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The geometric invariant theory of reductive groups has been studied inten-
sively for the past twenty years. In this paper, we shall extend central portions
of that theory to certain nonreductive groups. The situation we shall study may
be described as follows.

Let k be an algebraically closed field, let G be a connected semisimple
algebraic group over k, and let H be a subgroup of G. Let X be an affine variety
on which G operates regularly. Let k[ X]¥ be the algebra of functions in k[ X]
which are fixed by H. An orbit Hx in X 1s said to be H-separated if
Hx ={yeX: f(y) =f(x) for all fek[X]"}.

If H == G, the separated orbits may be described using a one-parameter
subgroup criterion, originally due to Hilbert and developed extensively by
Mumford. Separated orbits give rise to good quotient structures for both affine
and projective varieties.

The class of subgroups of G to be studied here consists of the “codimension
2 condition” subgroups (§ 2). This class includes the maximal unipotent
subgroups of G and, more generally, unipotent radicals of parabolic subgroups.
Given such a subgroups H, there is an affine variety Z on which G operates
regularly and a point z € Z such that (i) the stabilizer of z in G is H, (i1) the orbit
Gz is open and dense in Z, and (iii) dim(Z—-Gz) < dimZ —2.

The key idea in this paper is the relationship between the following
conditions on a point x in X: (Cl) the orbit Hx is H-separated on X; (C2) the
orbit G (x, z) i1s G-separated on X x Z. If either both conditions hold at x or
neither condition holds at x, we shall write (Cl) ~ (C2) at x. In general, if (C2) is
true at x, then (Cl1) also holds at x; however, if (C1) is true at x, then (C2) may
or may not hold at x. Nevertheless, there are many instances where (C1) ~ (C2)
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at x, for example when x is any point whose stabilizer in G is finite
(Theorem 2, § 3) or when x is any point in a finite-dimensional vector
space X having sufficiently large dimension (Theorem 2, § 5). If (C1) ~ (C2)
at x, then we may give a one-parameter subgroup criterion for the orbit
Hx to be H-separated on X. Furthermore, when (Cl) ~ (C2) at all x in X,
we obtain the desired theorems concerning quotient varieties (§ 4).

‘The one-parameter subgroup criterion can be simplified considerably if
H is normalized by a maximal torus in G (§ 6). We conclude the paper
with several examples chosen to illustrate our main theorems.

Our notation and terminology generally follows that in [9]. Some
assumptions used throughout the paper are explained in the note con-
cluding § 2. The author would like to thank J. Dixmier for his help in
improving this paper’s exposition and also for the proof of Lemma 1, § 5.

§ 1. Reductive groups

We begin with some terminology and notation which will be used through-
out this paper. Let k be an algebraically closed field. Let Y be an
algebraic variety over k and let k[Y] be the algebra of regular functions on
Y. Let L be an algebraic group over k which operates regularly on Y via
a mapping LxY—>Y denoted by (g, y)—>gy. Let k[Y]'={fek[Y]:
fgy)=f(y) for all geL and yeY}. Let Ly ={gy: geL} be the orbit of
y and L, = {geG: gy = y} denote the stabilizer of y.

The orbit Ly of a point yeY is called separated if Ly={y'eY:
Ff) =S() for all fek[Y]*}. We note that a separated orbit is always
closed.

Now, we shall state some important facts in the case L = G = connec-
ted, reductive algebraic group and Y is an irreducible affine variety.

(RED1) The algebra k[Y]¢ is finitely generated over k [12; Theorem
34, p. 49].

(RED2) Let W, and W, be disjoint, closed, G-stable subsets of Y. There
is an fek[Y]® such that f(w,)=1 for all w,eW, and f(w,) =0 for all
w,eW, [12; Lemma 3.3, p. 49].

(RED3) Let yeY. The orbit Gy i1s G-separated on Y if and only if
it is closed in Y and dim(Gy) = dim(Gy’) for all y'e Y [12; Proposition 3.8,
p. 67].

(RED4) Let yeY Let S be a closed, G-stable subset of Y which
meets the closure of the orbit Gy. There is a one-parameter subgroup y of
G such that limit,_,y(a)y exists and is contained in S {10; Theorem 1.4,
p. 302]. ‘

(RED3J) Let ye Y. The orbit Gy is affine if and only if the stabilizer G,
is reductive. (This is a small extension of the main result in [15])



CONSTRUCTIVE GEOMETRIC INVARIANT THEORY 271

§ 2. The codimension 2 condition

Let G be a connected semisimple algebraic group over the algebraically closed
field k. Let k[G] denote the algebra of regular functions on G. The group
G operates on itself via right and left multiplication. These actions give rise to
actions on k[G], namely

(e@f)g)=Slg,9) and (ilg)f)(g,) =Sflg ‘g,

for all g, g,€G and fek[G].

For H a subgroup of G, we put H' = k[G]" = { fek[G]: o(h) /= ffor all
heH}. For R a subset of k[G], we put R' = {geG: g(g9)r =r for all reR}.
Then H' i1s a k-subalgebra of k[G]} and R’ is an algebraic subgroup of G.

A subgroup H of G is said to satisfy the codimension 2 condition on G/H if
there is a rational representation of G on a finite-dimensional vector space
V and a veV so that H = G, and, if Z is the clossure of the orbit Gv, then
dim(Z—-Gv) < dim Z —2.

Applying standard normalization arguments (e.g., [1; Theorem, p. 78])
to the normalization of Z in k(G/H), we see that V and v may be chosen
so that Z is normal and Gv is isomorphic to G/H. In this case, we shall call
Z the affine model for k[G]. (The equality k[Z] = k[G]¥ holds since
dim(Z—-Gv) < dimZ-2)

THEOREM [8; (1.2)]. Let G be a connected semisimple algebraic group over
k and let X be an affine variety on which G acts regularly. Let H be a subgroup of
G which satisfies the codimension 2 condition on G/H. Let Z be the affine model
for k[G]H and let z be any point in Z with G, = H. Then k[ X" is isomorphic to
k[X x Z]° via the mapping 1*: k[X xZ]% > k[X]" defined by (1* F)(x)
= F(x, z).

As a consequence of the isomorphism above and (RED1), it may be shown
that k[ X]¥ is finitely generated. Lists of subgroups H satisfying the codimen-
sion 2 condition may be found in [7], [13], and [17]. For example, unipotent
radicals of parabolic subgroups of G satisfy the codimension 2 condition.

In the rest of this section, we will use the notation given in the Theorem,
above. If g, g, are in G and fis in k[G], then A(g)e(g,)f=0(g,)A(9)f
Therefore, if fe H' and ge G, the function A(g)fis in H'. It follows that G acts
on H' via A. Next, let N,(H) be the normalizer of H in G. If ne N;(H) and
feH', then g(n)fe H'. Hence, N;(H) acts on H' via g.

The action of G on H' via A gives rise to an action of G on Z, the affine
model of k[G1¥. We shall denote this by Gx Z — Z, (g, z') — gz'. The action of
N, (H) on H' via g gives rise to an action of N;(H) on Z which we denote by

NyH)YxZ—>2Z, (n,z)—n-7.
) Now, let m: G — Z be defined by n(g) = gz. Let n*: k[Z] — k[G]" be the
associated algebra homomorphism. Then n-gz=gn 'z for all geg,
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ne Ng(H). Indeed, let fek{Z]; then f(gn~'z) = (x*f)(gn""). Furthermore,
f(n-gz) = a(n™ ") (=* ) (g) = (n* f)(gn ).

Let y be a one-parameter subgroup of G so that limit,_ 7 (a) z exists. Let 2/
be any other point in Z whose stabilizer in G is H. Then z' = nz for some
ne Ng(H). Therefore,

v@z =y@nz=n""y(a)z

so limit, ,,y(a)z’ also exists. This allows us to define I'(G/H) to be the
collection of all nontrivial one-parameter subgroups y in G such that
limit,_,,y(a)z’ exists where 2z’ is any point in Z whose stabilizer in G is H.

Notation. We shall use the notation and assumptions given in the
Theorem, above, throughout this paper. Furthermore, I"(G/H) will denote the
set described above. If T is any torus in G, we shall denote by I' (G/H; T) the"
set of all one-parameter subgroups y in T such that ye I'(G/H).

§ 3. Separated orbits

In this section, we undertake the systematic study of the relationship between
the following two conditions on a point x in X: (Cl) the orbit Hx is
H-separated on X; (C2) the orbit G(x, z) i1s G-separated on X x Z. If either
both conditions hold at x or neither condition holds at x, we shall write
(C1) ~ (C2) at x. We shall see that condition (C2) always implies condition (C1)
but that (C1) does not imply (C2), in general. The basic tools to be used are
(RED4), § 1, and the Theorem, § 2. In particular, we shall use the isomorphism
t*: k[ X x Z]% - k[ X]*¥ again and again. Furthermore, we should observe that
the proof of the Theorem, § 2, implies that k[ X717 = k[ X x Gz]° = k[X x Z]°.
Finally, we note that (x/, z)e G(x, z) if and only if x'e Hx (since H = G,).

LEmMMA 1. Let xeX.

(a) The orbit Hx is H-separated on X if and only if the orbit G(x, z} is
G-separated on X x Gz.

(b) If the orbit G(x, z) is G-separated on X x Z, then the orbit Hx is
H-separated on X and H, is a reductive algebraic group.

Proof. Suppose that G(x, z) is G-separated on X x Gz. Let xX'e X, x' ¢ Hx.
Then (x, z)¢ G(x, z). By assumption, there is an Fek[X x Gz]% such that
F(x', z) # F(x, z). Then

(1*F)(x')=F(x, z) # F(x, z} = (i* F)(x).

This proves that the orbit Hx is H-separated on X.
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Next, suppose that the orbit Hx is H-separated on X. Let (x', gz)e X x Gz.
(x’, 9z)¢ G (x, z). Then (g~ x, z2)¢ G (x, z) and, so, g~ ! x'¢ Hx. By assumption,
there is an fe k [X]" so that f(g~' x') # f(x). Let Fek[X x Gz]° be chosen so
that 1*F = f. Then

F(x',92)=F(g™'x,2)=f(g7"' x) #f(x) = F(x, 2).

This completes the proof of (a).

If the orbit G(x, z) is G-separated on X x Z, then (by the definitions) it is
G-separated on X x Gz. Therefore, the orbit Hx is H-separated on X by (a).
Furthermore, the orbit G (x, z) is closed in X x Z (since it is G-separated) and,
by (REDS), we may conclude that the stabilizer in G of (x, z) is reductive. But
this stabilizer is G, NG, =G, nH =H,.

ExaMPLE. According to Lemma 1(b), condition (C2) always implies
condition (C1). In this example, we shall use Lemma 1(b) to see that (C1) need
not imply (C2).

Let us identify k* with 3 x 1 column matrices. Let G = SL, (k) act on k* via
left multiplication. Let U = {(a;)eG: a;;=0 for i>j and q;=1 for
i=1, 2, 3}). Then U is a maximal unipotent subgroup of G, dim U = 3, and the
codimension 2 condition is true for G/U.

The orbits of U on k> are closed so U cannot have an orbit on &* of
dimension 3. For if dim Uv = 3, then Uvr = k* and 0e Uv. However, there are
points vek? such that dimUv = 2, e.g., v = (0, 0, 1). It follows (by standard
arguments, €.g. [12; Lemma 3.7(c), p. 66]) that there is a nonempty open subset
of k* consisting of points v with dim Uy = 2.

There is a nonempty open subset of V consisting of points v so that Uv is
separated [5; 2.4.2, p. 338]. Hence, there are points » in V so that Uv is
U-separated on k* and dim Uv = 2. Since U, is a nontrivial unipotent group,
the orbit G(v, z) cannot be G-separated on Vx Z (by Lemma 1(b)). This
concludes the example.

Let A be any subset of k". We shall denote the Zariski-closure of A4
by cl(A).

LEMMA 2. Let xe X. Suppose that the orbit Hx is H-separated on X.

(a) The orbit G(x, z) is G-separated on X x Z if and only if it is closed in
XxZ.
(b) The closure of the orbit G{(x,z) in X xZ is a union:

G(x, z)ulc G(x, z) N (X x(Z—G2))].

Proof. We noted earlier (§ 1) that separated orbits are always closed. So,
let us assume that the orbit G(x, z) is closed in X xZ and show that it is
separated in X x Z. Let (x, z)e X xZ but (X', 2')¢G(x, z). If (x/, Z')e X x Gz,
then (by Lemma I(a)) there is an Fek[X xGz]% = k[X x Z]¢ such that

18 — Banach Center t. 26, c2. 2
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F(x', 2') # F (x, z). So, we may assume that (x', z')e X x(Z—Gz) = X,. The set
X, is G-stable, closed, and X, nG(x, z) =&. We apply (RED2) to find
Fek[X x Z]¢ such that F(x,z) =1, F(x,z) =0.

To prove (b), let us assume that (x’, gz)ecl G(x, z). Then the points (x', gz)
and (x, z) cannot be separated by any function in k[X x Z]% Since Hx is
H-separated on X by assumption, the orbit G(x, z) is G-separated on X x Gz
by Lemma 1(a). Hence, (x', gz)e G(x, 2).

THEOREM 1. Let x€ X be a point such that the orbit Hx is H-separated on
X but the orbit G(x, z) is not G-separated on X x Z.

(@) There is a one-parameter subgroup ye I'(G/H) such that limit,_,y(a) x
exists.

(b) Let yeI'(G/H) be any one-parameter subgroup such that limit__ ,y(a)x
exists. Let x' = limit,_,,y(a)x. Let x"" be any point in X so that limit,_, 7y (a) x"
= x'. Then x"eHx.

Proof. According to Lemina 2(a), the orbit G(x, z) is not closed in X x Z.
Then statement (a) follows from (RED4). To prove (b), let limit, .,y (a)(x, z)
=(x,z). Let F be any element in kK[XxZ]° and let f=1*Fek[X]".
Then,

f(x"y=F(x", z} = F(limit,_ o y(a) (x", 2))
= F(x', 2’y = F(limit,_ o y(a)(x, 2)) = F(x, z) = f(x).
and x cannot be separated by any fek[X]¥, we see that x"e Hx.

n

Since x

THEOREM 2. Let xe€ X satisfy dim(Gx)=dimG. Then the following
conditions- are equivalent.

(a) The orbit Hx is not H-separated on X.
(b) The orbit G(x, z) is not G-separated on X x Z.
(c) There is a yeI'(G/H) such that limit,_,y(a)x exists.

Proof. The implication (a) — (b) follows from Lemma 1(b). Now, suppose
that the orbit G(x, z) is not G-separated on X x Z. The stabilizer of (x, z) in
G is finite since G, is finite, by assumption. We apply (RED3) to sec that the
orbit G(x, z) cannot be closed in X x Z. Next, we apply (RED4) to obtain the
one-parameter subgroup y in (c).

Finally, suppose that statement (c) holds and that limit,. 7y (a)(x, z)
= (x', z'). Then, limit,_ ,y(a) (x', 2) is also equal to (x', z') so we cannot separate
(x, z) and (x’, z) by any element in k[X x Z]°. This means that we cannot
separate x and x’ by any element in k [X]”. But x’'¢ Hx. Indeed, if x' = hx for
some he H, then G,. = hG_h~'. But then each y(a) is in hG, h™ ', contradicting
the assumption that G, is finite.

THEOREM 3. Let H be a unipotent subgroup of G. Let x € X. Suppose that
(C1) ~ (C2) at x. Then the following conditions are equivalent.
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(a) The orbit Hx is not H-separated on X.
(b) There is a one-parameter subgroup ye I' (G/H) such that limit,_ ;7 (a)x
exists.

Proof. Suppose that statement (a) holds; by Lemma 1(b}, the orbit G(x, z)
is not G-separated on X x Z. If dim G (x, z) < dim G, then the stabilizer in G of
(x, z) is a nontrivial unipotent group (H,, in fact). Hence, G(x, z) cannot be
closed in X xZ by (REDS). If dimG(x, z) = dim G, then the orbit G(x, 2)
cannot be closed in X x Z by (RED3). Thus, in any case, the orbit G (x, z) is not
closed in X xZ and we obtain statement (b) from (RED4).

Next, assume that statement (b) holds and that limit,_,7y(a)(x, 2)
= (x, Z'). Then each y(a) is in the stabilizer in G of (x', z'). But the stabilizer in
G of each point in X x Gz is conjugate to a subgroup of H and, so, must be
unipotent. This shows that (x', z')¢ X x Gz. Hence, G(x, z) is not closed in
X xZ and cannot be G-separated in X x Z.

§ 4. Quotients

We begin by recalling some definitions and theorems in [5]. Let Y be an
algebraic variety over k and let L be an algebraic group over k which operates
regularly on Y. A geometric quotient of Y by L is a pair (W, ¢) where W is an
algebraic variety over k and ¢: Y — W is a morphism such that (i) ¢ is open,
constant on L-orbits, and defines a bijection of the set Y/L onto W; (i) if W’ is
an open subset of W, then the morphism of kK[W'] into k[¢ ! (W’)]* defined
by ¢ 1is bijective.

Next, suppose that Y is quasi-affine. Let Q,(Y, L) be the interior of the
union of all L-separated orbits on Y. Then the variety Q,(Y, L)/L exists, is
quasi-affine, and is open in the affine scheme Speck[Y]"* [5; (2.2.3)].

THEOREM 1. Let X be an affine variety on which G acts regularly. Suppose
that (C1) ~ (C2) at each point x in X. Let X (H) be the set of all H-separated
orbits in X. Then X (H) is open in X, the quotient X (H)/H exists, is quasi-affine
and open in Speck[X]".

Proof. Let W consist of all the G-separated orbits in X x Z. Then W is
open in X x Z [12; Proposition 3.8, p. 67]. Hence, X (H) is open in X since
X (H)x {z} = Wn (X x{z}). The rest of the theorem follows from the result
just cited.

Before considering projective varieties, several observations on Theorem
1 may be in order. First, if H is unipotent, then X (H) is open and dense in
X [5; (2.4.2)]. Second, whether H is unipotent or not, the algebra k[X]¥ is
finitely generated since H is always assumed to satisfy the codimension
2 condition (§ 2). A small modification of the proof for Theorem 1, along with
an application of Theorem 2, § 3, gives the following resuit.
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THEOREM 2. Let X be an affine variety on which G acts regularly. Let X' (H)
be the set of all points x in X so that (i) dim Gx = dim G and (ii) the orbit Hx is
H-separated on X. Then X'(H) is open in X, the quotient X'(H)/H exists, is
quasi-affine and open in Speck[X]Y.

Next, we consider projective varieties. We shall follow closely the ideas
and terminology in [12; pp. 73-77]. Let V be a finite-dimensional vector space
on which G operates linearly. Let P (V) be the corresponding projective space;
if veV and v # 0, then we shall denote its image in P(V) by [v]. Let X* be
a projective variety in P (V) which is stable with respect to the action of G, i.e.,
g[v]e X* for all ge G, [v] e X*. Let X be the affine variety in V lying over X*.
The algebra k[X] is a graded k-algebra. H f is any nonzero homogeneous
element in k[X], we put X¥ = {[v]le X*: f(v) # 0}. If degf = |, then (it is
known that) X% is affine and k[X}] = (k[X],);, the algebra of elements
having degree O in the graded k-algebra k[X],.

THEOREM 3. Suppose that (Cl) ~(C2) at each point xe X. Let X*(H)
consist of all those points [x] in X* such that the orbit Hx is H-separated on X.
Then X* (H) is open in X*, the quotient X* (H)/H exists and is quasi-projective.

Proof. Let X (H) be the set of all xe X such that the orbit Hx is
H-separated on X. Then X (H) is open in X by Theorem 1. Furthermore, if
cek* and xeX (H), then cxe X(H). For let yeX and suppose that
F (y) = F{(cx) for every homogeneous polynomial F in k[X1". If degF =4,
then F(y) = F(cx) = ¢? F(x) and F(c™'y) = F(x). Since xe X (H), c"'ye Hx
and ye H(cx). Hence, X*(H) is open in X*. We shall construct the quotient
variety X*(H)/H in several steps.

(1) Let R =k[X]?. The algebra R is finitely generated over k and
is a graded subalgebra of k[X]. Let X% denote the union of all those X%
where f is any nonzero homogeneous elements in R. There is a projective
variety Y and a morphism ¢: X} — Y such that the following conditions hold
[12; p. 76]:

(a) Y is covered by affine open sets Y, one for each homogeneous element
of R having degree > 1 and k[Y,] is isomorphic to (R)o;

(b) ¢~ (Y) = X} and ¢: X¥ > Y, is the morphism of affine varieties
corresponding to the inclusion of (R,), = (k[X]}), in (k[X],)-

Let f be a nonzero homogeneous element in k[X]¥, we put
X*(H), = X*(H)n X¥. We may assume that X*(H) is the union of all the
X*(H),. (For if xe X (H) and f(x) = 0 for all homogeneous fek[X]¥, then
x cannot be separated from 0, so, x = 0. But if 0 is H-separated, then H fixes
every point in X and the Theorem is immediate.) We postpone the proof of the
next step to the end of this section.

(2) Let f be a nonzero homogeneous polynomial in k[X]" and let
[x]e X*(H),. Then the orbit H [x] is H-separated in (the affine variety) X7.
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(3) The restriction of ¢ to X*(H),, namely, ¢: X*(H), » ¢ (X*{H) ) c Y,
is a quotient mapping by (2) and the remarks preceding Theorem 1. Hence,
¢ (X*(H)) is open in Y. The proof that ¢ now defines a quotient on X* (H) is
straightforward and we omit the details.

We now prove (2). We begin with-two lemmas, always keeping the
terminology introduced just before Theorem 3.

LEMMA 1. Let x, x’ be in X. Suppose that there is a positive integer d such
that f(x)* =f(x')* for all homogeneous polynomials f in k[X]. Then there is
a cek* such that x' = cx.

Proof. We may assume that x #0. We may also assume that the
characteristic of k does not divide d. (For if d =p™q with (p,q)=1 and
p = chark, then we may replace d by q.) Let u be any coordinate function on
V such that u(x)# 0. Then, there is a dth root of unity, ¢, such that
u(x") = cu(x). Let n be any other coordinate function on V such that n(x) # 0.
If aek, then ' -

(n(x)+an (X)) = (n(x)+an(x)).

Comparing coefficients of a, we see that p(x)! " 'n(x) = u(x')? "' 5(x'). We
multiply each side of this equality by u(x) and use the equation p(x)! = p(x)
to see that u(x)n(x) = u(x)n{x’). Hence, n(x’) = cn(x). Since n was chosen
arbitrarily, x’ = cx. ‘

Let S=k[XxZ]=k[X]®k[Z]. Let k[X], denote the set of all
polynomials in k[X] which are homogeneous of degree 4. We put
S, =k[X],®k[Z]. Then S is a graded k-algebra with S, = k[Z]. Further-
more, the action of G on S preserves degree and the mapping * gives an
isomorphism between (S,)¢ and (k[X],)".

In what follows, we let fe(k[X],)" and choose Fe(S,)¢ so that (*F = /.
We shall denote the localization of S at F by S;. Also, let (S;), be the algebra
consisting of all elements having degree 0 in the graded k-algebra Sp. We note
that G acts on (Sg),. Let W be the affine variety corresponding to (Sg),. Let

(Xx2Z)p={(X,2)eX xZ: F(x,Z) #0}.
Let n: (X x Z)p — W be the map corresponding to the inclusion of (Sg), In Sg.

Remark. Let x, x' be elements in X with f(x) =f(x") # 0. Suppose
that there is a g in G such that n(x', z) = gn(x, 2). Then g is in H and there is
a ¢ in k* such that ¢ =cgx. Indeed, if sek[Z], then sek[W] and
s(x’, z) = s(gx, gz). Hence, z = gz and g is in H. In general, if s is in k[X],,
then s?/F¢ is in k[W7. Therefore, s?(x') = s%(gx) and x’ = cgx by Lemma 1.

LEMMA 2. Let (x, z) be a point in (X x Z)p such that the orbit G(x, z) is
G-separated on X xZ. Then Gn(x, z) is G-separated in W.
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Proof. According to (RED3), it suffices to show that Grn(x, z) is closed and
of maximal dimension in W. Let y be a one-parameter subgroup in G so that
limit, .,y (a) = (x, z) exists. If s is any element in S,, then s?/F¢ is in k[W] and
limit, o (s%/F°)(y (@) 7 (x, z)) must exist. Since F is in S¢ we see that li-
mit, ., 5?(y(a) (x, z)) must exist and, so, limit,_,y(a)(x, z) exists in X x Z. But
G(x, z) is closed and, so, there is a g in G with limit,_,v(a)(x, 2) = g(x, 2).
Then limit,_ ,y (@) 7 (x, z) = gn(x, z). We may now apply (RED4) to conclude
that the orbit Gn(x, z) is closed.

To prove that Gn(x, z) has maximal dimension, we shall show that the
stabilizers in G of (x, z) and =n(x, z) have the same dimension. Let geG
satisfy gm(x, z) = m(x, z). According to the remark above, g is in H and
there is a ¢ in k* with x = cgx. But {cek*: there is an he H with hx = cx}
must be finite. For otherwise, (0, z) is in the closure of the (ciosed) orbit
G(x, 2).

Now we prove (2). Let [x"] be a point in X} which cannot be separated
from [x] by an polynomial in k[X%]”. We may assume that f(x) = f(x). If
n(x', z)e Gn(x, z), then [xJe H[x] by the remark above. Otherwise, by
Lemma 2, there is a G-invanant polynomial s/F¢ which separates n(x’, z) and
n(x, z). Then 1*s/f¢ separates [x] and [x'].

THEOREM 4. Let X% (H) consist of all those points [x] in X™* such that the
orbit Hx is H-separated on X and G, = {e}. Then X} (H) is open in X*, the
quotient X¥ (H)/H exists and is quasi-projective.

§ 5. Dimension arguments

Assumptions and notation

As always, G will denote a connected semisimple algebraic group over k. If
y is a non-trivial one-parameter subgroup of G, we define P(y) to be {geG:
limit,_,y(a)gy(a)~ ! exists in G}. Then, P(y) is a parabolic subgroup of G [11;
p. 55]. Let T =T(y) be any maximal torus in P(y) containing y. Let
B(y) = TU (y) be any Borel subgroup in P(y). Let (G, T) be the set of roots of
G relative to T. For each ae®(G, T), let U, denote the corresponding
one-dimensional unipotent subgroup of G and let ¢: G,— U, be the
corresponding isomorphism [9; Theorem, p. 161]. The group P (y) corresponds
to those roots ae @ (G, T) such that {«, y)> = 0; its unipotent radical corres-
ponds to the collection of all those roots a such that {a, y> > 0. Let W(G, T)
be the Weyl group of G relative to T. If se N;(T), we shall denote by w, the
element sTe W(G, T).

LeEMMA 1. Let y be a nonzero character of T such that (x,y) = 0 (resp.
{x, 7> < 0). There is an element w,e W(G, T) such that {w,yx.y)> <0 (resp.
wex, 2 >0)
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Proof. We may assume that G is simple. Let X (T) be the character group
of T and let V = X(T)® R. Since G is simple, W(G, T) acts irreducibly on
V [2; Corollaire, p. 146]. Let A, = {veV: (v,7) 20}, let A_ = {veV:
{v,y) <0}, and let A, = A, nA_. Suppose for instance, that yed,. Let
¥ =Y., wy, where the sum is over all we W(G, T). Since x’ is fixed by each w in
W(G, T), we have y' = 0. So, if wy 1s in A, for all we W(G, T), we sec that
wy € A, for all we W(G, T). Then, ) ,Rwy is a W(G, T)-invariant, nontrivial,
proper subspace of V. This contradicts our assumption that G is simple.

LemMa 2 [14; Lemma, p. 245]. Let V be any finite-dimensional vector space
on which G acts via a rational representation. Let x be a weight of T on V, let
veV, v +#0, satisfy t-v=y(t)v for all te T, and let a € ®(G, T) be a root such
that U, c G,. Then,

@ (x,x)=>0

(b) (x,2) =0 if and only if U_, = G,,.

LemMma 3. Let V be any finite-dimensional vector space on which G acts via
a rational representation. Suppose that {veV: G, contains an infinite normal
subgroup of G} = {0}. Let T be (any) maximal torus in G. Let P be any parabolic
subgroup of G which contains T and let P, be the unipotent radzcal of P.Ifvis
any vector in V with G, > TP,, then v = 0.

Proof. We may assume that G is simply connected and is a direct product
of simple algebraic groups, say, G = G, x ... xG,. Let P=RP, be a Levi
decomposition of P where R is a reductive group. Let U, be any maximal
unipotent subgroup of R which is normalized by T; let U =Ug,P,. Let

{oy, vy Oy ..., o, } be a simple root system in ¢ (G, T) corresponding to U; we
shall assume that {«,, ..., a,} is a simple root system in @ (R, T) correspon-
ding to Ug.

Let W be the subspace of V spanned by all vectors uv where ueU. If
dim W =1, then TU fixes v; hence, G fixes v (since G/TU is complete) and
v = 0 by assumption. So we may assume that dim W > 1. We note that each
uv = upv for some ugpe Uy since P, c G,. The vector space W is stable with
respect to TU and the weights of T on W have the form e;a, + ... +e, 0,
where each e¢; is a nonnegative integer [9; Proposition, p. 165]. There are
nonzero T weight vectors we W fixed by U. Let w, be such a vector and
suppose (to simplify the notation) that w, has T-weight w = ¢, a,+ ... +e,2,
where ¢; > 0. Since U fixes w,, we have (w, a) > 0 for all roots a of U by
Lemma 2a. If there is a simple root ff among {«, , ,, ..., @,} connected to one of
the «,, ..., a,, then (w, B) < 0. We may conclude that {fe ®(G, T): (w, f) = 0}
contains all the roots of a simple factor, say G,, of G. Then G, fixes w, (by
* Lemma 2b) which contradicts our assumption.

THEOREM 1. Let V be any finite-dimensional vector space on which G acts via
a rational representation. Suppose that {veV: G, contains an infinite normal
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subgroup of G} = {0}. Let y be a nontrivial one-parameter subgroup in G and let
V(y) = {veV: limit,_,y(a)v = 0}. Then

dim ¥ < dim V(y)[1+ Card W(G, T)].

Proof. Let x be a nonzero weight of Ton Vandlet V, = {ve Vit v = y{t)v
for all te T}. Since sV(x) = V(w,(x)) for all w,e W(G, T), we may apply Lemma
1 to conclude that there is a w.e W(G, T) such that sV (y) < V(y). It follows that

dim( 3 V(y) < Card W(G, T)-dim V(y).

xX*0

The proof of Theorem 1 now follows from
LEmMma 4. If Vy = {veV: t-v=v for all teT}, then dimV, < dim V(y).

Proof. Let a,, ..., a, be all the roots in the unipotent radical P (y), of P (y).
We recall that each {a;, y) > 0. Let u=1¢, (1)...¢, (1). Let veV,, v # 0. We
claim that (i) uv # v and (ii) uv —v e V(). To prove (i), we first note that G, > T.
Then G, P(y), is directly spanned by those U, it contains [9; Proposition, p.
170]. ¥f u is in G, P(y),, then so 1s each U, where a = a,, ..., a,. Then
P(y), © G, and, by Lemma 3, v = 0 which is a contradiction. To prove (ii), we
note that ur—v i1s a sum of weight vectors whose weights have the form
m,a,+ ... +m,a, where each m, is a nonnegative integer {9; Proposition, p.
165]. Since each (a,, y> >0, we see that uv—veV(y). This proves (ii).
Therefore, the linear transformation (u—1I) gives an isomorphism of ¥ into
V(y) and dim ¥V, < dim V(7).

THEOREM 2. Let V be any finite-dimensional vector space on which G acts via
a rational representation. Suppose that {veV: G, contains an infinite normal
subgroup of G} = {0}. Suppose that

dim V > dim H [Card W(G, T)+1].
Then (C1) ~ (C2) for all veV.

Proof. We need only show that condition (Cl) implies condition (C2)
(Lemma 1(b), § 3). Let ve V be a point such that the orbit Hv is H-separated on
V but the orbit G(v, z) is not G-separated on V' x Z. According to Theorem 1,
§ 3, there is a one-parameter subgroup y in I (G/H) such that v+ V(y) = Hw.

Hence, dim H > dim V(y). The desired contradiction is now obtained by
applying Theorem 1.

§ 6. Groups normalized by a maximal torus

Assumptions and notation

In this section, we shall always assume that H is a unipotent subgroup of
G. Let N;(H) be the normalizer of H in G. We shall assume throughout this
section that N;(H) is a parabolic subgroup of G. Let T be any maximal torus
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in N;(H). Let ¢(G, T) be the set of roots of G relative to T. For each root
ae®(G, T), let U, denote the corresponding one-dimensional unipotent
subgroup of G. The group H is connected and directly spanned by those U,
which are contained in H [9; Proposition, p. 170]. Let ®#(H, T) be the set of all
roots a € (G, T) such that U, c H. Since T normalizes H, the group T acts on
H' = k[G]¥ via right multiplication, ¢. If y is any character of T, we put
H,={feH: o(®)f=yx(t)f for all teT}. Let X(G/H; T) be the set of all
characters y of T such that H), # {0}. Finally, we recall that I'(G/H; T) consists
of all one-parameter subgroups y of T such that ye I (G/H).

LemMA 1. Let xe X (T). Then xe X(G/H; T) if and only if (x, o) = 0 for all
acPd(H, T).

Proof. If H, = {0}, then (x, o) >0 for all xe®(H, T) by-Lemma 2a,
§ 5. Now, suppose that (x, «) = 0 for all xe ®(H, T). Let X (T) be ordered so
that y is a dominant weight. Let V be the irreducible G-module with highest
weight y and let v be a highest weight vector in V. Let {v=v,,...,1,} be
a basis of V and let {g,, ..., u,} be the corresponding dual basis of V*. Since
(x, )= 0 for all aed(H, T), we have H < G,. We define fek[G] by
S(g) = u, (gv). Then (it is easy to check that) f# 0 and fe H’,. This completes
the proof.

LeEMMmA 2. Let y be a nontrivial one-parameter subgroup of T. Then
yel'(G/H; T) if and only if {y,v> =0 for all ye X(G/H; T).

Proof. We note that limit, ,y(a)z exists in Z if and only if li-
mit, o f(y (@) z) exists for all fe k[Z]. Let n: G — Z be defined by n(g) = gz. Let
n*: k[Z] - k[G]" be the corresponding isomorphism.

Suppose, first, that limit,_,,7(a)z exists. Let ye X (G/H; T)and let fe k[ Z]
be a nonzero function so that n* fe H,. For each geG, teT, we have

X (@) (* f)@) = e () (n* f)(g) = fgt2).

In particular, if t = y(a) we have

(+) a’f(gz) =g~ ' N)(v(a)2)

where d = {x, 7). Let g be chosen so that f(gz) # 0. By assumption, li-
mit,_, (9~ ' /)(y(a)z) exists. Hence, we use equation (+) to conclude that
61> 20

Now, suppose that (y, y> > 0 for all ye X(G/H; T). Let f be a nonzero
function in k[Z] such that n*fe H),. Then

fr@)z) = (/) (@) = (n* /) ey (@) = e (r (@) (n*f)(e) = ¢’ f(2)

where d = (x, y)>. Hence, limit,_,f(y{a)z) exists. It follows that
limit, o f(7(a)z) exists for every function f in k[Z].
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Note. The algebra H' is finitely generated over k. We may suppose that
H =k{f,....f,] where o(t)f; = x;(¢) f; for some character y; in X(T). It
follows that ye X(G/H; T) if and only if there are nonnegative integers
ey, ..., e, such that y =e,x,+... +e,x, Furthermore, {y, y)> = 0 for all
x€X(G/H; T) if and only if each {y;, y) = 0.

LemMAa 3. Let y be a one-parameter subgroup -of G. Let P(y) = {geG:
limit, 7 (a)gy(a)~ " exists in G}. Then P(y) is a parabolic stubgroup of G. Let
X be any affine variety on which G acts regularly. Let xe X and suppose that
limit,,,y(a)x exists. If pe P(y), then limit,_,y(a)px exists.

Proof. We observed in § 5 that P(y) is parabolic. Now,
limit, .oy (a) px = limit,_ (v (@) py (@)~ ') (y (@) x) = p' x’
where p’ = limit,_,y(a}py(a)~' is in P(y) and x' = limit__,,y(a)x is in X.

LeMMA 4. Let ne N, (H). Let z' be any point in Z whose stabilizer in G is H.
Let yeI'(G/H). Then limit,_,y(a@)nz' exists.

Proof. This was shown at the end of § 2.

LEMMA 5. Let X be any affine variety on which G acts regularly. Let xe X.
The following statements are equivalent.

(@) There is a yeI' (G/H) such that limit,_,y(a)x exists.
(b) There is a yeI'(G/H; T) and an ne N;(H) such that limit,_ ,y(a)nx
exists.

Proof. Suppose that (a) holds. The intersection of two parabolic subgroups
of G always contains a maximal torus in G [18]. Let T; be a maximal torus in
P(y) n N4 (H) and let pe P(y) be chosen so that y, = p~!yp = T,. Now y, is in
I'(G/H) since limit,_ 47, (a)z = p~ ! limit,_, y (a) pz exists by Lemma 3. Similar-
ly, limit,_ oy, (a) x exists. Let limit,_,7,(a)(x, z) = (x,, z,). Let ne N;(H) be
chosen so that y, = ny, n~! = T. Then, limit,_ 7, (@) (nx, nz) = (nx,, nz,). We
apply Lemma 4 to see that limit,_ 7, (a)(nx, z) exists. This proves (b).

If statement (b) holds, then limit,_,,y (a) (nx, nz) exists by Lemma 4. The
one-parameter subgroup y, = n~'yn has the desired properties.

We now restate Theorems 1, 2, 3 in § 3 in light of the lemmas above. First,
though, let xe X and let ne N;(H). The orbit Hx is H-separated on X if and
only if the orbit H(nx) is, since N;(H) sends k[X]" to itself.

THEOREM 1. Let H be unipotent. Let N (H) be a parabolic subgroup of
G and let T be a maximal torus in Ng(H). Let x be a point in X such that the
orbit Hx is H-separated on X but the orbit G(x, z) is not G-separated on X x Z.
There is a nontrivial one-parameter subgroup y in T and an ne N; (H) such that
(i) limit,_, oy (a) nx exists and (ii) {y, 7> = 0 for all ye X (G/H; T). Furthermore,
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let x' = limit,_,y(a)nx. If x” is any point in X such that limit,_,7(a)x” = x/,
then x" e Hnx.

THEOREM 2. Let H be unipotent. Let N (H) be a parabolic subgroup of
G and let T be a maximal torus in Ng(H). Let x be a point in X such that
dim (Gx) = dim G. Then the following statements are equivalent.

(@) The orbit Hx is not H-separated on X.
(b) There is a nontrivial one-parameter subgroup y in T and an ne Ng(H)
such that (i) limit,_,y(a)nx exists and (i) {x,y) 2 0 for all ye X(G/H; T).

THeEOREM 3. Let H be unipotent. Let N;(H) be a parabolic subgroup of
G and let T be a maximal torus in N;(H). Let x € X and suppose that (C1) ~ (C2)
at x. Then, the following statements are equivalent.

(a) The orbit Hx is not H-separated on X.

(b) There is a nontrivial one-parameter subgroup v in T and an ne N;(H)
such that (1) limit,_ ,y(a)nx exists and (1)) {x, y> =0 for all x in X(G/H; T).

THEOREM 4, Let B = TU be a Borel subgroup of G. Let {w,, ..., »,} be
a corresponding system of fundamental dominant weights of T. Let V be
a finite-dimensional vector space on which G operates via a rational represen-
tation. Suppose that H = U and that (C1) ~ (C2) at a point v in V. Then the
Sfollowing conditions are equivalent.

(a) The orbit Uv is not U-separated on V.

(b) There is a nontrivial one-parameter subgroups y in T and an element u in
U such that (1) limit,_ , y(a) uv exists and (1) {@,, 7> 20 foreachi=1,...,r.

Proof. This follows immediately from Theorem 3.

THEOREM 5. Let B = TU be a Borel subgroup of G. Let {w,, ..., ®,} be
a corresponding system of fundamental dominant weights of T. Let V be
a finite-dimensional vector space on which G operates via a rational represen-
tation. Let v be a point in V such that the orbit Uv is separated on V but the orbit
G(u, v) is not G-separated on VxZ. There is a nontrivial one-parameter
subgroup y in T and an element ue U such that (i) y (@) uv = uv for all aek* and
() <w;,y> =20 for each i=1,...,r. Furthermore, Uv > uv+V(y) where
V(y) = {veV: limit,_,y(a)v = 0}.

Proof. According to Theorem 1, there is a nontrivial one-parameter
subgroup y in T and an element u, in U such that (1) imit,_, y(a) u, v exists, say
is v, and (1) {y, w;) = O0foreachi =1, ..., r. Furthermore, U (x, v) o v+ V(y).
In particular, v e Uv. If we choose ue U so that uv = ¢/, we obtain the theorem.

§ 7. Binary forms

Throughout this section, we shall assume that char k = 0. Let us fix a positive
integer d and let V, be the vector space consisting of all binary forms of degree
d in the variables X, and X,. The vector space V, has a basis () X X} for
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i=0,1,...,d Let G=S8SL,(k), let H=U = {(a;)eSL,(k): a,, =0, a,, =
a,, = 1}, and let T = {(a;)eSL, (k): a,, = a,, = 0}. We shall denote elements
t=(ay) in T by t =diag(a,,, a,,).

The natural representation (by left multiplication) of G on the vector space
k?, consisting of all 2x 1 column matrices, gives rise to an action of G on
k[X,, X,]. In particular, we have

()Xo =0, Xo—a;, X, and (q) X, = —a,, Xo+a,, X,.

This, in turn, gives a representation of G on V.

The invariants of G acting on V,x k* were called “covariants” in the
nineteenth century. M. Roberts (1861) proved that k[V,]Y = k [V, x k2] which
is the Theorem of § 2 in this setting. Complete lists of covariants are known for
1 £d <8 (Forl<d<x<6,a good exposition can be found in the text by Grace
and Young. The cases d = 7, 8 were studied by von Gall. A modern account of
1 €£d <4 may be found in [16].)

THEOREM 1. Let feV,. Then (C1) ~ (C2) at f.

Proof. Let f=a,Xi+a, (DX X, +...+a;(9)X%. If d =1, the only
U-invariants are polynomials in a,. If d =2, the only U-invariants are
polynomials in a, and 4a, a, —a. In both cases, the theorem follows at once. If
d =2 3, we may apply Theorem 2, § 5.

THEOREM 2. Let d > | and let fe V. The orbit Uf'is U-separated on V, if and
only if the multiplicity of (1,0) as a root of fis < d/2.

Proof. This follows from Theorem 4, § 6, since y(a) = diag(a, a™?).

The result above was discovered recently by A. Cerezo [4] via a direct
computation of invariants. It may be interesting to compare this theorem with
the known facts on G, namely: the orbit Gf is G-separated in V, if and only if
the multiplicity of every root of [ is < d/2 [11].

§ 8. Plane cubics: H = maximal unipotent subgroup

Let V be the vector space consisting of all polynomials f having the form
S=03X1+a, X1 X, +a, X X3+a0, X3+0a,0 X0 XT+a, X0 X, X,

The representation by left multiplication of G = SL, (k) on the vector
space k>, consisting of all 3x 1 column matrices, gives rise to an action on
k[X,, X,, X,]. This, in turn, gives a representation of G on V.

Let H=U = {(g;)eG:a;=0fori>jand a;=1fori=1,2,3} Then
U is a maximal unipotent subgroup of G. Let T = {(a;)€G: a;; = 0 for i # j}.
Then T is a maximal torus in G which normalizes U. We shall denote elements
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t =(ay) in T by t =diag(a,,, a,,, a5;). We note that t- X, =ay' X,, 1" X,
=a3;7 X,, and t' X, = a3’ X,.

Let y be a one-parameter subgroup of T with y(a) = diag(a’, a°, a™" ™).
Then (by Lemmas 1 and 2 in § 6) we have ye I'(G/U; T)if and only if r 2 0 and
r+s = 0. We partition these one-parameter subgroups into six classes and, in
each case, give a geometric interpretation for those f in V such that
limit,_,,y(a)f exists.

(1) r>0,s>0, r=s: himit,,y(a)f exists if and only if X, divides f.

(2) r>0, s>0, r#s: imit,,,y(a)f exists, then X, divides f.

(3) r>0, s=0: limt,,y(a)f exists if and only if (1, 0, 0) 15 a singular
point of f and X, is a tangent at (1, 0, 0).

(4) r=0, s> 0: limit,_,v(a)f exists if and only if (0, 1, 0) is a singular
point of f and X, is a tangent at (0, 1, 0).

5) r>0,5<0, r+2s =0: limit,_,y(a) f exists if and only if (1, 0, 0) is
a singular point of f.

6) r>0,5<0, r+s=0, r+2s # 0: limit,_,,y(a)f exists, then (1, 0, 0) is
a singular point of f.

THEOREM 1. Let feV. Then (C1) ~ (C2) at f.

Proof. Suppose there is an fe V such that (Cl) holds at f but not (C2).
According to Theorem 5, § 6, there is a one-parameter subgroup y in one of the
six classes above and a ue U such that (i) y(a)uf = uf for all aek* and (i)
Uuf) o uf+ V(y). If y 1s of types (2)-6), then (a direct computation shows that)
dimV(y) 24 >3 =dimU so (i) cannot hold.

Let us assume 7y is of type (1). Then uf must be a linear combination of the
monomials X3X,, X,X,X,, and X}X,. Furthermore, V(y) has basis
consisting of X, X3, X3, and X,X3. A direct computation (which we omit)
shows that (i) cannot hold.

THEOREM 2. Let f be a plane cubic. The orbit Uf is not U-separated if and
only if one of the following conditions holds:

(@) X, divides f;

(b) (1, 0, 0) is a singular point of f;

(c) there is an aek such that (a, 1, 0) is a singular point of f and X, is
tangent at (a, 1, 0).

Proof. According to Theorem 1, conditions (C1) and (C2) are equivalent at
each fe V. Hence, we may apply Theorem 4, § 6. The proof then follows from
the geometric descriptions given above. '

§ 9. Plane cubics: H = unipotent radical

We follow the notation introduced in § 8. Let H = {(g;)eU: a,, = 0}.
Then H is the unipotent radical of a parabolic subgroup of G and has roots
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®,, &, +a, (in the usual notation). In light of Lemma 1, § 6, we wish to
describe all the characters y in X (T) such that (x, «,) = O and (x, 2, +2,) = 0.
It is easy to check that this set is precisely the set of all linear combi-
nations aw, +bw, +c(w,—w,) where a, b, ¢ are nonnegative integers and
w, (diag(a,,, a,,, a33)) = a,,, o, (diag(a,,, a,,, a33)) = a,;, a,,. If y is a one-
parameter subgroup in T such that {y,w,> =20, {y,w,> >0, and
{y, w;—w,;> =0, then y(a) = diag(a’, a*, a " °) where r, s > 0.

THEOREM 1. Let feV. Then (C1) ~ (C2) at f.

Proof. The proof follows the lines of that for Theorem 1, § 8. It is easier
here, though, since for every y we have dim V(y) > 3 > 2 = dim H.

THEOREM 2. Let f be a plane cubic. The orbit Hf is not H-separated on V if
and only if one of the following conditions holds:

(@) X, divides f;
(b) f has a nonzero singular point (x, y,0) at which X, is a tangent.

If H is the unipotent radical with roots a,, and «, +a,, then we may
prove Theorem 1 just as above. Furthermore, if ye X(7T) and (x, «,) = 0,
(x, &, +o,) =0, then y may be written as aw, +bw, +c(w; —w,) where a, b,
¢ are nonnegative intergers, Therefore, yel'(G/H; T) if and only if
y(@ = (@, a, a " *)withr >0,s <0,and r+s = 0. It follows that an orbit Hf
is not H-separated on V if and only if (1, 0, 0) is a singular point of f.
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