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In order to get first informations about differential-algebraic equations (DAEs)
in R" we deal with the linear system

(1) Ax'(t)+ Bx(t) = ¢(t)

with constant coefficients. The solution behaviour of this system is charac-
terized by the so-called marrix pencil (A, B). The uniqueness of the solutions for
given initial conditions requires the regularity of the pencil, i.e. det(z4A + B) #0
(ze C). For regular pencils a decomposition (cf. [2])

(2) A= Edlﬂg(lr, J)F, B = Ediag(VV, Im—r)F

with nonsingular matrices E and F and a nilpotent matrix J is possible. The
smallest integer | with J' = 0 is called the index of the pencil: | = ind(A4, B). The
integers r and [ are independent of the special choice of E and F. For
nonsingular matrices 4 the matrix J does not occur, then ind(A4, B) = 0 per
definition. Obviously, we get J =0 iff ind(4, B)=1. Moreover
ind(A4, B) = ind (AT, BT) holds (“T” means transposition), and for nonsingular
matrices G and H

ind(GA, GB) = ind(AH, BH) = ind(4, B).

In [4] the following theorem is proved; since the proof is rather difficult,
we will do without it here:

THEOREM 1. If R and Q are projectors along im(A).and onto ker(A)
respectively and the pencil (A, B) is regular, then

ind(44-RB, B) = ind(4+BQ, B) = ind(A4, B)—1.
In particular, ind(A, B) = 1 causes A+RB and A+ BQ to be nonsingular.

[223]
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Remark. Because of
ind(A+RB, B) = ind ((A"+B"R")", (B")T) = ind(4"+ B" Q, BY),
where Q = R” is a projection onto ker(A”), we had to verify only one of the
relations
ind(A+ RB, B) =ind(A4, B)—1, 1nd(A+BQ, B) =ind(A, B)—1.
As a corollary of Theorem 1 the following statement holds.

THEOREM 2. The pencil (A, B) is regular with the index k, iff the sequences
Ayg:=A and for i =0, ..., k—1

R, projector along im(A)), A;y+, = A;+R,B or

Q; projector onto ker(Ay), Ai+1:= A;+ BQ, produce a nonsingular matrix A,.

Proof. We have to prove only the regularity of the pencil, if A4, is
nonsingular. Following [1] we derive from the assumption det(zA,+ B) =0
according to

det(zA;+, + B) = det(zA,+zR, B+ B) = det(I +zR,)det(zA, + B)
or
det(zA;,, + B) = det(zA; + B)det(I +zQ,)
a contradiction to det(z4,+B)# 0. =

Starting from (1), we obtain by differentiation of R,Bx(f) = R, q(t)
for a dillferentiable Ry¢g(t) the equation A4, x'()+ Bx(t) = q,(t) with ¢,(t):=
q(t)+(Roq(r)). Continuation of the process yields with g, (£):= g;(t)+ (R;q,(t))
after k—1 steps the equation

(3) A, X0+ Bx(t) = g,(0)
provided that all R,q;(¢t) (i = 1,..., k—1) are diflerentiable, too.

THEOREM 3. If the Ryg(t) (i=0,...,k=1) are differentiable and
ind(4, B) = k, then the DAE (1) is equivalent to the explicit system

4) xX'(1) = Ay (g, (t)— Bx(r))

with the constraints R;(Bx(to)—qi(to)) =0 (i =0, ..., k—1) for the initial con-
ditions x(ty) = x,.

Proof. We have to show that A1 X'+ Bx(t) = ¢; (1) and
Ri(Bx(ty)—g;(ty)) = 0 imply A;x'(t)+ Bx(t) = q;(1). This fact becomes clear
by application of the following lemma to R(f):= R, ylt)i= A, xX"(0)+
Bx(t)—q(t). =

LEMMA 4. Let R(t) be an arbitrary projector function and let R(nv(t) be
differentiable. Then y(r) = 0 iff y(t)+ (R()y(t)) = 0 and R(ty)y(ty) = 0.
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Proof. Due to
R'(t) = (R(t)*) = R()R()+ R(OR'(2)
we have
ROR' () = R(t)(I—R(1)).
Hence,
0 = RO (y()+(R()y(0))
= R{@)y(t)+ R(®)Y' )+ RO R () y(t)
= RWyO+REOY ) +R @ (I-R () y(r)
= (R(A)y @) + (I —R() R} y().

This 1s a homogeneous linear ordinary dilferential equation for R(¢)y(t) de-
livering R(t)y(t) = 0 by virtue of R(z,)y(t,) = 0. Consequently, (R(£)y(t)) =0
and y(t)=0. =

Index-1-systems are called transferable; if Rq(t) is differentiable, they are
equivalent to the explicit ordinary differential equations

() x'(t) = (A+RB)" " {g()+ (Rq) (1) — Bx ()}

with the restrictions R{Bx(t,)—4q(t,)} = 0 for the initial vectors x(t,) = x,.
The differentiability requirement for Rg(t) can be avoided, if the index
reduction by means of the projector Q is used. For P:=1—Q, u(t):= Px({),
v(t):= Qx(t) we obtain from (1) (AQ = 0!)

Au'(t)+ B{u(t)+ Qu(t)} = 4(t).

Because of

(A+BQ)"'4 = (A+BQ) 'AP = (A+BQ) '(A+BQ)P = P,

(A+BQ)"'BQ =1—-P =0,

by multiplication with (4 +BQ)~!

Pu'(t)+ (A+ BQ)™ ' Bu(t)+ Quv(t) = (A+BQ) 'q(1t)
arises. Hence, we get by transformation with P and Q respectively
W =P = P(A+BQ) " "{q() —Bu(®)}, v=Q(A+BQ)” '{q(t)—Bu(r)}.

Consequently, the original equation (1) is transferable into the more general
state variable system

() = P(A+BQ)™ {q(t)— Bu(z)},

6
© x(t) = Q(A+BQ)™*{q(t)— Bu(t)} +u(2).

15 — Banach Cenlcr t. 24
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The system (6) shows that only the component u(t) = Px(i) occurs
differentiated; x(¢) is not differentiable, if Q(A+BQ)"!q(t) has this property.
This fact is very important, because in many practical problems the source
function ¢(t) is piecewise continuous only, for instance an impulse function in
electronic circuits. For that reason in [5] a function x(t) is called solution of (1),
if x(t) and (Px)(t) are continuous and satisfy the equation

(7 A(Px) (t)+ Bx(t) = q(t).

The continuation of this transformation process for linear higher index systems
with constant coefficients is possible, but unfortunately rather complicated.

There are many methods to compute the projectors R and Q which are
necessary for the suggested transformations. By means of a completely pivoted
Gauss decomposition we obtain

(L, O\ (U, U,
® suasi=(120) (0" )

with nonsingular triangular matrices L, and U,. S, and S, are permutation
matrices, i.e. S; ' = S7 holds (i = 1, 2). Obviously the matrices (3 ?) and (J })
with M:= —L,L;! and W:= — U7 ' U, are projectors along im(S, AS,) and
onto ker(S,;AS,) respectively. Consequently, we may choose

00 0w\ .
R=S}"(M I)Sl, Q=SZ(OI )Si.

The Householder transformation is very convenient for the computation
of Q. Since Q 1is invariant with respect to scaling of A we apply the de-
composition with column pivoting to the scaled matrix 4 = diag(yg,, ..., g,)A4
(g; = scaling factors). We obtain

. U, U
AS =H| ! %),

where § is a permutation matrix, H an orthogonal matrix and U, is
a nonsingular triangular matrix. Again we get

0 W\ .,
Q=S( >S7 with W= —UlU,.

0 1
Now we consider the linear time-dependent problem
() A()x'{t)+ B(1)x(r) = q(r).

Then we have for regular pencils (A(t), B(t)) the local index k(t). If it is
constant, it seems to be reasonable to define k(t) = k as the global index of (9).
But simple examples show that the pencil (4(f), B(¢)) and its index only in the
case ind(A4(1), B(t)) = 1 characterize the solution behaviour (cf. [5], §1.3).
Therefore, Gear and Petzold [3] called (9) to have the global index k, il a
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continuous nonsingular matrix function E(r) and a continuously differentiable
nonsingular matrix function F(t) exist, so that scaling of (9) by E(t) and the
transformation x(t) = F(t)y(t) lead to the DAE

Aoy )+ By (2) y(t) = go(t),
where
Aq:= diag(l,, J) = EQAWFQ),  go(t):= E@®)q(),
By (t):= diag(W(t), I,-,) = E(t)BE)F(t)+ E(t) A() ' (),

hold and J is a constant matrix with J*~ ! # 0, J* = 0.
For all constant projectors R, along im(4,) and Q, onto ker (4,) we
obtain

Rydiag(W(1), I,,-,) = Rydiag(0, I,,_,),

diag (W), In-) Qo = diag(0, I,-,) Q.
Therefore the matrices

Ay := diag(l,, J)+ Rydiag (W(t), Ln—,),

A, = diag(l,, J)+diag (W(), I,—.) Qo
are constant again. Consequently, the global index k means that the sequences
(11) Ay, = A;+ R diag(W(), I,-,) or A;:= A, +diag (W(t), I,-,) Q;
with arbitrary constant projectors R; along im(4,) and Q, onto ker(4,) are
ending with nonsingular matrices A, Then we obtain from A,)'(t)
+ By (t)y(t) = q;(t) by multiplication with R;

R;B, ()Y (t) = (Riq:(t)),

since R;B,(t)y(t) = R,q;(t) with a constant matrix R,B,(t). Consequently,
(12) Ai+ 1Y (O)+ By (8)y(t) = qi+1{t)

with A;y = 4,4+ R;By(t), i+ 1(6):= qi(t)+ (R4, (1))
Finally, if we suppose the differentiability of all R;q,(t) fori =0, ..., k—1,
equation (9) is equivalent to the explicit ordinary differential equation

(13) ¥ (t) = Ag g () — Bo{tyy (1)}
with the restrictions
(14) Ri{Bo(to)y(t)—qilte) =0 (i=0,...,k=1)

for the initial vector y(t,).
We suggest a more general definition of the global index k, which is
applicable to nonlinear problems, too. Let us consider the DAE

(15) Fx @), x(6), £) = q(t)
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with 7(y, x, t): R"x R™ x [t,, T]—R". We assume f to have Lipschitz-con-
tinuous Jacobians Fy(y, x, t), F.(y, x, 1) and f(y, x, t). If g(¢) 1s differentiable
too, then we can write

F,(y(0), x(0), )y (0+F(y(®), x(®), )y +Si(y(), x(1), 1) = ¢'(1)
x()—y() = 0.
So we obtain a system

(16) A(z(®), )2 (O +g(z(1), ) =0

with
_ (@) . (Fy,x,0 0
z(t) = (x(l_)), Az, 1):= ( 0 1>,

(Fx(y, x, Qy+Ti(y, x, )—4q'()
gz, t):= .
-y
For the equation (16) we perform sequences {A;}f-o, {q;}%-0 by the
definitions Ay(z, £):= A(z, 1), golz, t):=g¢(z,t) and for i=0,..., k—1:
Ri(z, t) projector along im(A4,(z, 1))

0
AH'I(Za ['):= Ai(z’ t)+—a—z{Ri(z’ f)\é],—(Z, t)}’
(17) ;
gir1(z, )= gz, l‘)+E{Ri(2, 0gi(z, 1)}
provided that the occurring derivatives exist and the rank of each A4;, (z, ¢)
is constant.

DEerINITION. We call k global index of (16), if k is the smallest integer for
which a sequence (17) ending with a nonsingular A,(z, t) exists.

With this definition the following theorem holds.

THEOREM 5. If (16) has the global index k, then it is equivalent ro the explicit
ordinary differential equation

(18) 2(0) = — A lz(0), 1) g (200, 1)
with the initial restrictions
R;(z(ty), to)gilzlte)s to) =0 (i=0,..., k=1).

Proof. The statement follows immediately from the application of Lemma
4 to the functions

y(t) = A;(z(2), ) 2' () +g;(2(0), 1), R(D):= R(z(1), 1),
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because of
Y(t)+(R(t)}’(t))’ = Ay (2(1), )2 () +qis  (2(0), t)
using
0 ' %,
(ROYW) = = {R,(z(0) Y ai{z(0), 1} 2 ) 4-% (R,(2(0), )qu(z(0), 1)},

In [4] we have proved, that the suggested definition of the global index
generalizes the definition of Gear and Petzold in the case of a differentiable
matrix function E(f}. =

As an example we consider the motion equations of a multibody system
v+fv, u,w, t)=0,
w+qv,u,t)=0,
h(u, t) =0,

with a nonsingular matrix function Z = h,g,f.,. Then we obtain

100 000 0
A= |0T10|, Ry=1000]|, Rygo= [0],
000 001 h
100 00 0 0
A;=|010|, R=1[0 0 0|, Rgq = 0 ,
0K, 0 0 —H, I —H,g+s,
I 00 0 0 0 0
A,=| 0 10|, Ry=|0 0 0|, Ryq,= 0 ,
—hug, S, 0 hig, —S, I hugof+ s,
I 00
A;= 101 0],
S, S, Z

ie. det (4,) = det (Z) # 0. Thus we have verified the well-known property of
(19) to be of the index 3. In particular, the mathematical pendulum modelled by

u, ve R?,
0
u'—v =0, Mu’-l—y(l)—zi“ =0, [ul>=1

(u = position, v = velocity, g = gravitation constant, 4 = Lagrange parameter,
| = length) yields [4 = 2u, g, = I,, h, = 2u", that is, Z = (—4I*) # 0.
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The application of the transformation concept using the projectors Q to
the equation (15) is practicable only for a constant or a time-variable ker(F ); it
is impossible for ker(F,) depending on x or y. In the latter case the rotation of
the solution space Ch:= {x: xe C, P(y, x, t)x€ C'} depends on the solution
itself.

Let Q(f) = I—P(t) be a projector onto N(f):= ker(F,(y, x, t)); then the
equation (15) is called transferable (in the neighbourhood of a solution or
globally) if

Gy, x, 0):= F,(y, x, 0+ F . x, )00
has a bounded inverse. Then the theorem about implicit functions and
Hadamard’s theorem give

THEOREM 6. Each solution x(t) of (15) fulfills (20) and vice versa:
u'(t) = P'(O)u(t)+ P() (I + P () wlu(t)t),
(20) u(to) = P(to)x{to),
x(t) = u(t)+ Q)w (u(1), 1),
where w(u, t) solves uniquely f(w, u+Q()w, 1) = g(t).

The proof is given in [5], it is based on the fact that the Jacobian of
f(w, u+Q(t)w, £) with respect to w has a bounded inverse F,,' by virtue of
F (y, x,t) = G(y, x, t). As in the linear case with constant coefficients the
solution concept is generalized here. A solution is any continuous function x(t),
whose component P(t)x(t) is continuously differentiable and which satisfies the
equation

(21) J((Pxy (®) =P (0)x(e), x(2), t) = q(t).

Apgain there are no differentiability requirements for g(t) in this transformation
concept. This is a very important advantage of the method, as we remarked
above. But unfortunately the continuation of the transformation process for
higher index systems is very difficult and only possible under additional
restricting assumptions about f(y, x, t) (cf. [6], [7]).

Remark. For quasi-linear DAEs, i.e. for f(y, x, t) = A(x, t)y+g¢(x, t) and
q(t) = 0 we obtain

d
Gy, x, t) = Alx, t)+5;{A(x, ny+g(x, 1)} 0(r).
If G(y, x, t) is nonsingular, the same is valid for

H(y,x,t)=A(x, ) +R(x, t) 0

E{A(x, Ny +g(x, 0}

0 OR
= A(x, t)+a{R(x, Hg(x, t)}—a(x, H{A@x, )y +g(x, 1)}.
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Because of A(x, t)y+g(x, t) =0 for y(r) = x'(t) we get H(y, x, t) = A,(x, t),
ie. the transferability implies the index-1-property in our sense.
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