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1. Introduction

In this paper we investigate approximate methods for the linear integral
equation of the first kind

b
(1.1) fk(x, s)y(syds = g(x), x€e[a, b].

The kernel function k(x, s) is a quadratic summable function. The equation
(1.1) is considered in the Hilbert space H = L, [a, b] of quadratic summable
functions in the interval [a, b]. The kernel function k(x, s) produces a compact

integral operator
b

Ky = [k(x, s) y(s)ds

a

in H. Then the integral equation will have the following form

(1.2) Ky=g.
The solutions can be determined from the transformed equation
(1.3) K*Ky = K*g.

This is an integral equation with the positive compact operator 4 = K*K. In
this paper we will study approximate methods for the equation

(1.4) Ay =1,
where A is a positive compact operator.

By the choice A = K*K and f= K*g we obtain approximate methods for
the solution of equation (1.2). The general approximate method for the solution
y of (1.4) has the following form

(1.5) y = lim p(a, A) f.

a—0

[107]
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The general iteration method for the calculation of y is the iterative process
(1.6) Q(zA)y, = P(tA)y,- +S[A)tf

with a starting element y,. We study these general methods and their relations
between them. The Padé-approximation for the exponential function can be
used to establish such general iteration methods. The classical approximate

methods:
1. Regularization method of Tikhonov

(1.7) y = lim(ael + A) " f.

a—0

2. Landweber iteration

(1'8) yn=(I—TA)yn—l+rf, yOEH'

3. lterative form of the Tikhonov regularization
(1.9) (f +A)y, = ays-1+f, yo€H,

are the most important special cases of the general theory. For the numerical
realization of iterative methods we will use Chebyshev expansion methods.

From the extensive literature for linear integral equations of the first kind
the following papers are mentioned: H. Bialy [3], H. W. Engel [4], J. Graves
and P. M. Prenter [5], L. Landweber [11}, J. W. Lee and P. M. Prenter [12],
M. Z. Nashed [14], H. J. J. te Riele [16], O. N. Strand [18]. Further references
are to be found in the following books: C. W. Groetsch [7], G. Himmerlin and
K. H. Hoffmann [ 8], B. Hofmann [9], A. N. Tikhonov and W. J. Arsenin [19].
The theory of compact linear operators and linear integral operators can be
found in the monographs: N. Achieser and . M. Glasmann [1], B. L.
Moiseiwitsch [13] and F. Riesz and B. Sz. Nagy [17].

2. Preliminaries

In this section we summarize the results concerning the solution of the
equations (1.2), (1.3) and {1.4). N(K) and R(K) will denote the null space and
the range of an operator K. The Hilbert space H is the orthogonal sum of the

closure R(K*) and the null space N(K):

H = R(K*)®N (K).

Similarly we have

H = R(K)®N (K*).

1. The singular value system {u,, v,; s,} of the compact operator K has
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the following properties: s, > 0

Kvll = Sl’l u"’

*H —
K*u, =s,v,,
K*Kv, = stv,,
KK*u, = stv,.

The systems {u,; neN} and {v,; ne N} are orthonormal systems (see M. Z.
Nashed [14], G. Hoheisel [10]).
The Picard’s criteria for a solution of equations (1.2) read

(2.1) gL N(K*),
(2.2) i g, u)]> < + 0.

Then there exists a unique normal solution y of (1.2) with the property
y LN(K). We have the series expansion

(2.3) y=Y s g, u)v,.

n=1

2. The positive compact integral operator A may possess the sequence ()

of positive eigenvalues. The corresponding eigenfunctions ¢; may be an
orthonormal system. Then we have

Ap; = ;b
(¢d;, ¢} =0in» 1, HEN.
The criteria for the existence of a solution for equation (1.4) are

(2.4) JLN(A)

(2.5) Z 1AL BIP < + o0,

i=1

Then the normal solution y of (1.4) with the property y L N(A) is uniquely
determined. The series expansion ol y becomes

(2.6) y= S 10 ooy
i=1

3. For the equation (1.2) may be valid the conditions (2.1) and (2.2).
We consider the equation (1.3). Since K*geR(K*) it follows
K*g 1 N(K) = N(K* K). Therefore we get the condition (2.4) for the operator
A = K* K. The operator A possesses the eigenvalues y; = sf and the orthonor-
mal eigenfunctions ¢; = v, We obtain the equation

¥ ] o

wK* g v = Y st gy Ko)l? = ) s Mg wdl® < + 0.

1 i=1 i=1

”MH



110 G. PORATH

The corresponding normal solution of equation (1.3) is given by
-] o

y= Z (K*g,l))l) = ZS: J: KU Z C},U)U
i=1 i=

This y is the solution (2.3) of equation (1.3).

3. The general approximate method

The general method uses operator functions of the positive compact operator
A. The Hilbert—Schmidt theorem states the series expansion

3.1) Ay =) wly, ¢)b, for yeH.
i=1

The ofthogonal projection P on the null space N(A) is of the form

(3.2) Py=y— _Z . 9);.

THEOREM 1. 1. Let the sequence (a,) be bounded, Then for every ye H exists
the element

e s]

(3.3) z= ) aly, $)¢;

i=1
2. Let the family (dy) of real numbers 0 < o < oy, i = 1(1) 0, be such that
ldel < ¢ for 0 <a<a,, i=1(1)o0,

(3.4) limd,; =0 for every i.

' ad]

For the family (z,) defined by

(3.5) _Z (V> 3)
we have
limz, =0.
z—+0

Proof. The existence of the sequence (z,) follows from part 1. Now let
£ > 0. Then there exists an m with the property

oK [ral

(3.6) I Y daly, dddil* < Y |0, d)2<

i=m+1 i=m+1

N =

for all a. The assumption (3.4) gives

(37) lim Y daly, 6)6, = 0.

a—+0i=1
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Then we have

(3.8) |, daty, #)87 < g for 0 < & < afe).

Hence from the inequalities (3.6} and (3.8) we obtain

”i doi(Y, ¢i)¢’a”2 <e¢ for 0 <o < a(e)
i=1

Therefore part 2 holds. m
THEOREM 2. 1. The polynomial operator p(A) corresponding to the polyno-
mial
p)=1+) a.t*

k=1
with real coefficients a;, i = 1(1}n, is defined by
(3.9) p(A)=1I+) a A"

k=1
Then we have the expansion
(3.10) p(A)y = Py+ Y p(u) (v, #) .

i=1

2. Let p(t) be a power series

(3.11) p(t) =1+ i a, t*

with real coefficients and the radius of convergence r > 0. Suppose the inequality
Al <r.
Then the operator function
KQ
p(A)=1I+ Y a At
k=1
exists, and we have the expansion
(3.12) p(A) = Py+ 3 p(u) (v, ¢
i=1 '

3. For the polynomial

m

q)=1+ > b t*

k=1

with real coefficients b,k = 1(1)m we assume q(1;} # 0 for i = 1(1)c0.
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Then the operator [q(A)]~! exists. We have the expansion

(3.13) [aA]~" y = Py+ Y. [0~ (s 6 b

i=1
Proof. 1. By use of (3.1) and (3.2) we obtain

[ea)

(3.14) Ay =Y [y, $)¢;  tfor k=1(1)oo,

i=1

[ 4]

Iy=73 (v, ¢)¢,+Py.

i=1

Then equation (3.9) gives the expansion (3.10).
2. Since ||A|| < r the series 1"'):::0:1 la /14 |I* is convergent. Hence exists

(3.15) p(A4) = [+ lim ZakA"—I+ZakA"

n-owh=1

(convergence concerning the operator norm). The inequality g, < ||4A]| <r
guarantees the existence of a constant ¢ with

()l <c  for i=1(l)co
We consider the operator f(A) given by the definition

(3.16) p(A)y = Py+ 2 p(p) (v, $)P;.

i=1

k

For the partial sum p,(f) = 1+Zz=lakt we have

p.(A)y = Py+ Z Pal}(y, @}

i=1
Hence

p.(A)y = p(A)y + Z (p, () —p())(y. D) ;.

i=1

We have the convergence property

lim p,(u;) = p()  for every i.

n—+:

Since p, (t) convergers uniformly to p(t) for |t| < | A]| < r, there exists a constant
d such that

lp, (el <d  for n=1(Noeo,i=I(1)o0.

Now we get

[Pa i) = p i)l < I ()l + Ip(p )l < d +¢
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for n=1(1)o0, i =1(1)co. According to Theorem 1 we have

(3.17) lim p,(4)y = p(A)y.

n=roo
Then the equations (15), (16) and (17) give the assertion (12).
3. Since lim;_ [q(#)] ' =1 there is a constant d, such that
La) M <d, for i=1(1ew.
Let us define

o0

By =Y [qw))™'(y, $)o;+ Py.

i=1
A simple calculation gives

Bg(A)=q(A)B =I.
From this we can state the formula

[q(4)]1"" = B.

Remark. For the polynomials h(¢) and gq(t) the assumptions of Theorem 2,
part 1 and part 3 may hold. Then the operator h(A4)[g(4)] "' exists and we
obtain the series expansion

rAg(A] ™y = Py+ ), h(u) (a1 ™' (v, $) 4.
i=1
As simple example for part 2 we choose the exponential function
z 1
expat = 1+ ) —a"t"
n=1 n!
with the parameter a. For the corresponding operator function

21
expod =1+ 3 oA
1 .

n=

we have
[expadly = Py+ ), exp(oau)(y, ¢) ;.
i=1

After these preliminaries we formulate the general approximation principle.

THEOREM 3. For the positive parameter o (0 < a < a,) we consider

a family of polynomials p(t, @),

a family of power series p(t, a),

a family of fractional functions p(t, a) = h(t, o) [q(t, @)] ™! with the assump-
tions of Theorem 2.

R — DBanach Cenler L. 24
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Let
(3.18) lim[1—gpQy, ®)]=0 for i=1(1)co.

a—0

Further we assume the existence of a constant ¢ >0 with the property

(3.19) 1=, p(, @) < ¢ for i=1(1)oo, 0 <a < ap.
If the equation (1.4) has a solution y for a given f (compare 2.2), then we have
(3.20) limp(4, o) f=y.

e—+0Q

Proof. Corresponding to Theorem 2 we state the formula

p(4, 0 f=Pf+ 3, plus o) (S, ¢ ;.
i=1

The condition f1 N(4) gives Pf=0.
The series expansion (2.6) for the normal solution y yields the equation

(3.21) p{A, o) f=y— Z [1—p,pQu, e)Ips (S, @),

i=1
=y— Z L1 —ui pQey, )1 (yy 0D &

i=1

Then from Theorem 1 using the conditions (3.18) and (3.19) follows the
fundamental formula (3.20). =

ExampLe 1. If we use the function p(t, o) = (¢+1t)~ ! for a > 0, then we
obtain the regularization method of Tikhonov and the convergence formula
(L.7).

ExaMpPLE 2. The linear difterential equation

Y+ Ay(t)=f
in the Hilbert space H with the initial condition y(0) = y, has the solution

y(1) = [iexp(—A(r~s))ds] Srexp(—tA)y,.

If we choose for the function
w(t, 1) = [1—exp(—t7)]t™ !, =0,
the corresponding operator function, we obtain

¥(1) = w(d, 7) [+exp(—1A)y,.
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For the function w(t, 7) we can state the relations
L~ p; wip, 1) = exp(—p;7),
|1 —H; W(nui’ T)I < 1’
lim [T, w(y, ©)] = 0.

We find that
lim exp(—1A)y, = Py,.

T o

Then Theorem 3 yields the equation
lim y(7) = y+ Py,.

T w

4, Tterative methods

In this section we consider general iterative methods of the form (1.6) with
a starting element y,.
THEOREM 4. 1. Let p(t) and q(t) be polynomials with the properties
p(0) =q(0) =1,
4.1)
qt)>0 fort>Q.

The polynomial s(t) satisfies the equality

4.2) q(t) = p(t) +us(r).
2. Assume the existence of a value 1> 0 such that
(4.3) () g1~ < L

Jor all eigenvalues u, of A.
If the normal solution y for the equation (1.4) exists (compare 2.2), then we
have for the sequence (y,} of the iterative method (1.6) the convergence property

(4.4) lim y, = y+Py,.

n—ow

Proof. The proposition (4.1) assures the existence of the operator
[q(zA)]™!. Now by (1.6) we obtain the iterative method

Vo =[q(tA)] "' p(rA)y,- 1 +[a(zA)] ™ s(zA)Tf.

Further we consider
yn = Tyn— 1 + W/l
with the operators

T=[q(cA)] ' prd), W= [q(zA)] 'ts(zA).
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A simple calculation yields
(4.5) =3 +:§ THYWS+T"y, = h"(,T) Wi+ T"y,,
if we define the polynomial h,(t) by

=1+ Z k= -7t

The first part h,(T) W/ of equation (4.5) is an approximate method with the
operator function
h(T)W = h,([q(zA)]" ! p(zA)) t[q(xA)] ™" s(zA).

This function is a fractional function. Further we use Pf=0.
By Theorem 2 we can assert that

(WS =S th,([atzu)] ™" pleud) [q(m)]™ su) (s b b

i=1

For the eigenvalues we have the identity

glrpy) = plrp) + o, s(tuy).
For the expression in formula (3.18) we can establish the equality

(4.6)  1—p,th,([q(xu)] ™" plp)) (g(rp)] ™t S(T#-)

—1— 1.'[,1 ([Q(Tﬂi)] )
Coqlrp)— (m)

= ([g(zu)] ™ pla))".

According to statement 2 we have
lim ([q(zu)] ™" p(zp))" =

n—wo

(Ca(er)] ™ plrpy| < 1

for every eigenvalue u, Hence Theorem 3 gives for the normal solution y the
equation

(4.7) lim h (T)W{ = y.

n— o

s(tw;)

From

©

Ty, = Z (p(rl‘i) Lq(zu)]™ ) (Vo» 4@+ Py,

i=1
we get
(4.8) lim T" y, = Py,.

The equations (4.7) and (4.8) demonstrate the assertion (4.4). m



APPROXIMATE METHODS FOR INTEGRAL EQUATIONS 117

Remark. For the special choice y, =0 we can derive the error formula

INgE:

_ 1
(La(zu)]™ " plepy))'—
1 Hi

ExaMPLE. 1. Let p(t) = 1 —1t and q(¢) = 1. Then we have s(t) = 1 and the
iterative method (1.6) becomes the Landweber iteration with the convergence
condition (4.3)

Y=V = (/s @do;.

tmax y; = 1| Af < 2.

2. p(t) = 1 —2at+pt? and g(t) = 1. Then we have s(t) = 20— Bt. For the
constants may be valid « > 0, > 0, f? < 2a. Then the convergence condition
(4.3) takes the form

Brmax y; = pr||Af < 2a.

3. Let p(ty=1-—t+3t>—%> and q()=1. Tt follows that s(f)

= [ —%4t+3t2. If the condition

tmax u; = t||4] < 2.4
is satisfied, we get |p(ty;)| < 1. (Compare P. Albrecht [2]. Chapter 7.3, Example
7.3.4).

4. Applying the Padé-approximation for the exponential function we can
construct general iterative methods. For the used properties of Pade-
approximation compare R. P. Grigorieff [6], Chapter 3.5. The diagonal
Padé-approximation

Pi(t)

QY
contains the polynomials P;;(f) and Q;;(t) with the degree j and the properties
P;;(0) = Q;;(0) = 1. We have Q;;(—1t) > 0 for r > 0, because Q;(r) possesses
only zeros with positive real part.

For ¢t > 0 holds the inequality

IPi(—0[Q;(—=0]" " < 1.

For the choice of p(f) = P;;(—t) and g(t) = Q;;(—t) the assumptions of
Theorem 4 are valid. The parameter T > 0 can be chosen in a different way. The
simplest method uses the linear polynomials

pW)=Pu(=0)=1-35, qt)=0, (-1 =1+t
and the polynomial s(t) = 1. The corresponding method becomes
(I +3td)y, = (I=31A)yp- 1+, n=1(1)oo,

with any starting element y,,.

J= 00
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The method with quadratic polynomials uses

p(t) = Pya(—1) = 1 =3t +751%,
g(0) = Q22(—1) = 1 +31+ 7522,

sit)=1.
For the subdiagonal Padé-approximation
Py, 1
Qje1,;®) ’

we have
Pyy1,j0)= Q41,00 =1,
Prarf(~0[Qpe1y(—0] 71 <1 for £>0.
In the simplest case holds
p(t) =Py (-0 =1,
g(t) = Q1 (—t) =1+t>0 for t>0,
s(t) = 1.

The corresponding iterative method is the method (1.9) with the parameter

t=oa" L

5. Numerical experiments

We consider semidegenerate kernels of polynom type. The semidegenerate
kernel

n n
Y oapx'st, —-1<s<x<1,

i=0k=0

k(x’ S)= noon
YN ags'xt, —1<x<s<,

(=0k=0

yields a symmetric compact operator A. If the eigenvalues are positive then 4 is
positive definite.

The functions y, of the iterative method and the starting function y, are
represented in form of T-polynomials

m(n)

y"(X) = %cn0+ Z Cok T;‘(X)
k=0
T,(x)n = 0(1)co are the Tchebyshev polynomials. The numerical algorithms are
procedures for the systems of the coefficients (¢,o, ¢y, -- -, Cpmoy)- FOr such

T-polynomials is worked out an algebra and procedures (compare S. Paszkow-
ski [15]).
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The kernel function

Hl4s—t+s), —l<s<t<l,
(5.1) k(x, s) = ﬁ'( st si)
Yl +t—s+s1), —1<r<s<!,

possesses the positive eigenvalues g, =(in) 2. It is produced by substitution
from the kernel function min(s, t)(1 —max(s, t)) for 0<s,t < 1. For the
function

g(x) = 8o — g x* + iz x* — oo x©

on the right-hand side of the equation (1.4) with the kernel function (5.1) we
have the solution

y) = Fex* x4 .

The convergence condition for the Landweber iterative method is satisfied
for the value t = 4, since © < 272,

If we carry out 500 iterative steps and use series expansions with 26
coefficients, we get for the approximate solution the following error quantities:

maximal value of the defect 0.104-1077,

minimal value of the defect 0.573-1071°,

maximal value of the error —0.208-107%,
minimal value of the error 0.170-10 7.
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