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One of the most useful aspects of a flag manifold G/B is that its cohomology
ring H*(G/B; C) admits several different descriptions. The semisimple or
Borel-Chevalley description says that H*(G/B; C) is the coinvariant algebra
A(m)/I¥ associated to the Cartan subalgebra h of the Lie algebra g of G. The
nilpotent or Kostant description says that H* (G/B; C) is the coordinate ring
A(N nh) of the scheme theoretic intersection of the variety of nilpotent
elements N of g with k. On the other hand, there 1s the classical description of
H*(G/B; C), which goes back to Schubert. It is based on the calculation of the
homology from the partition G/B into cells (the so-called Schubert cells). The
relation between the semisimple and the classical descriptions of H*(G/B; C)
has been studied by Gel'fand et al. in [8], where the authors constructed a basis
in the semisimple description dual to the Schubert cycles. However, the similar
problem has not yet been studied for the nilpotent case.

In this note we discuss the semisimple, nilpotent and the classical
descriptions of H* (G/B; C) as a special case of what happens when one has an
action of SL, on a smooth complex projective variety X. We will also discuss
the similar situation for the singular subvarieties of X. When Y is a Schubert
subvariety of the algebraic homogeneous space G/P, we will show that the
cohomology ring H*(Y; C) of Y admits a semisimple description. However,
it is still an open problem whether H*(Y; C) also admits a nilpotent
description('). In the case of a Grassmann manifold G, , these problems have
been solved completely. It is proved in [5] that the Plicker coordinates form
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(") D. H. Peterson has shown recently that H*(Y, C) does not admit a nilpotent description
in general.
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a basis for the nilpotent description of H*(G, ,; C), which are dual to the
Schubert cycles, and H*(Y; C) admits a nilpotent description(?).
This is basically an expository article, and the details can be found in [3],

(51, [6]. [7], [11], {12].

1. Vector fields and cohomology

Let ¥ be a holomorphic vector field on a smooth complex projective variety
X with isolated but nontrivial zero set Z, and let i(V): Q% —» Q& ' be the
contraction operator associated to V. Here Q% (resp. (’y) denotes the sheaf of
germs of holomorphic p-forms (resp. functions) on X. The structure sheaf ¢, of
Z is by definition O,/i(V)Q%. We have the fundamental Koszul complex of
sheaves:

0> ... Q5 -0, -0,

in which the differential is i (V), and n = dim X It follows from the general facts
on hypercohomology that there are two spectral sequences {'E } and {"E }
abutting  to Ext*(X; ¢,, Q%), where 'EST = HY(X; Q% P) and
"ESY = HP(X, Ext?(C;, Q%)) (see [15, p. 710]). The key fact proved in [11] is
that the first spectral sequence degenerates at ‘E,. Thus, as a consequence of
the finiteness of Z and H°(X; ¢,) = Ext"(X; ¢,, %), we obtain the [ollowing
theorem of Carrell and Lieberman, which describes the computation of the
cohomology ring H*(X; C) of X on the zeros Z of V.

THEOREM 1.1. The ring A(Z) = H°(X; 0,) of regular functions on Z has an
increusing filtration F, with F . F;SF,,; so that ) .,H?(X;Q*) and
GrdA(Z) = szo ¥ /F,_, are isomorphic graded algebras. Moreover, H? (X ; Q%)
vanishes if p # q, so the cohomology ring H* (X ; C) is isomorphic to Gr A(Z).

Proof. See [11], [12].

The main difficulty in realizing the cohomology ring of X on Z lies in
computing the filtration F,. However, in addition to V, if X admits an algebraic
C* action (4, x) — 4+ x with the property that there exists an integer k # 0 such
that for any AeC*, dA-V = Ak V, then A(Z) is graded and the filtration F , of
A (Z) is the canonical filtration associated to this grading. Hence A (Z) becomes
isomorphic to H* (X ; C). This fact was proved in [6]. In this situation, we can
actually describe the grading of A (Z) explicitly. In fact, let us assume that V has
exactly one zero x,, (the general case is similar). Since x,, is also a fixed point of
the C* action A, C* acts on the tangent space T, X of X at x, and
consequently on the symmetric algebra 4 = Sym (T* X) of the cotangent space
TXX of X at x,. The weight decomposition of this action makes A4 into
a graded algebra. In the following theorem, A will be regarded as a graded
algebra with this gradation.

{?) 1t has been proved in [8] that H*(Y; C) also admits a nilpotent description when Y is
a Schubert subvariety of GL,/P.
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TueoreM 1.2 (the nilpotent description). There exists a C*-invariant open
affine neighborhood U of x, such that

(1) U is C*-equivariantly isomorphic to Spec{A), and consequently the ring
of regular functions A(U) on U admits a graded algebra structure,

(i) the ideal 1(Z) of the zero scheme Z of V is homogeneous in the graded
algebra A (U),

(1ii) the graded algebra A(U)I(Z) (= A(Z)) is isomorphic to H* (X; C¥).

Proof. See [6]. We note that U is the big cell x; = {xeX;
lim, A -x =x,} of the negative Bialynicki-Birula decomposition of X.

A natural way of obtaining such a C* action on X is to consider those
X which admit an action of the group of upper triangular matrices B in SL,.
For simplicity, we shall consider X with an SL, action. For the rest of the
section, we fix an algebraic SL, action on X with the property that the vector

01
field V generated by [0 0j| has only isolated zeros Z. The C¥* action

i 0
(A, x)— [g 4- 1} -x on X, which is induced from SL,, satisfies di-V = A% V for

any 4 in C. Moreover, it has only isolated fixed points ([14]). Let Z; be the
fixed point scheme of this C* action 4, and let V§ denote the vector field on
1 0 . )
X generated by [0 I:I. Since the zero scheme of Vj is Zg, we obtain two
10 —

descriptions of H*(X; C):

(a) the semisimple description: There exists an increasing filtration F; of
A(Zg) with F,F,c F;,; so that

J

¢: GrA(Zg) = Y F,/F,., > H*(X; C).
20

(b) the nilpotent description: There exists a canonical grading on A (Z) such
that
y: A(Z) - H*(X; C).
Remark. By a theorem of Horrocks (see [14]) Z contains exactly one
closed point x,.

The third description of H*(X; C) is based on the calculation of the
homology group from the partition of X into Biatynicki-Birula cells. Let

Zy={xy, Xy,..-, %,}, andlet x; = {xeX: lmi x=x},
A—=0

x;, ={xeX: limiAx=x} fori=0,1,...,r.

A=m

The following theorem is due to A. Bialynicki-Birula ([9]).
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THeoreM 1.3 (the classical description). X = i=ox®" (resp. | Ji-ox) is
a locally closed decomposition of X, and each x;* (resp. x{) is isomorphic to A™
for some m;. Moreover, the homology classes [;,-I] (resp. [E]) of the Zariski
closures E (resp. f) of x;" (resp. x;") form a free basis of the homology algebra
H (X;Z) of X over Z.

Proof. See [9] and also [13].

One of the most interesting problems is to compare these various
descriptions of H*(X; C). Namely, find a basis in the nilpotent (resp.
semisimple) description of H*(X; C) which is dual to the Bialynicki-Birula
cycles {[x']}: i=0,1,...,7}. In general this problem looks very difficult.
A special case will be discussed in the next section.

The generalization of the semisimple and nilpotent description of
H*(X; C) to the singular subvarieties of X have been studied in [7]. The
authors obtained the following theorems as particular cases: Let B denote the
group of upper triangular matrices in SL,, Y a B-invariant subvariety of X,
and i*: H*(X; C) - H*(Y; C) the cohomology map of the inclusion i: Y5 X.
In the semisimple case we have:

THEOREM 1.4. The filtration F, of A(Z) induces a filtration on the
coordinate ring A(YN Z\) of the scheme theoretic intersection YN Z_ such that
the associated graded algebra Gr A(Yn Z,) admits a homomorphism into
H*(Y; C) making the following diagram commute:

o: GrA(Z;) S H*(X; C)
! 1
¢: GrA(YnZ)— H*(Y; C).

Moreover, if i* is surjective, then ¢ is an isomorphism (i.e., H*(Y; C) admits
a semisimple description).

In the nilpotent case A(Z), however, the situation is different: Since the
scheme theoretic intersection YN Z is a B-invariant subscheme of X, there
exists a canonical grading of the coordinate ring A(Yn Z) of Y~ Z such that
the natural map A(Z) > A(Yn Z) is a graded algebra homomorphism.

THEOREM 1.5. A(Yn Z) admits a homomorphism into H* (Y; C) making the
following diagram commute:

y: A(Z) - H*X; C)
! i
W: A(YnZ)— H*(Y; C).
If i* is surjective, we know by Theorem 14 that H*(Y; C) admits
a semisimple description. However, in the nilpotent case it is not known
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whether H*(Y; C) admits a nilpotent description, i.e., whether §: 4(Yn Z)
- H*(Y; C) is an isomorphism.

Remark. Clearly, one also has all the results above for an action of B on
X with the property that V, has only isolated zeros.

Derinition. The plus decomposition X = [ Ji—ox;" of X is said to satisfy

the frontier condition if each Zariski closure x;” is a union of certain x; .

THEOREM 1.6. If each x; intersects each x; transversally, then the plus
decomposition of X satisfies the frontier condition.

Proof. See [10].

THeoreM 1.7. If the plus decomposition of X satisfies the frontier condition,
then for any Bialynicki-Birula subvariety Y= x; of X we have

(i) H*(Y; C) admits a semisimple description.
(i) The graded algebra isomorphism . A(Z) — H* (X ; C) induces a surjec-
tive map ¢: A(YNZ)— H*{Y; C).

Proof. By [14], the plus decomposition of X is B-invariant. Thus, each

Y = x;" is a B-invariant subvariety of X. The rest follows from Theorems 1.4
and 1.5, because the frontier condition implies that i*: H*(X; C) - H*(Y; C)1is
surjective.

2. Cohomology of Schubert varieties

In this section we apply the results of the previous section to the algebraic
homogeneous space G/P. We give the relations between the semisimple,
nilpotent, Borel-Chevalley, and Kostant descriptions of H*(G/B; C). More-
over, we compute the cohomology rings of Schubert varieties in G/P.

Let G be a complex semisimple linear algebraic group, B a fixed Borel
subgroup of G, H a maximal torus of G in B, P a parabolic subgroup of
G containing B, W the Weyl group of (H, G), g and h the Lie algebras of G and
H, respectively. We denote by A the set of roots of H in G, 4, the set of
positive roots in A associated to B, X = {a,, ..., a,} the set of simple roots in
Ay, {egeg: fe A} the set of root vectors such that {[ez, e_,]: fe 4} is dual to
A (ie., fe;, e_g] is the co-root associated to f€ A). The integer obtained from
the canonical perfect pairing between one parameter subgroups u: C* — H and
characters y: H—C* is denoted by (u, x>. The height Y'im; of any
B=>ima in A is denoted by h(B).

For any given regular nilpotent element n in g, by the Jacobson—Morosov
Lemma ([16]) there exists an si,-triple {n,f, s} with the property [n,[]
=5, [s.f]1= —2f, and (s, n] =2n__This gives an algebraic SL, action

By

2 — Banach Center t. 26, cz. 2 W
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01!
on G/B (resp. G/P) so that the vector field V generated by |:0 0] has exactly one

zero x, = B (resp. P). Conversely, each such an SL, action on G/B (resp. G/P) is
obtained in this way. We will take, without loss of generality, the principal
regular nilpotent element n =)} ¢, throughout the rest of the paper. In this
case s€ h is a regular semisimple, while fe b, is a regular nilpotent element of g.
Here b, is the Lie algebra of the nilpotent radical B, of the Borel subgroup B~
of G opposite to B. Let u: C*¥ - H be the one parameter subgroup of
H associated to s (1.e., du(l) = s). It is clear that the vector field V, (resp. V)
generated by [(1) (l)] (resp. [g (1)]) is induced from the C* (resp. C) action
i (resp. exp(tn)). -

We start with the semisimple description of the cohomology ring of the flag
space G/B. Since seh is regular, the zeros Z; of V, is the fixed point scheme of
H on G/B. Thus, Z, may be viewed as the orbit under W of x, = B. This implies
that 4(Z,) is precisely the ring of complex valued functions on W. We will
consider A(Z,) as a W-module by setting w-f(v) = f(vw) for all w, ve W and
fe A(Z,). To identify the filtration of A(Z)), we consider instead the finite
reduced affine scheme W-s c h. Its coordinate ring A (W-s) is a W-module with
a W-invariant filtration F; = F;,, such that F, F; = F, ;. Indeed, F; consists of
the restrictions to W-s of polynomials on h of degree at most i. The key fact
proved in [3] is that 4 (W-s) and A (Z,) are isomorphic as filtered W-algebras.
In fact, the explicit isomorphism

0: A(W-s)— A(Z) s given by 0(f)(w) = (w-1)(s) =f(w*-5)
for all fe A(W-s) and all we W.
NoTaTion. Throughout the rest of the paper we will take A (W-s)for A(Z)).

The geometric significance of the identification of 4 (W-s) with A(Z,) is the
fact that if [dy] is the function on W-s defined by the restriction dy|W-s, then
we have

¢ ([dx]) = c,(L¥), the Chern class of the dual of the line bundle L,
associated to y ([3]).

One can put these in a familiar context by recalling the Borel-Chevalley
isomorphism B: A(h)/I¥ - H*{G/B; C) between coinvariant algebra of h and
the cohomology of G/B induced by setting f(dy) = c,(L,). Here A(h) is the
coordinate ring of A, and [% is the homogeneous ideal generated by the
W-invariant functions f on h such that f(0) = 0. Note that W acts on A(h)
according to the rule (w-f)(h) =f(w~!-h) for fe A(h), we W and heh. The
natural map n: A(h) - A(W-s) is by definition degree preserving, so it induces
a surjective homomorphism Grn: A(h) — Gr A(W-s). The following theorem
which is proved in [3] summarizes the connection.
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THEOREM 2.1. The kernel of Grn is I¥. Moreover, we have the following
commutative diagram of W-equivariant isomorphisms:

B

Alp) 1Y = H*(6/8,C)
/
Grx -
P
GrA(W:s)

where ¢ denotes ¢ twisted by the sign representation.

THeOREM 2.2. The plus decomposition G/B =|)(wB)*,weW, of G/B
determined by the C* action p is the Bruhat decomposition
G/B = | | BwB, we W, of G/B. Therefore, the cycle classes [X,] of the Schubert

varieties X, == BwB form a basis of H_(G/B; C).
Proof. 1t follows from Theorem 1.3 and [1].

Recall that there exists a partial ordering < on W with the property that
v<w if and only if BvEB < X, = BwB ([8]). This immediately implies that
X, = [Uv<wBvB, and therefore the Bruhat decomposition satisfies the frontier
conditton.

THEOREM 2.3. Let e be the identity element of W and X, = BwB the
Schubert subvariety of G/B associated to w in W. Then H*(X ; C) is the graded
ring associated to the degree filtration of the coordinate ring A([e, w]-s) of the
subvariety [e, w]-s = {v-s: v < w} of W-s. Moreover, there is a commutative
diagram of algebra homomorphisms

AhyI¥ 5 GrdA(W-s) H*(G/B; ()
! l 1 "
A(h)/grI([e, w]-s) > GrA([e, w]-s) > H*(X; C),

where gri([e, w]-s) is the ideal generated by the leading terms of the functions
fe A(h) vanishing on [e, w]-s.

¢
_)

Proof. It follows from Theorem 1.7, the discussions above, and the fact
that X nZ = [e, w]'s. For more details see [7].

The situation is similar for the space G/P. In fact, let W, denote the Weyl
group of (H, P). The following is proved in [3].

THEOREM 2.4. The ring of Wy-invariant elements A(W-s)¥* of A(W-s) has
an increasing filtration such that Gr A(W-s)¥® > H*(G/P; C), and moreover this
isomorphism is compatible with the inclusions A(W-s)*® < A(W-s) and
H*(G/P; C)s H*(G/B; C).

Since by definition A(W-s)¥? is A(W,/W-5s) we obtain the following
corollary (see [3], [7]).
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CoroLLARY. The following diagram of algebra homomorphism commutes:

¢
(A (h)/lw)wp S Gr A (Wp\ w- S) 5 HE (G/P, C)
Ay > Gr4(W-s) — H*(G/B; ),
where (A (il)/IDWP is the ring of Wp-invariant elements of A(h)/IV.

Let [e, w]'s denote the image of [e, w]'s under the natural map

W-s - Wp\W-s, and let Gr A([e, w]'s) be the graded ring associated to the
filtration induced from A(W,\W-s).

THEOREM 2.5. (1) The cycle classes [X;] of the Schubert subvarieties
X; = BwP, we WiWy, of G/P form a basis of H, (G/P; C).
(it) For any Sch_gbert subvariety X ; = BwP of G/P, H* (X, C) is isomor-

phic with Gr A([e, w] ). The restriction map H* (G/P; C) - H*(X; C) corre-
sponds to the natural map Gr A (W,\W-s)— Gr A({e, w]"5s).

Proof. (1) follows from the fact that the plus decomposition of G/P
determined by the C* action u is the Bruhat decomposition G/P = | ] BwP of
G/P ([2]). (i1) follows from Theorem 1.7 and the previous discussions.

This theorem, in particular, says that the cohomology rings of Schubert
varieties in G/P admit semisimple descriptions. The situation for the nilpotent
description, however, is different as we shall discuss now. Let 0 be an arbitrary
subset of 2, 4, the subset of 4, consisting of linear combinations of 6, and P,
the parabolic subgroup of G corresponding to 6. We shall take P = P, without
loss of generality, and keep the notation as before.

ProprosITION 2.1. There exists an H-invariant open affine neighborhood
U of x, in G/B (resp. G/P) together with a natural holomorphic local coordinate
system z_, at x, such that A(U) is isomorphic to C[z_,: ac4d,] (resp.
Clz_,. aed . \4,]), where the grading is determined by taking degree
z_,=h(a) for aed,.

Proof. By Theorem 1.2, U =x, =B~ B (resp. B~ P), which is also
H-invariant. For aed, let P,: g —»g,= Ce, be the projection map. The
canonical isomorphism exp: b, — B, defines the following coordinate
functions z_, on B B=B; B (resp. B”P): For acd,,z_,{exp(x)B)
= P_,(x), xeb, . Since the tangent action of the C* action A = 4-x = pu{d)x
(the left multiplication on G/B (resp. G/P)) induced from u: C* - H is
equivalent to the adjoint action and 2h(f) = (u, B) for any f in 4, we have
dire_, = A"*®¢e__. This shows that degree z _, = h(), and therefore we have
the claim.

CoroLLARY. The ideal 1(Z) of the zero scheme Z of V is homogeneous
in Clz_, aed.] (resp. Clz_,: aeA, \4,]), and the graded algebra
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R=C[z_, aed, )/I(Z) (resp. R, = C[z_,: ae A \A,)/I(Z)) is the nilpotent
description A(Z) of the cohomology ring of G/B (resp. G/P).

We shall now give the algebraic relation between the semisimple and
nilpotent descriptions of H*(G/P; C). Consider the grading on the coordinate
ring A(b,) of b, induced from the adjoint action of u: C* - H (ie., for
AeC* and feA(b,), (A-f)=f(4du(A” ") (x)) for xeb,). It is clear that
Clz_, aeA,] = A(b,) as a graded algebra. Let b~ be the Lie algebra of B™,
and let & A(h)—> A(b,) be the comorphism of the linear map
0: b, 2% b~ 2 p Since A(h) is generated by the characters dy of h and
A-d(dy) = A%d(dy), 4 is a graded algebra homomorphism.

THEOREM 2.6. The algebra homomorphism &. A (h) —» A(b.) induces a grad-
ed algebra isomorphism a: A(h)/I¥ — A(b,)/I(Z) giving the following com-
mutative diagram of isomorphisms:

ARIY > A, yI(2)
Grn lv
Gr A (W-s) % H*(G/B; C)

Proof. See [6].

By a theorem of Kraft, Kostant description A(N nh) of H*(G/B; C) can
also be added to the diagram above as follows: The restriction map
res: A(g)— A(h) induces an isomorphism res of graded algebras

res: A(Nnh)— GrA(W-s)
such that the diagram

AINoh) —E e a(p)IY

fes Grn
GrA{W-s)

commutes, where k is the usual map and A (N n h) is the coordinate ring of the
scheme theoretic intersection of the nilpotent cone N in g with h (see [6], [17]).

Remark. Under the isomorphism y: A4 (b, )/I(Z) — H*(G/B; C) it can be
shown that ¥ (z_,) = ¢, (L,,), where {w;: i =1, ..., I} is the set of fundamental
dominant weights associated to Z. It would be interesting to compute y/ (z_,) in
H*(G/B; C) for any a € 4, . One of the main differences between the semisimple
and nilpotent descriptions of H*(G/B; C) is that in the nilpotent case the
values of  at the generators z__, ae 4., of A(b, ) are not known in general.
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CoroLLArY. When the isomorphism a: A (h)/IY — A(b;)/I(Z) is restricted
to the subalgebra (A (h)/I")¥® one obtains the following commutative diagram:

A(hy1* 5 R % H*(G/B; C)

T 1 T
(A (h)/I"W? S R, > H*(G/P; C)

Let X, = BwP, we W/W,, be the Schubert subvariety of G/P associated
to w. By Theorem 1.7 we know that the isomoprhisms y: 4 (Z) = H*(G/P; C)
induces a surjective map ¥: A(X, N Z)— H*(X,; C). It is an open problem
whether ¢ is an isomorphism. It has been conjectured in [6] that  is an
isomorphism, i.e., the cchomology rings of Schubert varieties admit nilpotent
descriptions. The conjecture has been verified recently for the Grassmann
manifold ([5]) as we shall discuss in the next section.

3. The relations of Plicker ccordinates to Schubert calculus

For the completeness of the article we start with the relation between the
semisimple and classical descriptions of H*(G/P; C). We then discuss the
connection between the nilpotent and classical descriptions of the cohomology
ring of the Grassmann manifold G, ,. Finally we prove that the cohomology
ring of any Schubert subvariety of G, , admits a nilpotent description. We keep
the notation of Section 2.

We start recalling the operators A,: A(h) — A(h), we W ([8]). For each
aecd, the element f—o, -f is divisible by «, where o, is the reflection
corresponding to «. Thus 4,: A(h)— A(h), A, f=f—0, f/o, 1s a well-defined
linear operator on A(h). Let «,,..., €2, and let w=o0, ...0, be any
element of W. Then we have

(i) if the length I(w) of w is less than k, then 4, ...4, =0,

(i1) if I(w) = k, then the operator 4, ... 4, depends only on w and not on
representation of w in the form w=go, ...0,. In this case we put
A,=4,..4

. ax*

k"

We note that the operator 4,: 4(h) — A(h) preserves the ideal I", and
thus induces an operator A,: A(hY/I¥ - A(h)/I" of homogeneous degree
—1I{w). Let w, be the unique element of W of maximal length, and
P, = (1/IWD]]zea. « (mod I¥), where |W| is the order of W. For each we W,
let P, = A4,-1,,(P,,). The following is proved in [8]:

Tueorem 3.1. (i) {P,: we W} is a free Z-basis of A(h)/I".

(i) Let Y, be the cycle class of the Schubert variety X, , = Bw,wB
in H,(G/B; C). Then under the Poincaré duality map #: H,(G/B; C)
— H*(G/B; C), #(Y,) = B(P,), where B is the Borel-Chevalley isomorphism
given in Theorem 2.1.
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The situation for G/P, P = P,, is similar. In fact, let W' denote the set of-
we W such that wl < 4., and A(h)"* the ring of Wy-invariant elements of
A (h). The following theorem is also proved in [8]; however, by using the result
of Section 2 and the Gysin homomorphism of the natural map n: G/B — G/P,
it can also easily be obtained from the theorem above. For more details see [4,
p. 260].

Tueorem 3.2. () {P,mod(I¥ n A(W'"): ce W'} is a free Z-basis of
(A ()Y e,
(i) For each oe Wy, let Y, be the cycle class of the Schubert variety

Xues = BwyoP in H_(G/P; C). Then under the Poincaré duality map #, #(Y,)
= B|(P, mod (¥ ~ A(h)¥*)), where Bl is the restriction of B to (A(h)/I¥)*".

Remark. Tt is very desirable to find an explicit basis of the nilpotent
description A (Z) of H*(G/P, C) which is dual to the Schubert cycles. By the
theorems above and the corollary of Theorem 2.6 this amounts to saying to
compute x(P,) in R = A{" )/ I(Z).

In the rest of the section, we discuss some of the problems mentioned
before for the full flag manifolds and the Grassmannians. We would like to
note the results so far obtained are also valid for any reductive linear algebraic
group G over C ([3], [S]).

Let G = GL,, B the group of upper triangular matrices in G, and H the
group of diagonal matrices in B. Then 4 = {o;; = x;—x;: i #j, | <i,j<n},

=l <i<j<ny, Ze{oz“+1 1<i< n—l} W=S§, the symmetric
groupin1,2,...,nand n = Y 72{ ¢, , where ¢; is the n x n matrix having 1 in
the (i, j)th entry and zero everywhere else. Let 6 = {a;;0,: 1 i<k}, and
P = P,. The algebraic homogeneous space G/B is the full flag manifold F, and
G/P is the Grassmann manifold G,, of k-planes in C". It follows from
Proposition 2.1 that A(U) is isomorphic to C[z;: 1 <j<i<n] (resp.
Clzpyio 1<ig<n—k,1<j<k]) for the space F, (resp. G,,), where
z;;(x) = x;; for xe G and the grading is determined by degree z,, = p—gq. In the
rest of the paper we take z; =0 if either i>n or j<1, and z;=1 for
1 €i<n The following theorem has been stated in [5]. We take this
opportunity to give its complete proof.

THEOREM 3.3. (i) The graded algebra A(Z) is isomorphic to
Clzi;: 1<j<i<n]/I(Z), where I(Z) is the homogeneous ideal gener-
ated by

a2y = zi4y j= 211+ 25(255- 1 — 2501 )

(i) Let x| =2y, X9 =Z33= 2315 +e» Xj=Zjyy = Zjjogs o Xg = —Zpp_15
ard let h, (y,, ..., y,) be the m-th complete symmetric homogeneous Junction in
Vis--+s ¥s. For any i, j the identity

z;; = h,._j(xl, cees xj)
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holds in A(Z). In particular, A(Z) = C[x,, ..., x, /o, ..., 0,) where ¢, is the
i-th elementary symmetric function in x,, ..., X,.

(i) Under the isomorphism . A(Z)— H*(F,; C), Y (z;)=c;_;(Q),
the (i—j)th Chern class of the universal quotient bundle Q; of rank n—j
on F,.

Proof. To prove (i), it is enough to show that i(V)(dz;;) = V(z;) = q;;(2).
For this we need to compute the local expression of V in the local
coordinates z,;. Let M = (z;;) be the nxn lower triangular unipotent matrix
having z;; as its entries. The change of the local coordinates z;; by the action
of exp(tn) around x, 1is given by the holomorphic functions
z;;(t), L £ j<i<n, which satisfy the following matrix identity: (x)
exp(tn) MB, = [z;;(¢)] for some nxn B, in B, where [z;(t)] s an nxn lower
triangular unipotent matrix. We note that

exp(tm)M = W(f,,....[)=

Lfl(n_l)v-'f;:(n_l)

n—k tk+l'—1
is a Wronskian matrix, where f, = ) ———
S ,.go(kﬂ—n!

IW(g,, ... g)| denote the determinant of the Wronskian matrix W(g,, ..., g),
and W(g,,....6G;, ... 9) =Wy, ....0i- 1> Gi+1>---» 9), W(g;) = 1. By using
standard formulas involving derivatives of determinants, one can check that
the following matrix B,, defined by

), = (WS fo W S S,
e otherwise,

Zerar | k< n Let

satisfies the identity (). From this, one obtains
f1 "'f;'
[W(ys - 5

zij(t) = fl(j—z)”_fj(j—Z)

fl(i—l) ...f:,'(i_l)

1 <j < i< n By using, again, the formulas involving derivatives of deter-
minants, one obtains

d
V(Z.-j) = EE(Z.-J'(I)) o = Ziv1j %51 +zij(zjj—1_zj+ 1;)-
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For (il), let S = {(i,j): 1 <j< i< n}. Consider the partial order < on
S defined by: for (i, j) and (k, D in S, (i, j) < (k, D if i < k, j < 1. We prove the
identity z;; = h;_;(x,, ..., x;) in A(Z) by induction on (i, j)e S relative to <.
For the minimal element (2, 1) in S, we have, by definion, z,, = h,(x,) = x,.
For a given (i+1, j)eS, by using the defining relations a;;(z) = 0 in A(Z)
one obtains z;,,;=z;; ;+x;z;, where x;=z,,,,—-z;;_,. Thus, by the
induction hypothesis we get z;,; ;= h. (X}, .0, X2 )+ X0 (xq, .00, X)),
Since

hi+1-—j(xl’ ceey xj—l)"‘xjhf—j(xp sy X)) = hr'+l—j(x13 oy X

we get z,.,;=h;.,_;(x, ..., x;) in A(Z), which gives the claim. This, in
particular, implies that z ., = h;(x,,...,x,)=0 1in A(Z) for i=1,...,n
Thus, the ideal (h,(x;,...,X,). ..., B (X}, ..., x))=(o,...,0,) lies in
I(Z). By comparing the dimensions we get A(Z)=Cl[x,, ..., x,1/1(Z)
(this is the identification given by o in Theorem 2.6). Part (iii) follows from
part (ii), Theorems 2.1, 2.6, and the well-known formula for ¢, (Q) in
H*(F,; C).

We shall now give the explicit description of the isomorphism
y: A(Z) - H*(G, ,; C) by providing the representatives of Schubert cycles in
AZ)=Clz,,,; 1 <i<n—k, 1 <j<k)I(2)

For any permutation t = (a,,...,4,) in W=3S,, let t(e) be the nxn
permutation matrix obtained from the identity matrix e by permuting the
rows relative to (a,, ..., a,). Let S={() =(i;, ..., i) 1 <i; <...<i,<n}.
For any (i) in S there exists a unique permutation (i, ..., iy, by ---» ip)
with the property i,,, <... <i,. We denote this permutation by o (i). For
(1) =y, ..., ) in §, let X, = Ba(i)(e) P be the Schubert subvariety of G, ,
associated to 1 <i; <...<i <n, let Q(,,..., i) be the Poincaré dual of
the cycle class of the Schubert variety X, _, ., ..+ in H¥G, ; C).

ThueoreM 34, For any 1<i,<i,<...<i,<n, we have
Y (Pg, iomodI(Z)=Q(,, ..., i), where Py ., is the Plicker coordinate
of G, associated to 1 <i, <...<i <n

.....

Proof. See [S]. It basically follows from Theorem 3.3 and the Schubert
calculus.

CoroLLARY. For any Schubert subvariety X of G, ,, the graded algebra
isomorphism : A(Z) > H*(G,,; C) induces an isomorphism AX;,nZ)
5 H*(X;); C) which commutes with the natural maps A(Z) » A(X ;N Z) and
H*(G, ,; C) > H* (X ;; O).

Proof. It follows from the theorem above and the fact that the ideal
I1(X) of X at x, is generated by the Plicker coordinates P, with (j) < (i).
For more details see [5].
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