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The theory of Chern characteristic classes can be considered as the modern
form of Schubert’s enumerative theory. Moreover, the Schubert calculus and
symmetric functions are closely connected. This enables mathematicians to use
symmetric functions in the study of Chern classes (see [L1], [ST]).

We study here some new family of symmetric functions in two sets of
variables {x;}, {y;}, indexed by partitions.

In Section 2, we give a basis of the linear space CH®(x, y) that they
generate (Lemma 2.2 and Theorem 2.3). In Section 3, we take the polynomials
in CH®(x, y) which depend only upon one set of variables and get inequalities
for the coefficients of their expansion. In Section 4, we obtain equalities
between some elements of CH®(x, y).

Finally in Section 5, we relate these polynomials to the Chern characters
of hypersurfaces with singularities, as defined by Wu, and thus obtain by purely
algebraic methods equalities and inequalities for Chern characters of hypersur-
faces (Theorem 5.1, 5.2, 5.3, and Corollary 5.4).

1. A family of symmetric polynomials

Recall that the total Chern class of a vector bundle E can be formally factorized
into the product C(E) = [](1 +x;) (see [HI]). Using symmetric functions, A.
Lascoux [L2] calculated the Chern classes of the exterior power A? E and of
symmetric power S? E of a vector bundle E, also the Chern classes of a tensor
product E ® F of vector bundles. H. S. Tai [T] noticed that a certain family of
symmetric functions is related to the Chern classes of algebraic varieties with
ample canonical bundle.

This paper is in final form and no version of it will be submitted for publication elsewhere.
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In this section we use other symmetric polynomials than the above-
mentioned authors; these polynomials are related to the Chern characteristic
classes of algebraic hypersurfaces.

Let e(x)=x,+x,+...+x, and e(y)=y,+y,+ ... +y, be the first
elementary symmetric polynomial in the wvariables x,, x,,...,x, and
Vis Vas ---s Y respectively. We consider now the symmetric polynomials in
both sets of vanables x and y defined by

(1.1)  CHi(x, y) = Z(—l)’(ﬁl;]) dIyex), i=1,2,....n,

j=0
n n! ) ; .
where = are the binomial coefficients.
m m!(n—m)!
For any positive integer k, k < n, let = = (n,, ©,, ..., ;) be a partition of

kie,my 2m,2...2n;20and n, +7,+ ... +7; = k. We define the symmet-
ric polynomial corresponding to the partition n as the product

(1.2) CH,(x, y) = CH,, (x, y}-CH,, (x, y)-...-CH,_ (x, ).

This polynomial can be expanded as follows

[—
(1.3) CH,(x, y) = ﬂ {Z(—l)'(H t ) e (y) e‘(X)}

i=1

= Z a;(m)- e~ (y)e' (x).

Let us consider the linear space, denoted by CH® (x, y), spanned by the set
{CH,(x, y)|mn partition of k}.

From expansion (1.3}, it is easy to see that every element in CH"'(x, y) can be
expressed as a linear combination of & '(y)e'(x), i=0,1,..., k. We are
interested in those elements in the linear space CH%(x.y) which are
independent of the varables y,, y,, ..., y, (that is such that g, =a, = ...
..=a,_; =0). We denote the subset of such elements by E®(x).

In order to describe E*'(x) we introduce an extra parameter ¢, and study
the invariance under the change of variables y, — y,+¢t, i =1, 2, ..., m. First,
for what concerns the derivatives of the CH,(x, y), we have the following
relation:

Lemma 1.1 The symmetric polynomials CH,(x, y) satisfy

d
(1.4) ZI_ICHi(x’ y+tco=m-(n+2-i)-CH,_ (x,y), i=12,..., n

Proof. It is clear that

d
(1.5) Ee‘ W+l =m-(i—j)- &7 ().
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By Definition (1.1), we get

1 a4
d—CH (X, Y+ Dlog = Z(—w(H _])e’(x)ae‘"’(y+t)|,:0

n+1—j
—J

Z l—l)l( ) e (x)-m-(i—j)-e ™17 (y)

li (=1 -m-(n+2—i) (Iﬂ_l J) eI (y)el (x)

j=0 I _]—1
=m-(n+2—i)-CH,_,{(x,y), i=1,2,..,n.
The lemma is proved. m

Now, for the elements in CH® (x, y) we have

THEOREM 1.2. For any positive integer k, 1 < k < n, the element W(x, y) in
CH"(x, y) is independent of the variables y,, y,, ..., V., in other words, W(x, y)
belongs to E®(x) if and only if Wix, y) satisfies
oW(x, y) W(x, y)

(1.6) (+l)fH I y)+ “CH,(x, y )a—C—m

oW (x, y)

0+ 20 CH (5, W) o= =
k 2>

In fact, the element W(x, y) is independent of the variables y,, y,, ..., ¥,
if and only if

d
(1.7) EW(x, y+i)l,-0 =0.

By the chain rule of differentiation we have

d L OWix,y) d
— W =0 = ————CH;(: -0 =0,
dt (x7 }"+t)|:-0 izzl 5CH,-()C, y) dt l(x! y+[)|t—0

and this together with (1.4) implies (1.6). m

2. Dimension‘of the linear space CH" (x, y)'

The linear space CH® (x, y) is spanned by the set
{CH, (x, y)|n partition of k}.

That is, the elements in CH® (x, y) are linear combinations of the CH_(x, y).
But these polynomials are not linearly independent for k = 4 and we will
determine a subfamily which is a basis of CH® (x, y).
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Lemma 2.1. For any positive integer k, k < n, let n = (ny, 7, ..., n;) be an
arbitrary partition of k. If we expand the symmetric polynomial CH_(x, y)
corresponding to m as

k

2.1) CH,(x. ) = ¥ a;(m-é~ () e (v),
i=0

then we have

(22) a, (r) = —n%-ao ().

Proof. From the expansion (1.3) we have
n+1\/n+1 n+1
ay(n) =
T, T, T,

- $(-CI-C) ()

where the notation (", !) stands for the absence of the factor enclosed. Hence we
get

—al(n)= ia‘)(n)‘(n_n_l)(n_i_l)_l:ao(n)'i ; — k -ao(n),

i=1 us oyn+1 n+1

and

as desired. =

For any positive integer k, we consider now the so-called hooked
partitions of k, i.e., the partitions n; = (i, 1,..., [) (k—iones), i=1,2,..., k,
and denote the symmetric polynomials corresponding to the hooked partitions
n; by CH, (x, y).

LeMMa 2.2. The symmetric polynomials CH, (x, y), i =1, 2, ..., k, corres-
ponding to hooked partitions of k are linearly independent.

Proof. We use induction on k. When k =1, the lemma is trivial. We
asumme that the lemma is true for k—1. We have to prove that if

k
(2.3) Y b,-CH, (x, y)=0.

then b,=0,i=1,2,.... k
For any hooked partition of k, if we expand the symmetric polynomial
CH, (x, y) as

P
CH, (x, y) = Z a;(n) e (y)e(x),

i=1
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then by definition, the coefficient a, (1, is (—1)*. Now (2.3} becomes

=

k
Y. by CH, (x. ) = ¥ a(k)¢ ") e (v) = 0.

i=1 i=1

The coefficient of €*(x) in the last summation is
k

(2.4) a (k)= Y (=1)-b, = 0.
i=1

It is trivial that summation (2.3) is independent of the variables y,, y,, ..., V>
hence it satisfies condition (1.6). However, for the hooked partitions we have

l d .
22 CH, (%, y+Dl,mo = - CH,(x, y+ ) CHY 7 (x, y+ 0l =g

=m-(n+2—i)CH,_, (x, y)CH{ ' (x, y)
+m-(k—i)(n+1)CH,(x, y)CHY" "1 (x, y)
=m-(n+2—-)CH, _ -, (x, y)+m-(k—=i)@m+1)CH,_,_(x, ),
i=2,3,..., k.

(2.5)

Sc that condition (1.6) becomes
d * k d
dr Z b;CH, (x, y+t)l,—o = Z bi'&?CHm(x, y+8li-o
i=1 i=1
=m-k-(n+1)-b, CH, o, (x, y)+m-n-b,-CH, ,_,,(x, y)

k—

+m- Y {(k—i)(n+1)-b;+(n+1—i) b} CH, 4y, (X, ¥).

i=1

By the induction hypothesis, the k—1 symmetric polynomials CH, , _,,(x, y)
are linearly independent, thus we obtain

k(in+1)-b,+n-b, =0,
(k—i(n+1)-b;+(n+1—-i)-b,,, =0, i=2,3,...,k—1.

The solutions of this system are

(2.6)

h

- k- n—1
bl=(—])k 1(n+1) k “'E'(k_z)'bk,

2.7)

. _ 1—i
b,.=(—1)""(n+1)_""”(n: il)-bk, i=2.3. .. k—1.

And from (2.4) we have

1=
o
I
™
o
bl
I
e

(2.8)

Il
ra
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where

k—1 ) . 1—i -1
B=1+Z(—mﬂm+nﬂﬂ(+ jﬂ—n“wwqr“hff )
fpps k—i k \k-2,
But the constant B is not equa! to zero (see Lemma 3.1 in the next section),
hence equation (2.8) leads to b, = 0, and therefore b, =0,i = 1,2, ..., k—1, as
desired. m

Now we establish the main result of this section.

THEOREM 2.3. For any given positive integer k, k < n, the dimension of the
linear space CHW (x, y) is k.

Proof. From expansion (1.3) we know that every element in the linear
space CH® (x, y) is a linear combination of the ¢ “i(y)e'(x), i=0,1, ..., k.
Therefore the dimension of CH® (x, y) is less than or equal to k+ 1. Taking
into account the relation between the coefficients of e* (y) and ¢~ ! (y) e(x) given
by Lemma 2.1, we see that in fact the dimension of CH® (x, y) is at most k.

On the other hand, Lemma 2.2 giving k lincarly independent elements, we
conclude that the dimension of CH® (x, y) is exactly k. m

3. Posiﬁvity properties

Let s, (x) denote the Schur function in the variables x,, x,, ..., x,, correspon-
ding to the partition 4 of n. We have on the space of symmetric functions
a scalar product (see [M]) for which

3.1) e"(x), 5, (x)> = X*(17),

where X*(17) is the number of standard tableaux of shape 4, hence is a positive
integer; it is also the dimension of the irreducible representation of the
symmetric group corresponding to the partition 4 (see [J-K], [SH4]).

Since the elements of E*(x), i.e., the elements in CH® (x, y) independent of
variables y,, y,, ..., ¥, have the following form

(3.2) Y c(m-CH,(x, y) = C-e*(x),

n

where C is a constant, we can rewrite (3.1) as
(3.3) " (x) Y c(m CH, (x, y), 5, (x)) = C- e"(x), 5,(x)),
where s, (x) is any Schur function corresponding to a partition 4 of n. Thanks
to the positivity of the number X*(1"), we introduce
DerinimioN. For every element of EX(x)

W(x) = ¥ c(m): CH,(x, y) = C- é*(v),

"
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we say It is positive (or negative) if the constant C is positive (or negative
respectively).

To study the positivity of elements of E*(x), we prove first

LEMMA 3.1. For any positive integer k, 2 < k < n, we set

RSN ol
¢, (k)y=(—1) P (k—z)’

c,.(k)=(—1)""(n+1)f-1(":il._i), i=2,3,..., k

(3.4)

Then the sum
Ck = Cl (k)+c2(k)+ [SP +Ck(k)

Is positive.

Proof. We write

[3]
Cy = {Ck—Zj(k)+ck—Zj—l(k)}’
j=0
where [k/2] means the integer part of k/2 and where ¢, (k) = ¢ _, (k) = 0. Using
the equation

(n+1—(k-—2j—1)) ~ n+1—(k—2j~-1)_(n+l-(k—2j))

(S5

2j+1 2j+1 2j
we have

C—2jFtCu_2j1

_ (n+1)"*2f—1(”+'"zj_k_Zj))—(;1+1)"“zj-z(”+1—2;i—121—1))

B . _ntl—(k=2j—1)] (n+1-(k—2))
=(n+1)"272 {n+1 T } ( 2 )

It is clear that every term ¢, _,;(k)+¢,_,;_((k), j= 0,1, ..., [k/2], is positive.
The lemma is proved. m

Now, we obtain the positivity of some combination of the symmetric
polynomials corresponding to the hooked partitions of k.

THEOREM 3.2. For the k symmetric polynomials CH, (x, y) corresponding to
the hooked partitions of k, if we write

k

(3.5) W.(x)= X c;(k)-CH, (x, y),

i=1

where the coefficients c;(k), i = 1,2, ..., k, are given by (3.4), then (— 1)+ W, (x)
IS positive.

27 — Danach Center (. 26, cz. 2
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Proof. In the proof of Lemma 2.2, the solutions of system (2.6) are given by
formula (2.7). If we set b, = (n+1)*"! = ¢, (k), then b, =c,(k), i=1,2, ..., k,
that is, the c;(k) given by (3.4) are also solutions of system (2.6). According to

the proof of Lemma 2.2, W(x) is independent of the variables y,, y,..... »
Therefore we have

m*

k k

W) = T (k) CH, (x, ») = (=1} ¥ (k)& (x) = (= - Cp - e (x).

i=1 i=1

The theorem follows from Lemma 3.1. m
ExampLE 3.1. For k =2, we have ¢, =(n+1), ¢, = —n/2 and

n+2_
2

W,(x) = (n+1)-CH, (x, y)—g-CH’;(x, y) = e (x).

ExaMpLE 3.2. For k =3, we have

c3=m+Hl% cy=—-n+Dn-1), c;==(n-1

Wl s

and

W;(x) = (n+1)*- CH; (x, y)—(n*— 1)- CH, (x, y) CH, (x, y)+g(n— 1)CHi (x, y)

= —%(n+2)(n+3)-e3(x).

ExampLE 3.3. For k =4, we have

B A e I )

and

W, (x) = (n+1)*-CH,(x, y)—(n+1)*(n—2)- CH, (x, y) CH, (x, y)

n—1

+(n+1)( ) )-CHz(x,y)CH%(x, y)—g'(”gl)‘cm(x,y)

1
=51 +2)3n* +13n+16)- ¢* (x).

ExampLE 3.4. For k =5, we have

G =D, o=~ 1P (3, c3=(n+1)2(”‘2),

2
c, = —(n+1)(n;]), c, =g_(n;1)’
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and
W,(x) =(n+1%*-CH;(x, y)—(n+1)*(n—-3)-CH,(x, y)CH, (x, y)

n—2

5 )‘CH:;(x, y)CH}(x, y)

+(n+l)2(

—(n+1)("3

)’CHz(xs y)CH (x, y)+§-(";1)-CH?(x, y)

_ _%(n+2)(n+3)(11n2+39n+40)'e5(x).

Notice that when k > 4, there are partitions n = (%, n,, ..., n;) which are
without parts equal to one, i€, n; = n, > ... > n; > 2. For example partition
(2,2) of 4 is such a partition. For this kind of partitions we have

CoRroLLARY 3.3. For any partition (n, m,, ..., n;) of k without parts equal to
one, the symmetric polynomial

(=W, (x) = (=1} W, () Wy, (0)... W, (x) = C
IS positive.

ExaMmpLE 3.5. For partition (2,2) of 4, we have

2 2
Wi (x) = {(n+1)-CHz(x, y-3 CHi(x, y)} - (”2) e ()

and it is positive.

4. Relations in CH® (x, y)

For any positive integer k, the dimension of the linear space CH® (x, y) is k. If
the number of partitions of k is greater than the dimension of CH® (x, y), then
any k+ 1 symmetric polynomials CH_(x, y) must satisfy at least one relation.

Recall that the number of partitions of k i1s greater than k when k > 4.

Therefore, there exist some relations between the symmetric polynomials
CH,(x, y) when k = 4.

THEOREM 4.1. When k = 4, for any partition (n,, n,, ..., ;) of k which is
without parts equal to one, the symmetric polynomials W, (x), W,,(x), .
vy W, (x) and the k symmetric polynomials corresponding to hooked partitions
of k satisfy the following relation

41 G W, (0 W, (0 ...c W, (0—C,, Cpy...C, - Wi(x) = 0.

We call non-hooked partition a partition of k which is not a hooked

-partition, and write it n=(m,,7n,,...,7; 1,..., 1) (i ones), i=0, j=2

2R, Z...2n;22, n+n,+ ... +7; = k—i. When i = 0, the non-hooked
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partition 1s a partition without parts equal to one. When i> 0, then
(my, ®y, ..., M) 18 @ partition of k—i without parts equal to one, we have

THEOREM 4.2. For any non-hooked partition of k, n = (n,, n,, ..., n;, 19,
the symmetric polynomial CH_(x,y) and the k—i symmetric polynomials
corresponding to the hooked partitions y;, i =1, 2, ..., k—i, satisfy the relation

(42) Cnl.an.""an.m—f(x).CHil(x7 J’)
—Cy_i W, (x)- W, (x)-...- W, (x})- CH} (x, y) = 0.

ExampLE 4.1. For k = 4, the non-hooked partition (2, 2) is without parts
equal to one, and the hooked partitions are (4), (3, 1), (2, 1, 1), (1, 1, 1, 1). From
Examples 3.3 and 3.5 we have

W,(x) =3(n+2)(3n*+13n+16)- e*(x),

2
W2 (x) = (%—2-) (%),

and

therefore we get

4.3) 2(n+2)- W, (x)—(3n*+13n+16)- W (x) = 0.

By the definition of W,(x) and W, (x), equation (4.3) becomes

44) (3n*+13n+16)CHZ(x, y)+2(n+ 1)(n+2)CH,(x, y)
—2(n*—4)CH, (x, y)CH, (x, y)+4(n+1)* CH, (x, y) CHi (x, y)
—n(n+1)CH}(x. v) = 0.

ExampLE 4.2. For partition (2, 2, 1) of 5, we have
4.5) {2(n+2): W, (x)—(3n*+13n+16)- Wi (x)} -CH, (x, y) = 0.

ExamrLE 4.3. For partition (3, 2) of 5, from Examples 3.1, 3.2 and 3.4 we
have

(4.6) 5(n+2)- W, (x)—(11n* + 390+ 40)- W, (x) W, (x) = 0.

By definition, (4.6) leads to

(47) (11> +39n+40)(n+1)- CH, (x, y) CH, (x, y)
—(11n?4+39n+40)(n—1)-CH3(x, y)CH, (x, y)
~5(n+2)(n+1)>-CH,(x, y)
+5mn+1)(n+2)(n—3)-CH,(x, yCH, (x, y)
—2(@n3+6n2+5n+15)-CH, (x, y)CHi (x, y)
+10(n—1)(n+1)*-CH, (x, y)CH] (x, y)—2n(n* —1)-CHj (x, y) = 0.
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5. The Chern characters of a hypersurface with singularities

Early in 1965, Wu Wen-tsiin [W1], [W2] introduced the notion of Chern
characteristic classes for algebraic varieties with arbitrary singularities. Wu
used algebraic equivalence, and not only birational equivalence, which makes
the classes concretely computable. Recently, Wu proved some inequalities for
the Chern classes of 2 or 3-dimensional algebraic hypersurface with sin-
gularities in [W3]. Following the idea given in [W3] the present author
obtained in [SH1], [SH2], [SH3] a series of inequalities for the Chern classes
of n-dimensional algebraic hypersurface with singularities, and discovered some
equalities for the Chern classes of an algebraic hypersurface with singularities
when its dimension n > 4. These inequalities and equalities were obtained by
using combinatorial method and solving some systems of equations.

In this section we use the Chern characteristic classes of a hypersurface
with singularities defined by Wu (see [W1], [W2], [W3]).

We employ the notation used in [W3]. Let V, be a hypersurface
with singularities in an (n+ 1)-dimensional complex projective space. We
denote the group of r-dimensional algebraic equivalence classes of V, by
ALG,(V,). According to [W3], we denote the Ehresmann classes of the
hypersurface V, corresponding to the Ehresmann symbols [1{(0, 1, ..., n)] and
[0](0, 1,...,n—1),n+1] by p(V,) and q(V,) respectively. The multiplication
P (V)eALG, _,_ ;(V,) of the Ehresmann classes is well-defined in the
intersection ring of V¥,. Then the n Chern classes CH,(¥,} belonging to
ALG,_;(V,) of the hypersurface V, are defined as

(51) CH,(V,) = Z(—1)’(n+]_J)(pi_jqj)(V,,), i=1,2,...,n.

For a partition n = (%, 75, ..., n;) of a positive integer k, the Chern class
of the hypersurface V, corresponding to the partition # is defined as

(5.2) CH,(V,) = CH,,(V,)-CH,,(V,)-...-CH, (V).

Now the connection between the Chern classes of ¥, and the symmetric
polynomials CH;{(x, y) defined by formula (1.1) is very clear. Moreover, the
multiplication of Ehresmann classes p(V,) and q(V,) in the intersection ring of
V, coincides with the multiplication of the symmetric polynomials e(y) and
e(x). The properties of symmetric polynomials that we obtained in the
preceding sections can now be translated in terms of Chern classes of
hypersurfaces with singularities.

Furthermore, according to [W3], for a partition 7 of k, the product

(5.3) CH_(V,)-q" *(V,)e ALG, (V)

1s an integer, and is a projective character in the sense of Severi and is called the
Chern character of ¥V, corresponding to the partition 7. Moreover, the
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Chern character defined by Wu is just the usual Chern number when the
hypersurface V, is smooth.

On the other hand, one of the fundamental facts in intersection theory is
that for a hypersurface V, in (n+ 1)-dimensional complex projective space the
intersection number ¢"(V,) is necessarily nonnegative (this is similar to the
positivity of the number X*(17).

Therefore, we have the following conclusions for Chern classes or Chern
characters of hypersurfaces with singulanties.

THEOREM 5.1. For any positive integer k, k < n, the k Chern characters
corresponding to hooked partitions of k

CH, (V)-¢" *(V,), i=1,2,...,k,

satisfy the inequality
k

(5.4) (=1F X itk CH, (V) q""*(V,) 2 0,
where the c,(k) are

_ -1 fn—l
c1(k)—( 1) % (k_z)a

(5.5)

¢;(k) =(—1)""'(n+1)“1(n:1._'), i=2,3,... k.
—1

ExampLE 5.1. For k =2, we have
{(n+1)-CH2(V..)—§-CH1.1<V,,)}-q“(V,.)>o,

and when n = 2, it becomes
3-CH, (V,)—CH, , (V,) > 0.
ExampLE 5.2. For k =3, we have

—{(n+ 1)*-CH3 (V,)—(n+1)(n—1)- CH, , (V,.)+g(n— 1)-CH, (V,.)}

xq" (V) =0,
and when n = 3, it becomes

—8-CH,(V,)+4-CH, ,(V,)-CH, , ,(V,) = 0.

ExamMpLE 5.3. For k =4, we have

{(n+1)3-CH4(V")—(n+I)Z(n—z)-CHa.l(Vn)+(n+1)(”;1)-CH2.1.1(V,.)

—1
_;(n 2 )'CH1.1.1.1 (Vn)}'qnﬂt(vn) = 0.
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ExampLE 5.4. For k =5, we have

) ) CH3.1.1 v,

—{(n+ 1 CHg(V,)—(n+1)*(n—3)-CH, , (V,)+(n+1)* (n
—(n+ 1)("; 1)-CH2_,‘H (V,,)%(";1)-(}11'1_,_1,i (V,,)}-q"-5(v,,) >0.

THEOREM 5.2. For any partition n = (r,, n,, ..., n;) of k without parts equal
to one, if we write

4

(3.6) W (V) = 3 c;(r)CH,, (V).

i=1
where the c,(r) are given by (5.5), then the following inequality is valid:
(5.7 (=1 W, (V) W, (V..o W, (V.)-"*(V,) > 0.

ExampLE 5.5. For partition (2, 2) of 4, we have
2
{(n+1)-CH2(V")—§-CH1.1(K.)} 4V 0.
ExampLE 5.6. For partition (3, 2) of 5, we have

—{(n+ 1)>-CH, (V,)—(n*—1)-CH, , (Vn)+g(n— 1)-CH, , (V,,)}

x {(”+1)'CH2(Vn)—g'CH1.1 (Vn)}'qnbs(yn) 2 0.

THEOREM 5.3. Let CH® (V) be the linear space spanned by
{CH,(V,)|r partition of k}.
Then the dimension of CH® (V) is k.

COROLLARY 5.4. When 4 <k <n, any system of k+1 Chern classes,
corresponding to partitions of k, of a hypersurface V, must satisfy at least one
relation.

ExaMpLE 5.7. For k =4, we have
(3n%+13n+16)-CH, ,(V,)+2(n+ 1)(n+2) CH,(V,)
—2(n*—4)-CH, ,(V,)
+4(n+1)*-CH,, ,(V)—n(n+1)-CH, , , ,(V,) =0.
More examples are provided in [SH2].
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