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S-function methods are used to develop the notion of universal characters of the classical Lie
algebras and groups. The associated modification rules are described and exemplified. They are
then used, along with certain infinite series of S-functions, to derive the Newell-Littlewood rule for
decomposing tensor products of both O(N) and Sp(N). A new approach to the Macdonald
identities is proposed which also involves universal characters.

0. Introduction

This paper is concerned with the universal characters [Mu, N, K2, KT] of the
unitary, orthogonal and symplectic groups, certain infinite series of S-functions
[L1, K3] and the Macdonald identities [Mal]. An attempt is made to exploit
the well-known algebra of S-functions [L1, Ma2] and various notational
devices involving partitions and Young diagrams [K1, K2] to give a unified
approach to these topics.

The underlying formula on which all else is based in Weyl's character
formula [W1]. In the case of the unitary group this leads directly to the fact
that universal characters are S-functions, so that the famous Littlewo-
od-Richardson rule [LR] may by used to decompose tensor products and to
evaluate branching rules. This is demonstrated in § 1, whilst the extension to
mixed tensor representations involving composite Young diagrams {K1] is
made in § 2. Infinite S-function series are defined in § 3 and used to relate the
universal characters of both O(N) and Sp(N) to S-functions by exploiting
long-established generating functions for these group characters [ Mu, W2, L1].

The most efficient procedure for the decomposition of tensor products of
irreducible representations of the orthogonal and symplectic groups is almost
certainly that due to Newell and Littlewood [N, L2]. Their key theorem is
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stated and proved [C, CK] in § 4. Finally it is pointed out that the Macdonald
identities [Mal] can be presented in a way which involves just those same
infinite S-function series already introduced. The results are presented as
a sequence of conjectures but in a footnote to the paper it is pointed out that
subsequent to the original presentation of this work it has been possible to
prove all but one of the conjectures by making use of an additional type of
Lemma on S-function series.

It is first necessary to establish some notation [L1, Ma2, K2]. Let
A=Ay, ..., A),with 4,e{l,2,..}and A; = 4;,  fori=1,2,..., p—1,denote
a partition of weight il =4 +4,+ ... +4, and of length [(#)=p. It is
sometimes comventent to adopt the Frobenius notation [L1, Ma2]

;L_(alaz...a,)
= ,
b, b,...b,

with g; and b, non-negative integers for i=1, 2, ..., r, where g, > a;,, and
b;>b,,, fori=1,2,...,r—1 and r 1s the Frobenius rank of the partition.

To each partition 4 there corresponds a Young diagram or frame F*
consisting of I(1) left-adjusted rows of boxes of lengths 4. The partition A’
conjugate to A specifies the Young diagram F*, obtained from F* by
interchanging rows and columns. For example if A = (5312) then /' = (42 1?)
as can be seen from the diagrams

FA=0O0O0On0nO F* =[0000
000 o0
O O
O O
0

The corresponding Frobenius symbols giving the arm and leg lengths relative
to the main diagonals of these diagrams are

41 30
= A= .
p (30) and (41)

For what follows later it is convenient to define an operation [K2] on
a Young diagram F* corresponding to the removal of a continuous boundary
strip of boxes of length h starting at the foot of the first column and extending
over ¢ columns. The resulting diagram is denoted by F*~* If this diagram is
itself a Young diagram specified by some partition g then the symbol A—h 1s
identified with u, otherwise A —h is said to be null. For example in the case
A =(3%221) the following diagrams correspond to F*~" for h =3, 4 and 5.

O0og ood Hmnn
mimn LIW[] Ll
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where [J represents a box and B a box that has been removed, so that in these
three cases:

(G=h =03 ¢ @I
h =3 4 5
c =2 2 3.

1. Unitary group characters and S-functions

The connection between Young diagrams and representations of Lie algebras
and the corresponding Lie groups comes about through a consideration ol
their characters. Each finite dimensional irreducible represeutation (irrep) of
a semi-simple or reductive Lie algebra may be specified by means of its highest
weight vector A. The character of this irrep is given by Weyl's character
formula [W1] '

(1.1) chiA)= Y cwye™ 79/ Y g(w)e

wel we W
where W is the associated Weyl group, &{w) is the parity of the element w of W,
and g i1s half the sum of the positive roots of the Lie algebra.

In the case of the Lie algebras A4,, B,, C, and D, the corresponding
compact Lie groups are SU(n+ 1), SO (2n+ 1), Sp(2n) and SO (2n), respectively.
Since these groups are subgroups of the group U (N) of unitary transformations
in an N-dimensional space for N = n+ 1, 2n+1, 2n and 2n, respectively, the
eigenvalues of their group elements can be written in the form

SUn+1) x,.x5, .., %, X,.; with  x;x,...x,,, =1,
(1.2) SO@2n+1)  x{, x5, ..., X, il_i:z,....i,,,l,
' Sp(2n)  x(, Xy, oiiy Xpo Xy, Xg, ., X,
SC(2n) x,, x,....,X,. %,. X, Xps
where x; =exp(i¢;) and X;=x;' for j=1.2,...,n The character of
the corresponding group element in the conjugacy class labelled by the
real parameters ¢; for j =1, 2, ..., n is then also given by Weyl's character

formula (1.1). All that is required is the interpretation of the formal exponen-
tials in (1.1) as

et =xi'x4 ... for any p=(u,, fy,...).

In the case of the group U(N) for which the associated Weyl group is the
symmetric group Sy, the character of the irrep labelled by the partition

A =(A{, 4y, ..., Ay} In the conjugacy class specified by ¢ = (¢, b, ..., Py) 18
then given by

(1.3) ch,()= Y e(m)e e/ ¥ g(n)ere?

neSn nESN
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withg =(N—-1, N-2,..., 1, 0). Setting x; = exp(i¢;) for j =1, 2, ..., N then
yields
(14) ch(A)= ) e(mxp*N 1l *¥=1 X2/ N g(m)xh, ' xN 2. x0

T2 N
neSy neSy

so that
(1.5) chy (A) =[x ¥ /1 T = s, (x 0, x5, 0L Xy)

where the resulting ratio of bialternants is nothing other than the well known
Schur function [L1, Ma2].

This Schur function can be given a combinatorial definition [Sta] by
invoking the notion of a standard Young tableau, T4, which is a numbering of
the boxes of the Young diagram F* in which (i) the entries are taken from the
set {1, 2, ..., N}, (ii) the entries are nondecreasing from left to right across each
row, and (iil) the entries are strictly increasing from top to bottom down each
column. For example, the Young diagram F* and a standard Young tableau T*
are illustrated in the case A =(531%) by

Ff=OQgOoOog T'=11244
aod 233
O 4
L 5
To each such standard Young tableau, T, there corresponds a weight vector
m = (m;, my, ..., ny), where m; is the number of entries j in the tableau. With
this terminology the Schur function (5) can be expressed in the form
(1.6) sl(xl,xz,...,xN)zZx'{"x'i'z...xﬂ"’:z‘x"'.
T4 TA

It follows that the irrep of U(N) in question has character
(17) Chd) (j') = {A} (x)N = S).(x)N = Sl(xlv x25 vy xN)s

where a variety of notations has been used to specify the character. It follows
from (1.6) that

(1.8) {A}(x)y =5, (x)y=0 if Iy >N

as can be seen from condition (iii) for the standardness of the Young tableaux.
This is our first example [L1], albeit a trivial one, of a modification rule.
Furthermore on restriction from U (N) to SU (N) each irrep remains irreducible
and its character is unchanged save for the fact that the condition
X, X, ... Xy = 1 now applies. Then having applied (1.8) an additional modifi-
cation rule applies:

(1.9) {A}(x)y = {u}(x)y where y,=4,—Ay for i=1,2,...,N

corresponding to the removal of all columns of length N from the Young
diagram F*,
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The characters (1.7) may be generalised to give universal characters
defined by taking the inverse limit [Ma2]

(110) (3 = {3} (x) = 5,(x) = lim [} (o).

The characters of U (N) for any finite N are then recovered from the universal
characters by means of the specialisation:

(1.11) {A}(x)y = {A}(xys X5, oovy Xy, 0,0, .00,

The algebra of universal characters then coincides with the algebra of Schur
functions s, (x) of arbitrarily many indeterminates x,, x,, .... This algebra is
such that products are given by

(1.12) {uv} =1 Zcu‘,{n

and quotients by

(1.13) i/ = () = Yei v}

v

where the coefficients ¢}, are the famous Littlewood-Richardson coefficients
[LR, L1, Ma2]. The dependence on (x) has, for typographical convenience,
been suppressed in (1.12) and (1.13). Thus the tensor product formula
appropriate to U(N) takes the form

(1.14)  chy(u)ch, (v) = {u} (x)y{v} (O = Y cu {4} (X)y = ). cuchy(d)
] LALSN

It 1s almost as straightforward to deal with the branching rule appropriate to
the restriction from U(M+ N) to U(M)x U(N). This time one obtains

(L.5) Ch¢.1,(4) = 5(%, Phyen = ZS x)MSA u(y)M

—Zcm 5, (XS, (y)N Y Y chch,(uch,(v)

U1 €M vovi SN
where use has been made ol the notation and combinatorics of skew Young
diagrams F** and the corresponding skew standard Young tableaux T** [Sta,
Ma2]. Remarkably everything is governed yet again by the Littlewood-
Richardson coefficients. In terms of universal characters one can then write the
branching rule in the form [K2]

(1.16) UM+N) > UM)xU(N) {4} -Z{#} my

2. Composite Young diagrams and unitary group representations

Quite apart from the irreps of U(N) whose highest weight vectors are
partitions as in (1.4) there exist other irreps with highest weight vectors
A whose characters are again given by (1.4) with 4 replaced by A. Amongst
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these other irreps are the so-called mixed tensor irreps for which A =
(g5 Bgsooon 50,0, 00000 —voi ol —vyo —vy) where p=(uy, 0y, ... 1)
and v = (v,, v,, ..., v,) are partitions. and p+¢q < N. One can associate with
such irreps various generalisations of the original Young diagrams. Of these
perhaps the most useful is the composite Young diagram F** [K1]. Varying
the notation slightly, this is exemplified by the diagram

. 10 .
F* = J0Qg in the case 4 = 22120V %_-2-3).
i
i
U
]
Correspondingly the character of the irrep of U(N) with highest weight
A=y, fyson 1y, 0,0, ...,0, —vg, ..., —v,. —¥,) is given, thanks to (1.4),
by

chyfd) = {7 p} %)y

(2.1 = Y e(mx Ve N2 xS emyxy X2 XD,
neESN neSN
(2.2) = (X1, X5, -5 X)) T 0} (X)y = (B} (0N {e} (%)

where ¢ = (i, + vy, 3 +v,, ..., —v,+v,, 0) and ¢ = (1V). The correspondence
between A and g is such that F¢ is obtained from F** by adjoining F* to the

complement in F' of F* as illustrated in the case N =7 and
A=(2%120-2-3) by

i I acago
F* =000 and F*=00Q00O00O,
Q0 IR
0O oaga
O oog
| mL 1
ERE

where u = (2212) and v = (32), leading to ¢ = (524231). It is clear that if the
sum of the number of parts of u and of v is greater than N then the above
correspondence leads to non-standard diagrams. For example, taking N =3
rather than N = 7 in the previous example gives

_ 0O Ooooagd
F* =000 and F¢=( a0
od a

L O
O
O]
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with F¢ non-standard. In fact, just as {4} (x)y is standard in U (N) if and only if
A1 &< N but requires modification in accordance with the rule (1.8) if A{ > N, so
{¥; u} (x)y is standard if and only if p) +v; < N but requires modification if
gy +vi > N in accordance with the rule [K2]

(23) T}y = (=1 fy—h, u—h}(x)y where h= )+, —N—1.

This modification rule is considerably more complicated than (1.8), involving as
it does two applications of the boundary strip removal procedure covering
¢ and ¢ columns. However in practice this is easy to apply. For example, in the
case = (2%12), v =(32) and N = 3 referred to above, one has yu; = 4, and
v} = 2 so that h =2 leading to the diagram modification

(1] nm
F"v;p___ DDD D - F::-}_:;u—h= DDD
O

O
Cl

OO0
BREOS

and hence to the result

{32: 2212} (x), = +{3; 22} ().

In general this modification procedure may have to be repeated more than
once in order to reduce the original composite diagram either to one which
occupies a total of not more than N rows and is thus standard, or to a null
shape.

Universal characters corresponding to mixed tensor representations may
be defined once again by taking an inverse limit:

(2.4) {75 1y = {73 pp (x) = Lim {9 p} (x)y.
“N

The character of U(N) for any finite N may be recovered from the universal
character by setting x; = 0 for j > N. This restriction may be shown to imply
the validity of the modification rule (2.3) by, for example, making use of certain
determinantal expansions of the relevant characters [KZ2].

The importance of universal characters and the associated modification
rule is ilfustrated by the fact that tensor products in the unitary groups are
governgd by the universal rule

(2.5) 7w} x (Z; 1} = ¥ {(v/0).(A7); (u/r).{x/0)}.

For example, (2.5) gives the universal tensor product formula

{T; 13 {15 1} = {2; 2} + {25 12} + {T% 2} +{T% 1%} +2{T; 1} +{0}.
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In the case of U (3) the modification rule (2.3) implies that {T; 12}, = 0 so that
(T U |{T; 1y = {2; 255 +{2; 12}5+{T% 2}, +2{T; 1}5+ {0}5.

Similarly for U(2) we have {2; 1%}, = {1% 2}, =0 and {1% 1%}, = —{T1; 1},
so that

(T U {15 1), = {2; 2}, +{T: 1}, +{0},.

3. Infinite S-function series and characters of O(N) and Sp(N)

Littlewood [L1] gave a number of generating functions for infinite series of
S-functions, and the list can be extended [K3] to give

(3.1a) A,(x) = [T —gx;x) = 3 (=12 g2 s, (x),

(3.1b) B,(x) =ﬁ(1_qxixj)_liAz 4"V s (x),

(3.1¢) C,(x)= l.l:[J.(l —qx;x;) = Zigi 1)i7i2 ginisz 5, (%),

(1) D,(x) = 'fll_(l —gx,x) ! N > 4P 5, (),

(3.1e) E,(x)= ﬁj 1—gx) |10 —qaei.- x) =y (=) gls (x),
(3.19) F (0 = T[(1-gx) 1<1]_[](1—q X X) 5 ZF‘!"’ 5. (x),

(3.1g) G,(x) = H(1+qx)]<]l 11—61 X; X;) ZE(:EU('E"”’ZQ'"' 5. (x),
(3.1h) H, (x) = H(l +4x;) " IJI;[(l—q X; X;) CZF(—I ) g1l s, (x),
(3.1 H(l—qX) = Z;—l)"'q'"sln(x),

(3.1m) M, (x) = 1_[(1 —gx;) Zq’"s

(3.1p) P (x)—ﬂ(]+qx Z(—l qs,,(x),

(3.1q) Q,(x) = ]_I I +gx,) Zq $ym(X

where, in Frobenius notation, A, C and E are the sets of partitions of the form
a, a, a,+1 a,+1 ... a, a, ...
a+1a,+1 ...} a, a, ...)° a; a, ...)°

D is the set of partitions all of whose parts are even, B 1s the set of partitions all
of whose distinct parts are repeated an even number of times and F is the set
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of all partitions. The Frobenius rank of the self-conjugate partition ¢ has been
denoted by r. It is convenient in what follows to denote the g = | series 4, (x)
by A(x), B, (x) by B(x) and so on, and from time to time suppress the explicit
dependence upon (x).

These expansions are universally valid in the sense that if the products on
the left are taken over all positive integer values of i and j, then on the right the
S-functions s, (x) are the universal S-functions, (1.10), involving an infinite
number of variables (x,, x,, ...). Restricting the domain of the indices i and
jon the left to (1, 2, ..., N) leads on the right to S-functions s;{x;, x,, ..., Xy)
which are of course subject to the modification rule (1.8).

The irreducible tensor representations of the orthogonal and symplectic
groups, O (N) and Sp(N), like the covariant irreducible representations of the
unitary group, U(N), are specified by highest weight vectors which are
partitions. The notation used for the corresponding group characters (Mu, L1,
K37 is:

(3.2a) U(N)  chy(3) = {4} (x)y,
(3.2b) O(N)  chy(4) =[] (x)y,
(3.2¢) Sp(N)  chy(4) = (A (x)y.

Making use of Weyl’s character formula (1.1) and the link between formal
exponentials and eigenvalues of group elements described by (1.2) it is possible
to derive the following generating formulae [Mu, W2, L1]:

(3.3) [T =xy)" =2 {4} ({4} ),
(3.4) [T=xy) ' TT (1 =y, 3) = [TLAT(x) {4} (»),
i,a ashb A
(3.5) H(l —x;¥) [T (U =wax) = 2 (A () {4} (w),

where the summations are over all partitions 4.
Substituting (3.3) into (3.4) and using the series expansion for C(y) gives

[T =x3)7 [T =yays) = X5, (0) 5,0 X (=125, (y)

i.a asb

= ¥ (=) s, (x)5,(p).

YA

Comparing coefficients of {4} (y) = s, (y) in this expression and (3.4) then gives

(3.6) [A1(x) = 2 (=DM2cls, (x) = 3 (= )72, (x).

1A

This can conveniently be written as

(3.7) ON)»U(N)  [4](x) = {#/C} (x).
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The fact that D(x)C(x) =1 then immediately gives

(38 UN)-O(N) {4} (x) = {4/DC}(x) = [A/D](x).
In exactly the same way it may be shown that

3.9 Sp(N) > U(N) <D (x) = {H/4}(x)

and, using the fact that B(x)A(x) =1,

(3.10) UN)-Sp(N)  {1}(x) = {A/B) (0).

It must be stressed that these are universal identities [K3] in the sense that they
are valid for all N, but when interpreting them it is important to note that the
indeterminates x; in the orthogonal and symplectic group characters are
constrained as in (1.2). These constraints for finite N may be shown to lead to
the modification rules [K2]:

GA1) O(N) [A1(x)y =(=1F"'[A—h](x)y with h=21—N3>1,
(12) Sp(N)  (AD(x)y =(—=1F<A—hX(x)y with h=24—N—2320.

The role of modification rule (3.12) may be illustrated through a consideration
-of the following example arising from the use of the branching rule (3.10)

UN)-Sp(N) {2212} > (22 1%/B) = (221/(0+12+22+1*..))
= (2213 + 2D + Q21D + (1D +2 (12 +<1),

where the dependence on (x) has been suppressed. This result is universal but,
for example, in the case of Sp(4) the modification rule (3.12) gives
2212, = —{2%),, 213, = —21%), = 0and {1*)>, = —({12),, so that we
have

U@)—=>Sp@) {2212}, - (13, +1),.

Such modification rules may be avoided if the original branching rule (3.10) is
altered to take into account each specific value of N. Two ways have recently
been proposed for doing this by Sundaram [Su] and Tokuyama [T]. Both
methods involve the introduction of new tableaux whose etffumeration amounts
to a refinement of the Littlewood—Richardson rule for evaluating the quotients
of (3.10). Sundaram’s method involves the smallest change in the original rule.

4. The _Newell-Littlewood theorem

As indicated earlier, tensor products of unitary group irreps may be decom-
posed by making use of universal characters. The relevant universal product
rule, (1.12), involves just the Littlewood-Richardson coefficients. In the case of
any particular unitary group U(N) it is then only necessary to apply to the
output of the universal product rule the modification rule (1.8).
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An exactly analagous procedure can be used to deal with tensor products
of irreps of both the orthogonal and the symplectic groups. The universal
product rules are given by the following

TueoreM (Newell-Littlewood) [N, L2].
4.1) ON)  [A1x[a] =Y [(/0)-/0]
3

(4.2) SP(N) (D x(pd = LA/
:

where x indicates a tensor product, or equivalently a product of characters,
. indicates an S-function product (1.12) and / indicates an S-function quotient
(1.13). The brackets [ ] and { ) signify characters of O(N) and Sp(N),
respectively, as in (3.2b) and (3.2c). The dependence on (x) has again been
suppressed.

In order to prove these results it is necessary to prove a succession of small
Lemmas.

LEmMma 1.

(4.3) Savse (%) = 2 Swjoy.oviaian (X)-

Proof. It suffices to expand a product of S-functions of (z) = (x, y) in two
different ways. Firstly,

(4.4) 5, (%, ¥) s, (x, ¥) = Y i s, (x, ¥) = X €y 5, (%) 5,0 (¥)
a d.e
= Z sq (I) Sw.v)e (y)s

where the last expression serves really to define what is meant by the left-hand
side of the lemma, and secondly

4.5 5,(%, ¥)5,(x, ) = ¥ 5, () 5,00 () 5, (%) 53¢ (3)

= Z c‘?,,sa (x)s,,,,(y)sv/z(Y)

ait.a

= Z So (x) Suja (}') S(vite/o)) (.V )

The required result (4.3) then follows by comparing the coefficients of s, (x)
in (44) and (4.5). m

LEMMA 2.
(4.6) Splu (x) = S(upy.p (%)

22 — Banach Center L 26, cz 2
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Proof. This time one expands D(x, y) in two ways:

(4.7) Dix,y)=[10—x;x)  [TA=x9) ' [T =yayp) "

isj ia asb

x)D(.V)ZSA (x)s;(») from (3.3)

= ZD(x 52(%) 3 55 (¥)s,(»)
deD
=Y D(x)s,(x) ) chis,(y) from (1.12)
A . deD,u
=Y D(x)s,p(x)s,(y) from (1.13)
and ’
(4.8) D(x,y)= Y s;(x,9) = Y s4,(x)s,(p) = ZSD/,,(x)s (¥).
deD deD.u

This time a comparison of the coefficients of s,(y) proves the required result
(4.6). m

LEMMA 3.
(4.9) Suwyp (X) = Y S0y (%) Sevye.oy (%)
z

Proof. In this case one can work entirely in terms of S-functions of (x),
which for convenience may be dropped from the notation on the understan-
ding that all subsequent S-functions depend on these variables. Then

Swvyp = Z S.v)is = Z Stuiay Stvitsjay) from Lemma 1

deD oeD,a

= ZS(#/J) S(vi(Dja)y = Zs(u/a)s(v/((g/D)_D)) from Lemma 2
a <2

= Y SuoS = ) %SweS from (1.13)

(u/a} 2 (v/((/6).D}) [6 O (ufa) S(VIL.D)) .

cD,a seD.o.f

= ). Suc.on Seic.on from (1.12)
5eD,(

= ) Swic.on Sy
4

This proves the Lemma. m

Now we are in a position to prove the Newell-Littlewood Theorem as
follows [C, CK]:

[4] x [u] = {4/C}.{u/C} = {(A/C).(w/C)}  from (3.7)
= [((4/C).(w/C))/D] from (3.8)
=Y [(AAC.L.D)(u/(C.C.D))] from Lemma 3
4

=Y [(4/0-(/0)] since C.D = 1
4
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which is the required formula (4.1). Similarly, replacing C and D by A4 and
B throughout gives the formula (4.2)

(A x{puy = Z U4/Q)(u/C)>. =

In making use of (4.1) and (4.2) for O (N) and Sp(N), respectively, for some fixed
N it is course also necessary to use in addition the modification rules (3.11) and
(3.12).

5. Macdonald identities

The infinite series of S-functions encountered in the last section have a role to
play in studying the Macdonald identities [Matl]. Indeed we conjecture that
a number of these identities can be recast in the form of expansions of certain
infinite products of infinite series of S-functions in terms of infinite sums of
universal group characters. Modification rules are then required to recover the
Macdonald identities appropriate to a finite number of variables. To make the
connection we are seeking it is convenient to note that the Macdonald identity
associated with a simple Lie algebra, L, can be written in the [orm [Mal]

(5.1) [T{0=g" ] ~g"e)} = ¥ g"™ch(m)
k=1 aeR meM

where n is the rank of L, R is the set of roots of L, and M is a lattice generated
by the roots of L, suitably scaled. Whilst c(m) = {(m+¢, m+9)—(o, ¢}}/
/{(@+e, +0)—(o, )} is the eigenvalue of a second order Casimir operator,
where ¢ is the highest root and g is half the sum of the positive roots. Finally
ch(m) is defined by Weyl’s character formula (1.1). It should be borne in mind
that the vector m in the lattice M will not in genetal be a highest weight vector.
Weyl reflections are required in order to determine the highest weight of the
corresponding irrep.

An example of such an idettity (5.1) is provided by the case L = so(3) for
which n=1, R={a, —a}, 9 =a and M = {ma: me2Z}.

One obtains

(52 [TU-d)1—e)i—g e = ¥ g2 chm)
k=1 me2Z
where ch(m) = (€™ —e ™" V)1 —e™ % = —ch(—m—1) so that
53 JTa--dei—ge = T (~1)rg™ 2 ch(m
k=1 m=0

The specialisation of this for which e* = e * =1 yields Jacobi’s identity

(5.4) ﬁ (1—g*?° = i (— 1" (2m+1)gmm+ D72,
k=1 m=0
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The form of the so(3) identity which will be generalised here 1s that given in
(5.3). In the case of so(2n+ 1) the root system is such that

> &)

55 T]{0—gr[Ii=ged) = [J{0=ar [] (=g x)(1=-gx7 ).

k=1 acR k=1 1=ixn

[T O=gxx)(1=q"x;x; (1 —g"x7 " x) (1 —¢" x; " x; 7]

1€i<jgn
=IT{ II (—-gxx)}= 1‘[ & (X)ns
=1 I<i<jsN k=
where N=2n+1land x,,;=x;'fori=1,2,....,nand x,,,; = 1 as in (1.2).

The notation of (3.1a) has been used to emphasise that the left-hand side of
Macdonald identity has now been written as a product of S-function series in
a finite set of indeterminates (x),. These indeterminates are nothing other than
eigenvalues of elements of the group SO(2rn+1) and S-functions in these
eigenvalues can be written in terms of SO (2n+ 1} group characters by making
use of (3.8). It follows that an expansion of the form

(5.6) ]j (X = 2.9:(@) [ (x)y

must be valid. The problem is to determine the coefficients g, (g). This can be
done by using (3.1a), the S-function product rule (1.12), (3.8) and the S-function
quotient rule (1.13). Calculations along these lines strongly suggest the validity
of the very remarkable formula

(5.7) ﬂ Ap(x)y =Y (— )2 gh2 [] (x)y.

aeA
Thus one starts from a product over k of a power series in g* whose coefficients
are S-function and obtains the same series but this time in g with coefficients
which are SO (N) characters. On the basis of these and similar calculations one
1s led to the following conjectures:

(5.8a) k]f[l Apt¥) _ T — 1) g7 [a] ()
(5.8b) klj Corlly= 3 (=DM g2 G (x

(5.8¢) ,fll Age () L (x)y = ZA (= D2 gl [a] (%) o,
(584) [T o (0 Py = T (= D72 M2 [3} 8y 1s

k=1 yeC
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(586) f] Aqk (x).’\' Qq“ (x,)N = z (— ])|1|/2 qlal/Z <a> (x)N—l':

(5.8 ﬁ Co Wy My )y = 3 (= Y2 112 (33 ),
k= reC

(5.8g) 1_[ Ep(x)y Mp(x)y = ¥ (= D2 gF (6] (x)y,
k=1 eeE

(5.8h) [T Ege(x)y Qqav )y = T (= D972 gl (g (x),,
k=1 eeE

(5.81) ﬁ qu (x)n PqZk (x)y = z (— I)M e ‘IIE| (2] (x)y.
k=1 (13¢5

(5.8)) H qu(x)N quk (x)y = Z (— l)””'_')/z qlﬂl &) (x)y
k=1 eeE

and

(5.9) [1 Uplx)y = ]_[ H —q* x;x; /(1 —¢%)}

k=1 k=1 ij=1
= Y (=D GRHAT; & (x)y
(eF

In these identities the indeterminates must be restricted as appropriate for the
particular group whose characters appear on the right-hand side. However all
the results may be viewed as involving universal characters with the final
restrictions being applied through the use of the relevant modification rules
(3.11), (3.12) or (2.3). To illustrate this, consider the first identity (5.8a) applied
in the case N = 5 so that the group characters on the right-hand side are those
of SO(5). Thus

(5.10) [] W(x)s = [01s—q[12]5s+ 42 [21%]5— ...
. +q8[4%322]—

All the terms except the first two are non-standard characters of SO(5) and
must be modified through the use of (3.11) with N = 5. Remembering that all
the terms in the resulting series are labelled by partitions € 4, the Frobenius
symbol of which has b, = a, + 1, it follows that the continuous boundary strip
to be removed has length h = 2(a, +2)—N = h,, —(N—2) where h,, is the
hook length of the (1, 1)}-box of F*. Removing the strip then leaves along the
right-hand boundary a continuous boundary strip of length (N —2) which is
3 in the case of our example. The resulting character may still be non-standard
in which case the process must be repeated. For example dealing with the
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non-standard terms exhibited in (5.9) gives the diagrams

[‘(212) OO - OO

g O
1 [ ]

F4**2 = OoOoQ -~ 0000 - 0ogo
gopad Oooog Uago
adgd oom [ | |
(. Oonm [ ]
ad ]

so that, taking into account sign factors,
U k(x)s = [0])s— ‘1[12]5+q2 [21]5—---_43[42]5_

It is not difficult to see that the general pattern of terms that survive are those
consisting of diagrams with a core specified by either [0] or [1%] built by
adding strips, or slinkies [CGR], of length (N—2) =3 to this core in all
possible ways such that each slinky starts in the first row and their successive
addition yields a standard diagram at each stage. Thus the two terms obtained
above can be viewed as arising in the following way

FO = _, AN
[ |

F“'=0 - [OmEs - OOggom.
O Om mm 1

This leads to a reformulation of the conjectured Macdonald’s identity
(5.8a) in terms of standard group characters:

(5.11) ﬁ Apxy= ¥ Z( 1jlelfzbe gl=ll2 e [ (x),
k=1 a1ée[§/2]s

where c =c¢, +c,+ ... +¢,, r=r,+r,+ ... +r, and 4 15 any partition such
that F* is formed from F* through the addition of s slinkies each of length
(N —2) with the ith slinky starting at position (1, r;) and extending over c;
columns.

As a trivial application of this formulation of the identity it is easy to deal
with the case N = 3, corresponding to the group SO(3) and the algebra so(3).
In this case the only allowed core in the first summation is a = (0). Since
(N —2) = 1 the added slinkies consist of single boxes added to the first row. It
follows that (5.11) gives

(5.12) nA,,k(xn z( 1y" g™ 72 [m] ().
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Setting x, =€’ x, =e~* and x, =1 this gives (5.3), whilst setting x, = x,
= x, = 1 gives the Jacobi identity (5.4).

The form (5.11) is the optimum form of an expansion of type (5.6) in the
sense that all the resulting characters are SO (N) standard. To make contact
with the original expansions of type (5.1) it is necessary to examine closely the
lattice M and to perform the Weyl reflections bringing each vector m to the
dominant chamber. Such an examination lends support to the validity of the
conjecture (5.8), and consequently to (5.11).

Note

At the time that this talk was presented at the Stefan Banach International
Mathematical Center in Warsaw the above conjectures were only supported by
some explicit calculations of the first few terms in the various power series
expansions, some checks against the original Macdonald identities and some
dimensionality checks involving specialisations of the type x; = 1. It can now
be reported that we have devised proofs of all the conjectured results (5.8).
These proofs will be published elsewhere. Suffice to say that they involve
various generalisations of Lemma 2 in Section 4. One such generalisation takes
the form

Lemma 4.
(5.13) S A ,/Cr (x) = SA,(x)SA,pz/C,_I(x)’
from which it follows that
(5.14) S, /C(x) Sa, (x}s, €, _,(x)

= sAq(x)squ(x)sAqJ/Cq_z(x) =...=]] Sa (%)

where it is necessary to take care that at the nth stage of this iterative process
the last factor only contributes 1+4""!'(...).

Thanks to (3.7) this serves to prove (5.8a). All the other conjcctures (5.8)
can now be proved in a similar way.

The remaining conjecture (5. 9) has essentially been proved by Stembridge
[Ste] using altogether different methods and without making quite as explicit
as we have done the universal nature of the result (5.9) and the related
importance of the modification rule (2.3).
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