Pz4a®

are simple and ordered by the value of their index: |z,| > jz,| > ... > [zp44]-
Then the following holds.
A. The n-fraction converges in €" = (€ L {x))".
B. If all limits are finite — say 37, ..., E& — and moreover |z, | > 0, then
all the tails of the n-fraction converge to finite limits also, say

1 1 1
én ad al, el .
: 0y o )
. =
£ 0af) aft, ... o ...
0 bk+1 bk+2 PPN bm ...
Furthermore, the sequences of tail-values also converge
(1) o)) J-1
. . a Nooad+w
Hm & =w?  (1<jgn), wherewV = — wd=—"" (1 <jgn)

k—~+ o Zl Zl
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Finally, it can be shown that the introduction of these tail-limits into the method
of consecutive linear fractional transformations to calculate the approximants of
the n-fraction, leads to convergence acceleration. To be more precise, introduce for
k=1

atV
Sil)(y 3 1y .Vn)= ’
' bk+yn
a? +y;_ ,
Sy, V)= f‘b +y; Lo@2<jgn),
. k n

and for 1 <j<n, k21 the iterated Mébius-transformations:
y(i])(y],’-") yn)(=sg)(y13 LA ] yn), . .

j) ] 1) n) (I<jsn).
SR oo Yu) = LA G5 s Vs s G ) (2 2)

Then the approximant n-tuples satisfy

_AQ
-

and moreover, the convergence acceleration is shown by:

PP, ., w)
lim e #0, ... )

It would take too much time to go into details here, the procedure is
straightforward. Consider an n-fraction where the coefficients are functions of
a complex variable z.

Then take for instance the following steps

— check the limit-periodicity,

— check the auxiliary equation,

— the condition of simple zeros, ordered as in the theorem, leads to
conditions on z,

— check the convergence to finite limits, using Theorem 6,

— translate the conditions on z into a2 domain (?) in %.

FP, ..., 0)

=0. u

4. Convergence in the Pade-n-table

It is out of the question to treat all known convergence results here, therefore we
will restrict ourselves mainly to the list of (semi)-normal tables given in Theorem
2, along with information on several “more general” results.

(a) the exponential function system (e*7, 1 <j < n) with 1, #0, 4; # 4,.

Convergence to the n-tuple of functions for any sequence (po(k), 0,(k), ...
ooy @4(K)) With (k) = g, (k)+¢,(k)+ ... +0,(k)— cofor k— co. Note that there
is no monotonicity condition on the order of approximation. If ¢(k)— co and
0;/00—w; (1<j<n) for k—oo, then the denominators and numerators
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converge seperately. All convergence results are uniform on compact subsets of
% (cf. J. Mall, A. J. Goddijn, A. 1. Aptekarev).

(b) the binomial function system ((1—z)%, 1<j<n) with 1,¢2,
A—A¢Z.

Convergence for go— o0, ¢; fixed (1 < j < n)on |z} <1 (cf. A. J. Goddijn).

(c) Angelesco-systems.

Convergence results by a.o. V. A. Kalyagin, E. M, Nikishin, V. N. Sorokin.

(¢) the hypergeometric function system (;F,(1;¢;2), 1</j<n),
CEIXN\A, ¢;—c; 82

Convergence to the n-tuple of functions for any sequence (g,(k),
0,(k), ..., g,(k) with o (k) = g (k)4+0,(k}+ ... +0,(k)> oo for k—>co. Note
that there is no monotonicity condition on the order of approximation. If
o(k)— o0 and g,/o, > w; (1 <j<n) for k— oo, then the denominators and
numerators converge seperately. All convergence results are subject to the
condition g, 2 ¢;—1 (1 <j < n), and uniform on compact subsets of %; no
monotonicity condition {cf. M. G. de Bruin).

(e) the hypergeometric function system (,F(1;¢; A7), 1)< n) with
A # 0, 4;# 4.

Convergence 1o the n-tuple of functions for any sequence
(0o(k), 0, (K), ..., 0,(k)) with a(k) = gq(k)+e,(K)+ ... +o,(k}— o0 for k— o0,
subject to the condition g, 2 ¢;—1 (1 <j<n). Note that there is no
monotonicity condition on the order of approximation (cf. A. 1. Aptekarev).

(f) de Montessus de Ballore-type theorems.

Results by a.o. J. Mall, P. R. Graves-Morris and E. B. Saff, A. A. Gonchar
and E. A. Rakhmanov, J. van [seghem, C. H. Lutterodt, J. Karlsson and
H. Wallin.

(g) diagonal/“near” diagonal sequences under general conditions (capaci-
ty-results etc.).

Papers by A. A. Gonchar and E. A, Rakhmanov, V. A. Kalyagin,
E. M. Nikishin, J. Nuttall, H. Stahl.

From the literature it appears that there are several methods to prove
convergence in the Padé-n-table:

1. Using asymptotics for the determinants in the explicit forms for the
denominators and remainders.

2. Using potential theory and the theory of (generalised) orthogonal
polynomials.

3. Using explicit calculation and estimation for denominators and re-
mainder.

4. Using the connection with generalised continued fractions for certain
sequences of approximants.

It must be noted, however, that the convergence problem is very difficult,
but progress is made in several directions.
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5. Concluding remarks

The number of applications of simultaneous rational approximation with
common denominator is steadily growing. In this connection the work on
time-series (M. Hallin), vector Padé approximants (P. R. Graves-Morris, J. M.
Wilkins, J. van Iseghem) must be mentioned. Furthermore applications to
“two-point approximation” and “partial Padé approximation” ([397) are being
studied at the moment. The last mentioned application shows great potential
for improvement of numerical approximation. Here information on eventual
singularities and/or zeros of the functions is used to first “force” a similar
behaviour on the rational approximants by prescribing factors in numerator
and/or denominator and then imposing conditions on the order of ap-
proximation.
. We consider the pair of functions

expt 13 79
f) = =1+3+—+—3+ ...
f1(1) g, S A O
3 3 1
=(1=t =1—Zt4-t2+—1+ ...
LB =(0-=1) 1 2+81:+16 +
In order to imitate both the pole at ¢t = 0.5 and the limiting value 0 when
approaching t = 1.0 from below along the real axis — we introduce the
polynomials

v,)=1, v,)=0-1(t=2), w()=t-2,

which [eads for instance to the approximation problem (for details on the
degree restrictions cf. [39])

P T —GOWE) () = 0(°)  (j=1,2),
where the approximants we want to calculate are nothing else but
p;(t)5,(t)/4(t) w(r). Dividing out the auxiliary polynomials, the problem re-
duces to

B (0—dMexp®) = 0(%), F()—q(O)/1—-t=0().
Calculating the approximants we find
By (1), (0)/q(n) w(r) = 1+ /(1 — e — 5% (1 = 20),
B2 (1) 5:(0/3(0) w(t) = (L =D (L —p/(1 — 5t —15t7).
The approximants to f, have simple poles at ¢ = (—Si\/ﬁ)/Z, Le. at
t =1.772 and t = —6.772, moreover the approximant to f; also has a simple

pole at t = 0.5, while that to f; has a zero at t = 1.0. We compare this with the
(0, 1, 1) system of German polynomials for {f,,f,}; we find

Py(0,1,1;0)=1+%%, P00, 1, 1;0=1-4,
P,(0, 1, 1;1) = 1—-531—%31%.
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The (0, 1, 1) approximants have both the same simple poles at ¢ = (—49

t

/14929)/174, ie. at t= —0983 and t = 0.421. Plouing the Euclidean

distance in 2-space between the pair of functions and their pair of ap-
proximants, the partial Padé approximants show a superior numerical beha-
viour. This will be a matter of continuing research.
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