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Introduction

In this short note, we use J. A. Moody’s fundamental induction theorem
for polycyclic group algebras kG (stated below) to determine the rank of the
Grothendieck group G,(kG) of the category of finitely generated kG-modules:
Assuming that k is a splitting field for all finite subgroups of G, for simplicity,
the rank of G,(kG) turns out to be equal to the number of G-conjugacy classes
of torsion elements of G whose order is not divisible by char k. For a somewhat
more general formulation, without a priori assumption on k, we refer to
§ 1 below. This result directly generalizes the case of finite groups G. Indeed,
besides Moody’s theorem, our main ingredient are certain standard techniques
and results from finite group representation theory which we quote from [CR].
We remark, however, that, in contrast with the finite case, G,(kG) for general
polycyclic-by-finite groups G usually has nontrivial torsion. This aspect of the
structure of G,(kG) needs further clarification. Certain techniques for dealing
with this question have been developed in [LP] where one can also find
complete computations of G4(kG), including torsion, in a number of explicit
examples.

For the convenience of the reader, we state Moody’s result that was
referred to above, concentrating on the case of group algebras. (Moody’s
theorem holds, more generally, for crossed products of polycyclic-by-finite
groups over right Noetherian rings; see [M].)

MoopY’s INDUCTION THEOREM. Let kG be the group algebra of the
polycyclic-by-finite group G over the field k. Then, denoting by F the set of all

This paper is in final form and no version of it will be submitted for publication elsewhere.

[45]



46 M. LORENZ
finite subgroups of G, the map

@ Ind: @ G,(kH) — G,(kG)

He# He&
is surjective. (Here, Ind§ (") = (') ®,4kG, as usual.)

All modules considered here will be right modules. The element of G,
corresponding to the finitely generated module V will be written as [V].
Further notation will be introduced as we go along.

1. Statement of the main result

Let G be a polycyclic-by-finite group and let k be a field with chark =p > 0.
Put

= {x € G| x has finite order o(x) with p t o(x)}
( = {xeG|xhasfinite order} incase p = 0).

The elements of G,. are usually called the p-regular torsion elements of G, or
simply torsion elements in case p =0. Fix a positive integer m with

pXtm and o(x)|m for all xeG,.

(For example, m can be taken to be the p’-part of the index of any torsion-free
normal subgroup of finite index in G.) The Galois group Gal(k(u,)/k), where p,,
denotes the group of mth roots of unity in an algebraic closure of k, is
isomorphic to a subgroup of the group of units U(Z/mZ) in the usual fashion.
Following [CR], this subgroup will be denoted by I,(k), so

Gal(k(u,)/k) = I,(k) < U(Z/mZ),

Note that G acts on G, by conjugation, and U(Z/mZ) also acts via x'*"% = x*
(teZ, xe G,). Since thesc two operations commute, we obtain an operation of
the carte31an product G xI,(k) on G,. The set of orbits under this action,

G, /G x I,,(k), is independent of the particular chosen m and will be denoted by
T(G, k). So

T(G, k) = G,/G x I,(k).

It 1s a well-known fact that T(G, k) is finite. In fact, any polycyclic-by-finite
group G has only finitely many G-conjugacy classes of torsion elements (see
Lemma 1 below). In case k is a splitting field for all finite subgroups of G, the
action of I,,(k) on G, is trivial and so T(G, k) is the set of G-conjugacy classes
in G,.. To see this, note that the assumption on k implies that, for any xe G,
k contains a primitive root of unity of order o(x). Since the operation of I, (k)

on {x) factors through Gal(k(u,.)/k) = (1}, we conclude that x is fixed under
I, (k).



POLYCYCLIC GROUP ALGEBRAS 47

Our goal here 1s to prove the following

THEOREM. Let G be a polycyclic-by-finite group and let k be a field. Then
Gy (kG) is a finitely generated abelian group with rank G,(kG) = |T(G, k).

In particular, if all torsion in G is p-torsion (G, = {1}) then G,(kG) has
rank 1. We remark that finite generation of G,(kG) is immediate from Moody’s
theorem and is included in the result for completeness only.

2. Finiteness for conjugacy classes

Finiteness of T(G, k) is a consequence of the following technical lemma which
also proves that G has only finitely many conjugacy classes of finite subgroups.

LEMMA 1. Let G be a polycyclic-by-finite group. Then there exists
a torsion-free normal subgroup N of finite index in G having the following
property:
If U and V are finite subgroups of G so that U is conjugate to a subgroup of
V modulo N, say U*N < VN(x € G), then there exists an element ye G with
UcVand w =u* modN for all ueU.
In particular, if two finite subgroups of G, or two torsion elements of G, are
conjugate modulo N then they are conjugate in G.

Proof. We argue by induction on the Hirsch number of G. The case when
G is finite being clear we assume that G is infinite. Then G has an infinite
torsion-free abelian normal subgroup A ([P, Lemma 10.2.9]). Put B = A"
where n > 0 is chosen so that |U| divides » for all finite subgroups U of G. (For
example, n can be taken to be the index of any torsion-free normal subgroup of
finite index in G.) Then B is an infinite normal subgroup of G, and so G/B has
smaller Hirsch number than G. Thus, by induction, G/B has an appropriate
normal subgroup N/B. We will show that N works for G. So assume that
U*N < VN holds for finite subgroups U, V of G and x € G. Then, for some z€ G,
U*B < VB and u* = u* mod N for all ue U. In particular, each ue U can be
uniquely written in the form

u=zvz '¢(u) with veV and ¢@(u)e B.

One easily checks the equality ¢(u,u,) = @(u,)?¢(u,) for u,, u,eU. Thus,
putting b = [ |ucw @(u)e B, we see that b = [],,cv o(u,u) = b*o@)Y'. Letting
ac A be such that a!’! = b~ ! (note that B = 4!Y!), we deduce that

pu)=a"'a*
holds for all ueU. Thus u=zvz"'a™'u"'au, or
u=azz 'a ' =v"" with y =azeg.

Therefore, v =veV and so U’ < V. Moreover, v’ =v=u* modB and
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u* = u* mod N together imply that &’ = u* mod N holds for all ue U. Thus
N has the required property.

The assertion about conjugacy of finite subgroups of G modulo N is clear.
Finally, if two torsion elements h and k are conjugate modulo N, say
h* = k mod N, then the foregoing yields an element ye G with * = k" for some
integer r and h* = £* mod N. But then k" = k mod N and so k" = k, since N is
torsion-free. This proves the lemma.

3. Finite groups and characters

Let H be a finite group and let k be a field with chark = p > 0. Fix a p’-integer
m dividing the order of each xe H,, asin § 1, and put k; = ky(u,,), where k, is
the prime subfield of k and u,, is the group of mth roots of unity in an algebraic
closure of k. In case chark = p > 0, we fix a p-modular system (K, R, k,), that
is,

R is a discrete valuation ring with maximal ideal p and charR =0,
k, = R/p, and
K = Fract(R) is the field of fractions of R.

(Such a p-modular system exists, e.g. by [CR, Proposition (16.21)].) In case
chark = 0, we simply take K = k,. Finally, with T(H, k) being defined as in
§ 1, we let KT™H:» denote the K-vector space with basis T(H, k) or, equivalently,
the K-space of functions y: T(H, k) — K. The following lemma is a standard
result in finite group representation theory ([CR, Theorems (21.5) and (21.25)
and their prools]).

Lemma 2. Let H be a finite group and let k be a field. Let K be defined as
above, so char K = 0. Then we have an isomorphism of K-vector spaces

(chy)™: Go(kH)®,K > KTH®,

The isomorphism is given by Brauer characters ([CR,-Definition (21.26)])
in case chark > 0, and by ordinary characters if chark = 0.

4. Colimits over the Frobenius category % = %(G)

Let G be a polycyclic-by-finite group. The Frobenius category ¥ = (G} of
G is defined to have objects the set of all finite subgroups of G, and morphisms
are inclusions of G-conjugates: If H* < E (H,Ecob #, xeG), then we have
a morphism H — E given by h+ h* (he H). As usual, we will write H € # instead
of Heob % in the following.

Now let k be a given ground field, char k = p > 0. Fix a positive integer m as
in § 1 and construct the field K from m and k as in § 3, so char K = 0. For each
He#, we define the orbit set T(H, k)asin § 1 and § 3: T(H, k) = H,./H x I (k).
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Assume that H — E is a morphism in %, given by the inclusion H* < E for
H,Ee# and xeG. Then we get a commutative diagram

T(G, k) i_i T(G, k) HG x Imk) _ (hx)erm(k)

T(H, k)— T(E, k) BH* T () > Ttk

for he H,. By K-linear extension we obtain a corresponding commutative
diagram of K-vector spaces

K TI6K)
KTIH'“ _KT(E,kl
rH,E,x

Stmilarly, induction of modules yields a commutative diagram

GolkG) IV ®y kG

Ind§ Indg

GolkH) GolkE) Vi————— (v ®kaEI=[(Indf,x_1(V))x]

Yuex
Here, in V®,uykE, we view kE as a left kH-module via the map kH — kE given
by a— o™ (e kH), and ()" denotes the x-conjugate of the module in question.
The assignments H— K™% and H G,(kH) (H € %) together with the
above maps yield two functors from & into the category of abelian groups .o/b.
The collection of Brauer or ordinary (if char k = 0) character maps chy: G,(kH)
— K1Uth (H e %) defines a natural transformation between these two functors.
The required commutativity of the diagram

vH,E,x
Go(kH)—— G, (kE)
ci'n,, l lchE
KT(H,k) KT(E.k)

H.E,x

for H* < E(H, Ee # and x e G) follows from [CR, Lemma (21.28) and (10.3}].
The colimits of the above two functors # — /b will be denoted by

lim KT#®  and  lim G, (kH).

HeZ He%

We explain the construction and universal property of limG,(kH), the casc of

He¥#
limKT#b being entirely analogous. To construct 1imG,(kH), one forms the
He# He#

direct sum @ g5 G,(kH) and factors out the subgroup that is generated by the
elements ohlay)—0pyuexldy) (dgeGy(kH), H* € E), where oy Gy(kH)

4 — Banach Center t. 26, cz. ]
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— D uesGy(kH) is the canonical embedding. Letting y,: Go(kH) - IimG4(kH)
He
denote the map g,, followed by the canonical projection of @ .G, (kH) onto

imG,(kH), it is clear that limG,(kH) is characterized by the following

HeF He#F

universal property: The maps Y ,: Go(kH) — UmG,(kH) satisfy ¥, = ¥/ ,0v 5 k.
He#

whenever H* < E (H, E€ %, x€ G). Moreover, if f;: Go(kH) —» A (some abelian

group) is another collection of maps satisfying the corresponding equalities

Ju = feOVu.r.x, then there exists a unique homomorphism f: hmG,(kH) - 4
He#

Wlth .f,‘" =,/‘O|//” f0r all 1'[63"T
We note some immediate consequences of the above description. The

construction of limG,(kH) makes it clear that this group is generated by the
He#
subgroups ¥ 4(Gy(kH)), where H runs through some representative set of

G-conjugacy classes of maximal members of % . Since such a representative set
is finite, by Lemma 1, and since all G,(kH) are finitely generated, it follows that
limG,(kH) is a finitely generated abelian group.

He¥#

" The universal property, applied with 4 = G,(kG) and f, = Ind§, yields
a homomorphism

IndS: limGy(kH) — G, (kG)

He#

extending the induction maps Ind§ (H e.%). Similarly, the natural transfor-
mation given by the character maps ch, (He %) yields a homomorphism

limchy: limGy(kH) - lim KTH4,
HeF HeF

b= o]

€%

LemMA 3 (notations as above). (a) IndS: lim G, (KH) = G,(kG) is surjec-
He#
tive. In particular, G,(kG) is a finitely generated abelian group.
(b) lim KTHH® ~ KTGH - Under this isomorphism, the canonical map
He#
KTHbY L, limKTHK pecomes the K-linear map sending the orbit h">1m® ¢4

hC*1=®) (he H).
(c) The map limchy together with the isomorphism in (b) yield a K-linear

He# N
isomorphism (chg)™: (lim Gy (kH))® K = KTE,
HeF

Proof. (a) is a restatement of Moody's induction theorem: Gy(kG) 18
generated by the images of the maps Ind§ (He #).

(b) We have already noted above that the maps KTH® - KTC¢H sending
R I g g6 > Imlkd (g e HY satisfy the required commutativity conditions, and
so we get a homomorphism /° L:= limKT#*® —, KT(G4 extending these maps.
Letting @4 K™% — L denote the canonical map, with @, = @ 0Ty k.
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whenever H* = E (above notation), we can define a back-map g: K™%® — L as
follows. For a given x € G, pick any H e & with x” € H [or some ye G and send
the orbit x%*=® to @ ((x?)T*Im®) = @, (x*7* =W} e L. One checks that this
is the required inverse {or f.

(c) Composition of limchy: limGy(kH) —» im K™% with the isomor-
He# He# He%#
phism in (b) gives a homomorphism

ch,: limG,(kH) - KT¢9,

He#
Tensoring this with K we obtain a linear map
(chg)™ = chy ® zidg: (lim Go(kH)® 2 K —» KTV,
He#

Since the functor ()®,K preserves colimits ([MacL, p. 115}), (chg)™ 1s
identical with the composite map

K T(H k) =, K T(G k)

(lim G, (kH) @, K > li

He.#

(Go(kH)®,K) > li

€

3
8

l
l

Mgy

|
=
A

Te 7

where é: = lim(ch,)~. Finally, Lemma 2 implies that § is an isomorphism,
He%
and hence so is (ch;)™. This completes the proof.

5. Proof of the main result

As before, let G be a polycyclic-by-finite group and let k be a field of
characteristic p > 0. We already know, by Lemma 3(a), that G,(kG) is finitely
generated. [t remains to establish the equality rank G,(kG) = |T(G, k)|. This will
be a consequence of the following more precise result. Here, the field K is
chosen as in § 3 and § 4.

LEMMA 4. The map Ind$: limG,(kH)— Gy(kG) gives rise to a K-linear
He#F
isomorphism

(Ind$)™ = Ind§ ®idy: (lim Gy (kH)® 2K > Go(kG)® K.

He#

Consequently, G,(kG)®,K = KT(EH,

Proof. In view of Lemma 3, it suffices to show that (Ind%)~ is injective. For
this, we may enlarge K if necessary. Choose N as in Lemma 1 and let
“: G > G/N denote the canonical map. We may assume that K is a splitting
field for G as well. So (chg)™: Go(kG)®z K = KT®* via Brauer or ordinary
characters, by Lemma 2.

Since kN has finite global dimension (N is torsion-free), we have
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a homomorphism
T =TGN GO(kG) — GO(kG),
[V1m Y (= 1F[TorfS(V, kG)] = Y. (—1)[H(N, V)]

i20 iZz0
(see [B, p. 454]). For example, if V|.y is projective then n([V]) = [V/V(wN)],
where wN is the augmentation ideal of kN. One easily checks that, for any
subgroup H of G, the following diagram commutes:

GolkH) 2225 G (k)

tnd | L na?

Go(kG)——— G,(kG)
For He # one_has NnH={1), and nyy,p is the obvious isomorphism
Go(kH) > Gy(kH) coming from the isomorphism H =~ H. The maps

Ind%

GO(kH)i Go(kH)—> G,(kG) (He %) give rise to a map
Ind$: L:= limGy(kH) — Go(kG).

He?

In view of the above commutative diagram, Ind$ factors as follows:

Ind® _
L=lim GolkH) GolkG)
HEF
IndS A
GylkG)

Thus, in order to show that (Ind%)~ is injective, it suffices to prove the
injectivity of (Ind%)™ = Ind% ®,idy: L®,K — G,(kG)®,K. This is a con-
sequence of the following commutative diagram:

KTGHh _____, gT(Gk

=T chyy Tiche)~
L®K —(T"“)T GO(kG)® K

Here, the top horizontal arrow sends the G x I, (k)-orbit of xe G, to the
G x I (k)-orbit of xeG. By Lemma 1, this map is injective, and hence so is
(Ind%)~. This proves the lemma, and hence the theorem.

We remark that, if N is chosen as in Lemma 1, then limG,(kH) is
He#

isomorphic with lim G,(kH), where # is the full subcategory of Z (G/N)
He#

having objects {H = HN/N|H € #}. This follows from Lemma 1. The above

argument also proves this fact modulo torsion.
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Added in proof (April 10, 1990). The equation chgoy, ; =1, ochy, which is claimed to
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a factor |Cy(x)| " in the definition of chy. The rest works as before. We take this opportunity to
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group algebras (with K. A. Brown) contains a proof of our main result in a somewhat more general
setting, as well as further related results on Gy(kG).
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