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1. Introduction

Recent work of Richard Dipper and the author has revealed a close connection
between the following topics:

(i) the representation theory of the symmetric groups S,,

(ii) the representation theory over F of the general linear groups GL, (F)
(“representations in the describing characteristic”), and

(ili) the representation theory of GL,(gq) over fields whose characteristic
does not divide g (“representations in the nondescribing characteristic”).

This article will survey our results concisely, with the intention of
emphasizing the remarkable fact that, in a sense, the first two topics named
above are “special cases” of the third. In particular if we could find the
p-modular decomposition matrices of GL,(q) for those primes p which do not
divide g, then we would be able to determine the decomposition matrices of S,
and the p-modular decomposition matrices of the groups GL, (q) where g is
a power of p. The key lies in an algebra which we call the g-Schur algebra. The
p-modular decomposition matrices of the ¢-Schur algebra for primes p which
do not divide g completely determine all the decomposition matrices which we
have mentioned.

It has long been known how the pioneering work of Schur connects the
representation theory of S, to the representation theory of GL, in the
describing characteristic; our methods express both these theories as the case
q = 1 of the representation theory of the g-Schur algebra.

* This article reports on joint work with R. Dipper, supported by NATO Grant Num-
ber 0222/87.
This paper is in final form and no version of it will be submitted for publication elsewhere.

[303]



304 G. JAMLS

2. Partitions

We say that A is a partition of n (and write A} n) if A=(4,, 4,,...) 18
a non-increasing sequence of nonnegative integers whose sum is n. The
conjugacy classes of S, may be indexed by partitions of n.

ExAMPLE. n =4

Conjugacy class representative  Partition

(H(2)(3)(4), (1,1,1,1,0,..)= (1%,
(12)(3)(4), (2,1,0,0,0,...) =(21?),
(12)(34), 2,2,0,0,0,...) = (23,
(123)(4), (3,1,0,0,0,...)=(31),
(1234), 4,0,0,0,0,...) =(4).

A matrix is said to be unipotent if and only if all its eigenvalues are 1. The
unipotent conjugacy classes of general linear groups may be indexed by
partitions of n, using the Jordan canonical form.

ExAMPLE. n = 4

100 07 110 07
0100 . 0100 ,
0o010| U 001 0| @
(000 1] 1000 1]
110 0] 110 0]
0100 , 0110
001 1| @) 0010 G
(000 1] 1000 1]
11007
0110

—(4).
0011 )
1000 1]

3. Where to look for representations

We address the problem of investigating the representation theory of
symmetric and general linear groups from scratch. For simplicity, we shall
always assume that F is an algebraically closed field. The representation
theory of arbitrary groups shows that the number of irreducible represen-
tations is related to the number of conjugacy classes, so the remarks in
the last section suggest that we should look out for ways of using par-
titions.
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(i) The symmeiric group

For the symmetric group (indeed, for an arbitrary group) we can begin
with the group algebra. We knowrn that FS, i1s a right F§,-moduie.

If A n, let x,€FS, be defined by x;, =3 {n: ne§, xS, x...].
We can improve upen cur 1aitiai idea of considering just the group algebra FS,
by locking instead at the right ideais x, FS,.
(i) The genera! lincar group

The groun ziyebra of GL,{g) is complicated, so we start by considering the
permutation represenitation of & GL,{(q) on the sabgroup B of upper triangular
matrices

;R
i
! ¥

N—

|
! .
L * ]
Tke composition factors of thns permutation representation are known as
unipotent representations.

Once more, we can improve upon our first idea if we take the permutation
representation on the subgroup of matrices of the form

i A
M * %
/ul

A *

It turns out that there are several difficulties with this approach in the case
where the characteristic of F divides q. For example, consider what happens
when we rearrange the order of the blocks on the diagonal. This does not affect
the dimension of our permutation representation. However, the new per-
niutation representation is isomorphic to the first one if and only if the
characteristic of F does not divide g. In view of the problems, we reserve this
approach for the situation where the characteristic of F does not divide q.

What, then, can be done about representations of GL, (F) over F? Here we
have a module already to hand, namely the n dimensional vector space V over
F on which GL,(F) acts. Consider

Ve =V @V®...@V (n times).
Then GL,(g) acts on this space by
v, ®1,®...0v)d=v,9®0,d®...0v,g.

20 — Banach Center 1. 26, cz 2
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Note that S, acts on V®" by place permutations. For example,

(Z 1I) V®n

neS,

could be called the “symmetric part” of V®" If A = (4,, 4,,...)} n, then we
can consider

x, V®" = (the symmetric part of V®*) ® (the symmetric part of V®*)® ...

Since the action on V®" of §, commutes with the action of GL,(F), x, V®"
gives us an FGL,(F)-module.

(iii) Summary

The following table records the tools we have introduced so far for
investigating representations.

Table 1
Symmetric GL, in describing FGL,(q) when
group characteristic char Ftg
Group algebra A =FS§, A=FGL,(F) A=FGL,(qg)
Main module M = FS, M=yer M = perm. rep. on B
* ]
Refinement x, M x, M Perm. rep. on *

0

In this table, we have used the same letters A and M three times to denote
different objects. The plan is to pursue this threefold notation, until the theories
coalesce and we have three cases of the same object.

The following remarks should reassure the reader that we are going in
a sensible direction.

(i) The problem of finding the composition factors of the modules in the
last row of Table 1 is “equivalent” to determining their indecomposable. direct
summands, and

(1) if this problem can be solved then we can find the decomposition
matrices of the symmetric and finite general linear groups.

We shall expand upon these comments later, but the first remark
motivates the discussion in the next section.

4. Endomorphism algebras

Remember that an algebra is a vector space which is also a ring. If 4 is an
algebra and M is a right A-module, then we may consider

# .= End,(M).



REPRESENTATIONS OF S, AND GL, AND THE g-SCHUR ALGEBRA 307

Thus, # consists of those endomorphisms A of M which sa_tisfy
(hm)a = h(ma) for all meM, acA.

We see that J is an algebra. It is often called an endomorphism algebra, or
a Hecke algebra. '

The structure of M is related to the structure of #. One of the most
important results in this vein is:

FirTing's THEOREM (See, for example, [15, 1.4]). For each way of writing
M as a direct sum of A-modules,

M—':M]@Mz@---@Mm
we get a way of writing # as a direct sum of right ideals,
H=H DH,D...® H,,

and vice versa. Moreover, M, is indecomposable if and only if #, is indecom-
posable. Also, M, is isomorphic to M; if and only if ', is isomorphic to # ;.

We indicated at the end of the last section that indecomposable direct
summands of certain modules will be of interest, so Fitting’s Theorem
motivates us to look at Hecke algebras.

ExaMpLE 1. Let A = FS, and M = FS,. Then 5 := End ,(M) is isomorp-
hic to FS,. We have achieved little by this manoeuvre, so we again seek
a refinement which involves partitions. Therefore, let

& :=End (P x, M).
AlFn
Notice that & contains the endomorphisms of each x, M and the
A-homomorphisms from x; M to x, M (where A, u|-n). The algebra & is
a version of the usual Schur algebra [8].

ExamMpLE 2. Let A= FGL, (F) and M = V®". Then := End, (M)
consists of those endomorphisms of ¥®" which commute with the action of
GL,(F). We have already seen that the symmetric group, acting by place
permutations on ¥®" commutes with the action of the general linear group.
And, in fact, every element of # comes from the symmetric group:

# = FS,.

This time, we can make progress by considering #; indeed, Schur was able to
tie together the representation theory of symmetric groups and general linear
groups (represented over the natural field) using .

In this situation, too, we may consider an endomorphism algebra which
involves partitions. Let

& = End (@ x,; M).
Abn
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ExamprLE 3. Let 4 = FGL, {qg) where char Fjfq and let M be the
permutation representation on the subgroup of upper triangular rnatrices. It is
well-known that # := End (M) has a basis {T: neS,} over F where the
multiplication is determined as follows. If 1 =(i,i+1)eS§, and neS, then

o T.. if I(n1) > I(m),
(*) T‘n 7‘( = Iy : ,
q-DT,+qT,, if l(nt) < i(r).

Here ! denotes the usual length function on S,.

Note that 2 is a “g-analogue of FS.” in the following sense. We may take
a vector space # over F with basis {T,: 7<S,}, then choose g€ F and define
a multiplication on 3 by (*), {0 obtain an algebra. If g = 1, then the algebra is
FS, and if g is the prin:c power which appears in /3L (g} then the algebra is
End ,(M).

To achieve our refinement, involving parlitions, 1 s situation, we frst

efine x,e# by
x, =Y {I: S, x§, x ...}

Recall that M is here the permutation representation of A == F GL,(g) on the
subgroup B of upper triangular matrices. It turns cut that we have already
encountered x, M, because x, M is the permutation representation on the
subgroup of matrices of the form:

Al ;-2 CEEY
Ay X . |
A
42 [
: 0

Again, we let
& :=End (D x, M).
AFn
Hereafter, # will denote the algebra over F whose basis is {7,: neS§,}
and whose multiplication is defined by (*). We may therefore describe FS, as
“# with g =1”. To keep track of what we have done, we update Table 1 in
Table 2.

Table 2

Symmetric GL, in describing FGL,(g} when

group characteristic char F.tq
Group algebra A=FS§, A =FGL,(F) A=FGL,(9
Main module M = FS, M= pen M = perm. rep. on B
Refined module x, M x, M x, M
End, (M) X with g =1 H with g =1 H
Refined End , (D x, M) End, (@ x, M) End (@ x, M)
cndomorphism Af-n A ibn

alpgcbra
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It seemns that the three algebras which appear in the last row of Table 2 are
different, since they depend on M, which is either FS, or ¥®" or a permutation
representation. But the next theorem ties everything together. (Notice that in
the case wherc 4 = M = FS,, the two algebras in the conclusion of the

Theorem are equal. The hypothesis of the Theorem also happens to be valid in
this case!)

THeOREM [0, 2.24]. LoNnG HyYPOTHESIS. Lei A be an algebra and let
M be a cyclic right A-module, say’ M = mA. Let 3 = End, (M), acting on
the left.

Assume Lhat there exists an idempotent e in A such that

(1) me =m,

(1) Me = #m, and

(i) Ue # 0 for every nonzerc A-submodule U of M.

Let 1,,1,, ..., I, be right ideals of 5, and assume that for every I, I, and
peHomy (I, I)) there exists hye # such that ¢(y) = hy,y for all yel,.

CCONCLUSION.

End,,(é M)~ End,,,(é I).

To apply the Theorem, we take as our right ideals 1, I,, ..., I,, of # the
right ideals x, # (4} n), and note that (x, #)M = x, M.

In the case of F GL,(q) where char F g (column 3 of Table 2), the Long
Hypothesis is valid (see [12] or [6, 2.19]) and we obtain

End, (@ x, M) = End . (@ x, #).
Abn AbFn

DEeFINITION. End (@, , x; #) is called the g-Schur algebra.

Note that when g = 1, the g-Schur algebra becomes the usual Schur
algebra. We have now achieved our main objective of exhibiting an algebra,
depending on g, which relates to the representation theory of the symmetric
groups and the general linear groups in all characteristics.

Remark. For A} n, define y,e # by
Vi=2 (=) "™ T, neS, xS, x..}.
It is easy to prove [6, 2.9] that the g-Schur algebra is isomorphic to

End, (D y, #).
Ab-n

In order to apply the Theorem with the Long Hypothesis to the case of
F GL, (F), it seems to be necessary to work with the right ideals y, »# in place
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of x, #. (The Long Hypothesis in this situation is proved in [9]; see also
[12, § 5]) In this article, we are assuming that F is infinite, but there is
a well-known procedure for obtaining the irreducible representations of
F,GL,(q) from those of FGL,(F). ‘

S. Indecomposable direct summands

We indicated earlier that the indecomposable direct summands of the various
modules x,; M were important, and we shall now amplify this remark.

First, we observe that knowledge of the indecomposable direct summands
of the x;, M, as 1 varies over the partitions of n, is equivalent to knowing the
indecomposable direct summands of @, ,x, M.

But we have explained that there are bijections (by way of Fitting’s
Theorem and the Theorem with the Long Hypothesis) between the following
sets.

(i) Indecomposable direct summands of @, ,x;, M.
(i) Indecomposable direct summands of End,( @ ,,x,;M).
(ili) Indecomposable direct summands of End,( @, ,x; #).
(iv) Indecomposable direct summands of P, ,x, #.

The main point

The modules x, M depend upon the case we are considering; the
symmetric group, or the general linear group in the describing characteristic, or
the general linear group in the non-describing characteristic. But the right
ideals x, # of s are independent of the case we are considering.

We are able to deal with all three theories at once, because we need study
only the indecomposable direct summands of @, ,x, #.

The following results are proved in [6].

(i) The number of pairwise non-isomorphic indecomposable direct summands
of @ ,n.x,H is equal to the number of partitions of n.

(i) For each A} n there exists an indecomposable right ideal Y* of H# with
the properties that Y* is a summand of x, # with multiplicity 1 and Y* is
isomorphic to a summand of x, # only if /& p

We call the indecomposable right ideals, Y*, Young modules. In the case
where g = 1 (so ## = FS,), these modules were discovered independently by
several people, of whom Klyachko [14] was probably the first.

The main result in [6] connects the decomposition matrix of the g-Schur
algebra with the decomposition matrices of §, and GL,(g). This result is best
explained by means of an example.

ExampPLE. Assume that n=35 and charF divides 1+g. The right
ideals x,# of s# can be written as direct sums of Young modules in
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the following way:
X5y H = Y,
Xan H = YO @ YED,
Xand 2(1-0) YO YV @ YO,
X3p2) K = 271D @ Y312,
Xomy# 2 (1-0) YO @2YW @ YOI @ Y,
Xp1yH# 2 2YED @ YOI g 2y@*h g YL,
Xan ' = (5—0) YV @ 4YED @ YU
Here,

- 1 if char F|(g—1); that is, char F =2,
10 otherwise.

311

We record the coefficients which appear here in a matrix B (the last row of

B is determined by the multiplicities of Y, etc.).
1. 0 0 0 0 0 0]
4 1 0 0 0 0O
S—a2 1 0 0 00O
B = O 1 0 1 O 00
0O 0 1 0 1 0O
0 2 2 2 1 190
L 0 01— O [—a 1 1]

Let 4 denote the matrix of Kostka number for n = 5. (Kostka numbers

[16] are defined in a purely combinatorial way.)
0000007

—_Nm = O O O
—_— = O O O
—_—_—0 O O O
-0 OO O 0

— W W N

—_N N = = D

Let A = AB™!. Thus,

nN

Il

. =2
— 0O R + R © —

—
S~ OO O~ O
QO = =m0 O
—_—0O == OO0
RO~ O OO C
e R o I o Y o B oo T
- 0O 000 0O
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We nave (for n =5 and char F|{i1 +¢}):

(1)) 4 is the decomposition matrix of the g-Schur algebra,

(i) 4 is the part of the decomposition matrix of FGL,(g) which
corresponds to unipotent representations.

(11) The fust three columns of A give the decomposition matrix of J¢.

If «a =1 (so char F = 2), then, {urther,

(iv) 4 is the decompesition matrix for Weyl modules corresponding to
partitions of n. (Weyl modules relaie to the representation theory of F GL,(F).)

(v} The first three colummns of A4 give the 2-modular decompositicu
matrix of §,.

The pattern of results for this case is completely general; the decomposition
matrix 4 of the g-Schur algebra is square and lower unitriangular. Knowing this
matrix is equivalent (via 4 = 4B~ '}to knowing multiplicities of Young modules
in right ideals x, .. The matrix 4 gives the decomposition matrix of GL, (q) for
unipotent representations, and includes the decomposition matrix of #. When
g =1, 4 is-the decomposition matrix for Weyl modules (and thus gives
representations of F GL, (F)) and 4 incledes the decomposition matrix of FS,.

Note the neat way that “putting ¢ = 1” works. We always consider the
p-modular decomposition matrix of the g-Schur algebra for primes p which do
not divide q. The case where p divides g — 1 gives us the decomposition matrix for
Weyl modules for F GL, (F) where the characteristic of F equais p. In particular,
when p divides ¢ — 1, the part of the p-modular decomposition matrix of GL,(q)
which corresponds to unipotent representations coincides with the decom-
position matrix for Weyl modules over fields of characteristic p.

There is, as yet, no method known for finding decomposition matrices of
symmetric groups, so the decomposition matrices 4 of g-Schur algebras are still
a mystery. However, a great deal is known about 4. For example, the block
structure is known [6, 6.7], and the p-modular decomposition matrices of
g-Schur algebras have been determined for all g and p (coprime to g) for all nup to
and including n = 10 [13].

6. The decomposition matrix of GL,(g)

We have seen that, for p coprime to g, the part of the p-modular decomposition
matrix of GL, (g) which corresponds to unipotent representations coincides with
the p-modular decomposition matrix of the g-Schur algebra. In this section, we
outline how the full p-modular decomposition matrix of GL,(g) can be found
from decomposition matrices of g-Schur algebras.

First we say more about the conjugacy classes of GL,(g).

(i) From matrices in GL,(q) whose characteristic polynomial is {f (X)),
where f(X) is an irreducible polynomial over F, of degree d (and dk = n), we et
conjugacy classes which are indexed by partitions of k.
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ExAMPLE. Suppose that f(X) is an irreducible polynomial of degree 4, and
let S denote the d x d companion matrix of f(X). Assume that 4d = n. We get
conjugacy classes ol GL, (g), which depend upon f(X) and upon partitions of 4:

S 0 0 07 (5100

S0 0
0050l logso|@
(000 S (000 S
"S 1 0 0] S 100
0S00 , 0S1710 .
0o0s 1| @ 00s o] TG
1000 S| (000 S
ST 0 0]
0S 10
0o0s | W
1000 S

Here 0 and I denote the d xd zero and identity matrices, respectively.
() In general, from matrices whose characteristic polynomial is

(L (X (L O) . Sy O

(twith f, (X), f,(X), ..., fy(X) distinct irreducible polynomials over F_ of
degrees d,,4d,,....dy and d, k,+4d,k,+ ... +dyky = n), we get conjugacy
classes of GL,(q) which arc indexed by

AV 220 AN where A9k,

ExampLE. Consider (f, (X)) {/; (X))?, where 3deg f; +2degf, = n. For the
partitions (21)| 3, (2)} 2, we get a conjugacy class of GL,(g) which is
represented by

Assume that p does not divide g. A matrix whose characteristic polyno-
mial is (/3 () (3 (X)Y2... (fy (X))*™ is p-regular if and only if the roots of each
of f; (X), f/,(X), ..., fy(X) have multiplicative order coprime to p. Let F be an
algebraically closed field of characteristic p coprime to q. By general theory, the
number of irreducible F GL,(q)-mnodules equals the number of p-regular
conjugacy classes of GL,(¢). Our discussion of the p-regular classes therefore
gives the number of irreducible F GL,(g)-modules.
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Suppose that f(X) is an irreducible polynomial of degree d over F, and
dk = n and A}- k. We shall explain, in a moment, how to obtain an irreducible
FGL,(g)-module Dg(f, 4). First, we show how to use these modules to get all
the irreducible F GL,(g)-modules.

Let f, (X), f(X), ..., fy(X) be distinct irreducible polynomials over F, of
degrees d,, d,, ..., dy and suppose that d, k, +d, k,+ ... +dyk, = n, and that
AV Ky, A ky, oo, A ky.  Suppose, too, that the rocts of
1 (X), H(X), ..., fy(X) have orders coprime to p. Using the irreducible
FGL,, (g9)-modules D.(f;, i¥), we get an irreducible module

Dy (f1, V) @ De(fy, A*) ® ... @ Dy (fy, AV)

for
GLd.k1 (q) x GLdzkz (g)x ... x GLdeN (q),

that is, for the group of matrices in GL,{g) of the form

dl kl d2 kZ
d, k, * 0 * *
d,k, * and hence for *
0 0

Now, inducing this module to GL,(q) gives an irreducible F GL,(g)-module.
Moreover, this construction gives a complete set of pairwise non-isomorphic
irreducible F GL,(g)-modules.

Our task of describing the irreducible FGL,(g)-modules is therefore
reduced to the following. Given an irreducible polynomial f(X) over F, of
degree d, where dk = n, and given A|- k, we want to define a corresponding
irreducible F GL,(g)-module D, (f, 4). (We remark that in the construction of
D (f, 4) we need not assume that the roots of f(X) have order coprime to p.
Thus, in fact, we construct more irreducible representations than we require.
For further information on this point, see [5].)

Corresponding to f(X) there is a cuspidal module C, for F GL,(q). (S. L.
Gelfand [7] constructed this module in the case where F = C; moreover, C.
remains irreducible modulo p, if p does not divide g, see [12, § 3])

Now,

Cr®Cr®...®Cp (k times) 1s a module for
GL,(g)xGL,(g)x ... xGL,{q) (k times).

In such a situation, we have seen how to “extend and induce to GL,(g)” to
obtain an F GL,(gq)-module, M say. (In the special case where f(X) = X —1, the
module M is just the permutation representation on the subgroup B of upper
tniangular matrices, as in § 3.)

Let A = FGL,(q) and # = End,(M). Then # has a basis {T,: neS,},
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and the multiplication in # is given by equation (x) in § 4, replacing g by ¢°.
The Long Hypothesis of the Theorem near the end of § 4 is valid in this more
general situation, so we have

(i) the indecomposable direct summands of @,,_,x, M are in bijective
correspondence with the indecomposable direct summands of @, ,x,#.

Therefore,

(i) the number of pairwise non-isomorphic indecomposable direct sum-
mands of @, ,x, M is equal to the number of partitions of k.

Moreover,

(iif) for A|- k, the indecomposable direct summand of @, , x, M which
corresponds to the partition A has a unique top composition factor. We call
this top composition factor Dp(f, 4).

This completes our description of the irreducible F GL,(g)-modules.

Just as the decomposition matrix of the g-Schur algebra coincides with the
part of the decomposition matrix of F GL,(g) which corresponds to unipotent
representations, we have, more generally,

(iv) the part of the decomposition matrix of F GL,(g) which corresponds
to the factors of C;, @ C, ® ... ® C; extended and induced to GL,(g) 1s equal
to the p-modular decomposition matrix of the g%-Schur algebra.

The last remark, combined with the construction of the general irreducible
F GL,(g)-module (which involves tensor products) shows that the decom-
position matrix of FGL,_(g) has the form

1 0 0

Each lower unitriangular submatrix above the dotted line is a tensor
product of decomposition matrices of g9-Schur algebras (for various d < n).
The entries below the dotted line can be caiculated, using the Littlewood-
Richardson Rule (see [6, § 7]).
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The task of finding the decomposition matrices of §, and GL,(g) 1s
therefore reduced to the problem of determining decomposition matrices of
g-Schur algebras.
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