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Several approaches to attach invariants to an intersection in projective space
with components having excess dimension are compared, among which (1) the
cone construction of Severi, leading via work of Samuel and Behrens to an
approach by Stickrad and Vogel, extended by Kirby and the author, (2)
Fulton and MacPherson’s intersection theory and (3) an approach based on
a theorem by Pieri on correspondences. The relations between them are
explained and it is shown that they are just different aspects of the fundamental
notion of the normal cone and its Segre class. The different approaches come
each with a different generalization of Bézout’s theorem, however, again there
is just one fundamental relation in the background, which also gives rise to the
double point formula for projections, Holme’s imbedding obstructions,
Adlandsvik’s join-, Peters and Simonis’ secant- and Johnson's connecting
formula, and a new principle for fixed points of correspondences.

Introduction

In most intersection or homology theories, one attaches to the intersection of
two subvarieties X and Y of a non-singular variety P, a rational equivalence
class or homology class XY of the expected dimension

dmX-Y=dimX+dimY—-dimP

supported on the ambient space. This class is stable under deformations of
X and Y.

Opposed to this there have been several approaches which instead relate
the geometry of X n Y to that of X and Y, even if the intersection has excess
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dimension, ie.
e=dimXnNnY—-dimX—dimY+dimP > 0,

and which remains interesting if the expected dimension is negative. Several
lines of thought can be traced since the past century and we will describe some
of these approaches.

Perhaps the oldest one stems from a theorem of Pieri on correspondences,
which recently was generalized by Fulton. Severi initiated two other ways, a static
and a dynamic one. The first is the cone construction. It inspired several authors
to define intersection multiplicities rigorously and canonically. Along the same
line, Stiickrad and Vogel developed an intersecting algorithm which gives rise to
a Bézout type theorem. The dynamic way Severi proposes, is based on moving the
varieties. It is very subtle what deformations should be allowed to do this
correctly and Lazarsfeld works this out rigorously. A variation is given by Murre.
Quite sophisticated is the intersection theory of Fulton and MacPherson. They
give not only an intersection product with functorial properties, but also develop
a theory of Segre classes of cone bundles.

Our aim is to relate the various approaches with the Segre classes as our
guideline. Straightforwardly we obtain also a new insight .into well-known
results as the double point-, join-, and secant formulas and Johnson’s
connecting formula. Furthermore, a principle for correspondences comes out,
generalizing Pieri’s theorem considerably. We conclude with some examples,
showing aspects of the relations.

1. Severi’s cone construction, Stiickrad and Vogel’s approach

The idea of Severi’s cone construction for projective space is to enlarge the
varieties to make the intersection proper. Let Z be an irreducible component of
X NY with excess dimension e, let L, and L, be two linear spaces of
dimensions e, -1 and e¢,—1 in general position such that

e,te,=e, e, 20, ¢€,20.
Let Cy be the cone on X with vertex Ly, ie.
Cy= | xa

xeX
auel x

(and Cy = X 1if e; = 0) and let C, be defined analogously. Then C, and C,
intersect properly along Z and the idea is to take as intersection multiplicity of
X and Y along Z, that of Cy and C, along Z

iI(Z; X-Y)=i(Z; Cy-Cy).

This method in particular can be used to assign multiplicities to a proper
intersection on a projective variety V' g P” viewing it as an intersection on P”,
or to prove a moving lemma for V: suppose X and Y intersect improperly on V,
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then [X] =) n;[XJeA,V, for some X, which intersect Y properly. Indeed,
choose L, of dimension codimg.V—1 generally, and consider the proper
intersection of C and V. It has X as a component, the rest « of the intersection
will intersect Y with smaller excess dimension. The cone C, can be moved to,
say, C' using projective transformations, and will then intersect Y properly. As

[X] = Ei(Z; Cy V)[Z]—uecA,V,
' z

the moving lemma follows with induction on the excess dimension (see [6] Ex.
11.4.1, p. 206).

After Weil [25] introduced the diagonal construction (the intersection of
some X and Y in A" can be constructed as the intersection in A*" of X x Y with
the diagonal A, which is a linear space) to define intersection multiplicities
rigorously, Behrens [2] took up both ideas and defined

iZ; X -Y)=i(Z;C,- X xY),

where the last is Weil’s intersection multiplicity, here L, is thought at infinity
and C, is just a general linear space of dimension n+ e containing 4. He shows
that this equals Severi’s number. Just before, Samuel proposed mn his
fundamental paper [20], the multiplicity of the primary i1deal of the diagonal in
the local ring ¢y, , , as intersection multiplicity and showed it satisfies some
natural properties, among which the coincidence with Severi’s definition.
Achilles, Tworzewski and Winiarski [23] recently used the same idea and
described in an analytic context what conditions L , should satisfy to be general
enough.

This C, is a linear space, so the intersection can be realized as a series of
successive hyperplane sections, where the hyperplanes are chosen generically,
containing A. Stiickrad and Vogel in their algebraic approach to intersection
theory [22], did not stop at this poiat where irreducible components of X n'Y
appear. Their idea is to lay these components aside and to continue to intersect
the rest of C,- X x Y with a generic hyperplane containing the diagonal. The
components of this intersection contained in X N Y, are laid aside and the rest
is intersected with the next generic hyperplane containing the diagonal, etc. All
components laid aside together with their multiplicities form a cycle to which
we refer as the Vogel cycle (a detailed description will follow below) and which
we denote by L nJ(X, Y). It should be noted that Vogel and Stiickrad used
the join construction instead of the diagonal construction and they worked in
the affine cone over the join space, but this makes no difference, apart {rom the
possible contribution of the origin, which they call the multiplicity j, of the
empty set. The main result concerning the Vogel cycle is the following.

TueoreM 1.1 (Stickrad, Vogel). The sum of j, and the degree of the Vogel
cycle L nJ(X,Y) nJ(X,Y) equals the Bézout number deg X -deg ¥,

degLnJ(X, Y)+j, = deg X -deg Y.
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This idea was extended by Kirby [14] to a more general situation, the
mtersection of a graded module over a graded noetherian ring with a so-called
g-multiplicity system. Independently a similar generalization was described in
a more geometric language in [8], we recall it below. In the meantime
Philippon [18] gave a Bézout like statement in multiprojective space, bounding
the multidegrees of the components of the intersection of a cycle and
a collection of hypersurfaces in terms of the multidegrees of these hypersurfaces
and of this cycle (see also Brownawell [4] and Fulton [7]). He used the same
series of successive intersection by hypersurfaces as the above authors.

We give here Vogel’s algorithm and the definition of the Vogel cycle, as in
[9]. Let V be a pure dimensional scheme, f: V — Y a map to a scheme Y, ¥
a line bundle on Y, and let 2 = {D,,..., D,} be a collection of effective
Cartier-divisors defined by sections s,, ..., s, of . Lety;; fori,j=1,...,d be
_indeterminates adjoined to the ground field and call the new ground field .
Define “generic” divisors D} by

Denote by W the fibre product Vx,(D, n...nD,). By induction we define
effective cycles for each codimension j by the following

ALGORITHM. (to start) Decompose V = a°+ ¢° where o is the part of the
fundamental cycle [V] supported by W, and ¢° is the rest. '
(induction step) Decompose

f*Dj @™t =l +¢,

where o’ is the part of the intersection supported by W, and ¢’ is the rest.
(to finish) After d steps everything will be supported by W, so g = 0.
We put o/ = ¢/ =0 for j > d.

Notice that the intersection in the induction step is proper, so we can take
for the intersection product Weil's, Severi’s, Samuel’s, Serre’s or Fulton’s
definition since they are all equivalent here.

DEeriNiTION. The Vogel cycle of 2 and V is
2aVEY o

jiz0
For a correspondence T on P" (i.e. a closed subscheme of P" x P") defined by
a bihomogeneous ideal I in k[x,, ..., x,, Yo, ---, V,], We consider the scheme
T* = P?"*! defined by the elements of I which are homogeneous in all
variables. Let L; be the hyperplane x; = y, and let L be the collection of these
hyperplanes. Then the Vogel cycle of T is by definition L » T*. In the case
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T=XxY,this T* is the join J = J(X, Y) of X and Y. Stiickrad and Vogel
considered the affine cones L; and J, and one has
T

LaJ=LnJ+j,[0],

where ¢ is the vertex of the cone A*"* 2 over P?"*!, so the vertex is interpreted
as the cone over the empty set, defined by the irrelevant ideal. Of course, such
a jp exists for any correspondence T.

2. Fulton and MacPherson’s intersection theory

Fulton and MacPherson developed an intersection theory [6] which has both
dynamic and static aspects. It attaches to an intersection of a variety mapping
to an ambient scheme V — P with a regularly imbedded subscheme D g P,
a rational equivalence class of the expected dimension, supported on the fibred
product W= Vx,pD. If V- P is an imbedding then considering the equiv-
alence class on the ambient space, one recovers the usual intersection class. The
central idea is to use the deformation to the normal bundle and to move the
zero section in order to make the intersection proper, which, passing to
rational equivalence, can be done in a canonical way. We will explain this in
some more detail.

Recall the notion of the normal cone C, V of V along W. It is defined by

Cy V= Spec @ J/Fi+!
i=0
where J is the sheaf of ideals of W in V. The projectivization P(C,, V) is just the
exceptional divisor of the blowing up of V along W. If W is a point, Cy, V is the
tangent cone and if W is regularly embedded in V it is the normal bundle N, 7,
see [6] B.6.1, p. 435.
Consider the fibre diagram

Wao V

ool

DasP

where D g P i1s any regular imbedding of codimension d. Applying the
deformation to the normal bundle to this diagram, we get

Wa CypV
! !

So

D o N,P

where s, is the zero section of the normal bundle N, P, see [6] Ch. 5. Let N be
the pullback of N, P to W with structure map n: N — W. For any vector

% — Banach Center 1. 26, cz. 2
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bundle E, there is a well known isomorphism
nf: AW ALE,

whose inverse can be thought of as intersecting with the deformed zero section
(in fact any section) of E ([6] Thm. 3.3.a, p. 64 and Cor. 6.5, p. 111).
The fundamental definition of Fulton and MacPherson is ([6] 6.1, p, 94).

DerFiniTION. The intersection product of V with D is
D-V=(@%""[CyV]ed, W

[t comes with a canonical decomposition: if  m;[C,] is the fundamental cycle
of Cy V, and Z; is the support of C;, then the canonical decomposition is

Zmi (“mzi)_l [(Ce ('DiA* Z,

The Z, are called the distinguished varieties of the intersection.
A different way of defining the intersection product is by using Segre
classes. We recall this concept.

DeriNiTION. If C - W is a cone bundle (the spectrum of a sheaf of graded
algebras), and p: C — W is its projective closure with tautological line bundle
0(—1), then the Segre class of a subvariety B of C is

sB)E p, (Y ¢, (0()f n[Bl)e A, W.
i=0
If B = C, we write s(C) for s(C). For the projective closure E —» W, there is the
Grothendieck—Fulton isomorphism ([6] Thm. 3.3.b, p. 64 or [9]): for all k

d
c(Eyns(—): ALE> DA _ W

where c¢(E) denotes the total Chern class of E and d is the rank of E.

ProrosiTioN 2.1 ([6] Prop. 6.1, p. 94). The intersection product D-V is the
part of ¢c(N)Nns(Cy V) of expected dimension

D-V={c(N)ns(Cy V)}dimV—d-

Later we will see that the normal cone and its Segre class plays also
a fundamental role behind the scenes in the other theories.

We turn to a dynamic way Severi proposed to handle excess intersections
of n hypersurfaces X |, ..., X, in P" ([21] 6.19, p. 258). The idea is to move the
hypersurfaces to make the intersection proper in order to decompose the
Bézout number into “numerical equivalences”, attached to various subvarieties
of the intersection. The numerical equivalence i(Z) of some subvariety Z of
X,n...nX, is determined with induction on dimZ as follows. Consider
a general deformation X, ..., X of the hypersurfaces, then i(Z) is the degree
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of the part of the limit intersection cycle lim,,, X|-...- X} supported on Z,
diminished by the sum of the numerical equivalences of proper subvarieties of
Z. Lazarsfeld [15] made this rigorous (the meaning of general is very subtle
here), and explained the relationship with the intersection theory of Fulton and
MacPherson, stating that the part of the limit cycle supported on Z is just the
part supported on Z of the canonical decomposition of the intersection of
X, x...xX, and 4 in P"x ... xP" Rather than its degree, the equivalence
class on Z is the good notion to generalize, Fulton ([6] Remark 11.3, p. 201)
shows that this class can be constructed in essentially the same way in the
situation of the beginning of this section, as soon as the normal bundle N, P is
generated by sections which are characteristic for some deformation.

Following a suggestion of Weil in [25], Murre [16] defined a multiplicity
ic(X, Y) for a connected component C of the intersection of two subvarieties
X and Y of complementary dimension in a projective variety V. He uses the
same idea as in the sketch in Section 1 of the proof of the moving lemma for V,
defining

(X, VY=Y i(W; Cx- Y)=Y ip(, Y)
W ¥4

where W runs through the irreducible components of Cxn'Y and Z runs
through the connected components of an Y. This definition is only for
a connected component, not for an irreducible one, thus problems concerning
the choice of L, and the deformation are avoided. De Boer [3] gave a more
intrinsic reformulation of this, using an Euler-Poincaré characteristic. As
above, Murre’s definition could be extended to arbitrary dimension if the
implicitly defined cycle class, instead of its degree would be considered. Fulton
([6] Ch. 8, p. 152) indicates that this is in fact nothing but the part supported
on C of the canonical decomposition of 4-X x Y.

3. Pieri’s theorem on correspondences

Implicitly an approach can be found in Pieri’s paper on correspondences [19].
Let T g P"x P" be a correspondence on P". Let 4 be the diagonal, the fixed
point locus is given by 4 T. We denote the excess dimension by e. Let

A Agc...c A,
be a flag on P" it defines special Schubert cycles on G, P™
o(A4)={leG,P'{ln A4, # O}.

The projectivized normal cone P(C,., T) is called the scheme of principal
tangents. It has a structure map

p: P(Cy 7 T)>ANT
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and it 1s naturally imbedded in P(Tg.). There is a natural map
P"xP"— — _'»GIP": (X’ y)'_’ﬁa

which can be extended to a map ¢ from the blowing up (P" x P")~ of P" x P"
along 4 to G, P". On the exceptional divisor P(Tp.) it sends a tangent line to
the imbedded tangent line. So a principal tangent of T is a limit of lines xy with
(x, y)e T specializing to some (z, z)e 4 n T. Define

v = p*((p*G(Ae_j)'[P(CAnT T)])GZ*A N T,
so set-theoretically
v ={zednT|3[[]eP(C . T) st. zel and In A,_; # D},

It is not very hard to see that th% irrreducible components of 4 n T appear with
nonzero multiplicity in v(T, &)= Y ¢_, v". Pieri proved in 1891 the following

THEOREM 3.1 (Pieri). For a correspondence T of dimension n and a general
flag of

totalbidegree T = deg v (T, ).

For T = X x Y, the totalbidegrec of Tisdeg X -degYand AnTis X N Y,
so we obtain a generalization of Beézout’s theorem valid for improper
intersection. Fulton gives a modern proof and a generalization to higher
dimension of T ([6] Ex. 16.2.2, p. 316). In the extreme case of self-intersection
T = X x X, these cycles are the polar varieties of X with respect to .,
obtained as ramification loci of the restriction to X of the linear projection =;:
P"—A4_ _._, —» P The degree of v/ is called the j-th rank of X. They were
extensively studied for a non-singular variety X as they give an extrinsic way to
handle the Chern classes of X (see Section 4).

4. The relations

The relationship between the Severi-Lazarsfeld, Murre-De Boer line and
Fulton-MacPherson’s theory was already discussed in Section 2. Fulton relates

Pieri’s cycle to their intersection product by intersecting with hyperplanes (cf.
[6], Ex. 16.2.1, p. 315)

4-T=) c (0 ' nved 4nT.
j=0

This could be done as follows. The Schubert cycles (A, _ ;) represent the Chern
classes of the tautological quotient bundle Q on G, P". The bundle ¢* Q differs
by a twist with ¢p.(— 1) from the quotient bundle ¢ = N, P" x P"/@\(—1). This
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enables us to express v(T, /) as the Segre class of the twisted cone(')
s(C®1H®O(—1)), abbreviating C=C,. .+ T, O(—1)= Op.(—1) and N =
N ,P"x P". Indeed

(T, &) = p, clo* Q) n[P(C)]
=pc(l@p*O(— )N [P(C)]
=p.c(N®p*O(—=1)) ns(Oy (- 1)@ p* O(—1)) N [P(C)]
= P (0" p* O(— D)) s (Oy (- )@ p* O(—1)) n [P(O)]
=p,s(pP*C(— 1)) " 5(Ocgo 1) (— )N [P{CRC(—1))]
= s(O(=1) ns(CO®O(—1))

=5(CRO(— B O(—1))
=5(CON®O(—1).

By the formula for the Segre classes of a cone C twisted by a line bundle L
(see [9])
sS(COL)= Y s(LYns_;(0)
jz0
where k is the dimension of C, s(L) is the total Segre class of L and s;(C) is the
ith dimensional Segre class of C, we obtain as dimt' = dimC—n+e—j
s(C)= ) s(Op (D))" A,
izo
§O

4T = {eN) 5Oy = (Ze (@ ) Ao}, = Loy (O A

The description of the connection between the Severi, Samuel, Behrens,
Stiickrad-Vogel approach and Fulton—MacPherson theory is the main result
of [8] and is stated here. From the definition it is easy to see that

ProrposiTiON 4.1. For 1 €£j<d
D ....D; V=Y c (&Y 'nd+gded_;(f /'Din...nnf ' D V),
i<j
deg,V = ) deg, o' +deg, 0"
i<j
In particular, for j = d, the relationship between the intersection product
and the Vogel cycle follows. The statement about the degrees is a generalized

(d‘)r The twisted cone is defined as follows: if C =SpecS and L = SpecSymR, then

C® L'= Spec (5"« R)', where (§"+ R)* = $® R®?. There is an isomorphism f: P(C® L) - P(C),
and we have for the tautological bundles

Ocgr(—1) = B*Oc(—1)®(pof)* L.
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Bézout theorem and proves Theorem 1.1 of Stiickrad and Vogel and the
Bézout theorems of Philippon, Kirby. However, there is a deeper lying
connection.

THeOREM 4.2. The equivalence class of the Vogel cycle is the Segre class of
the twisted cone C, V® £

P aV=s(CyVRL )eA W

So the algorithmic and the Segre classes approach coincide up to a twist.
On the one hand, this gives us insight into the geometrical meaning of the
Vogel cycle, on the other hand, we have here a rather easy way to compute the
Segre class. Apart from reproving the above proposition, it gives also

CoroLLerY 4.3. The coefficient of an irreducible component Z of W in
D 'V is the multiplicity (e V), of V along W at Z.

The proof of Theorem 4.2 in [9] 1s based on the invariance of the Vogel cycle
under the deformation to the normal bundle. This gives something more, namely:
the distinguished varieties are precisely the only components of 2 m V not
depending on the ;. The main problem Vogel poses in [24}, is to describe the
contribution of imbedded components of . 4N X x Y to the Bézout number
deg X -deg Y. If this contribution is to be measured by the Vogel cycle, this
question is changed to the characterization of those imbedded components which
give rise to distinguished varieties of 4 n X x Y. This is in fact a purely algebraic
question: given an ideal I in a ring R, what are the minimal primes of the
associated graded ring gr; R? An example by Flenner [ 5] shows that there is no
hope for bounding the number of imbedded components by the Bézout number.

From the invariance of the Vogel cycle also follows that for a correspon-
dence T on P" not only

LaT* =v(T, )
as equivalence classes, as both equal i
S(CLnT' ™ ®P* O(— 1)) = S((CAnT TOH@p*O(— 1))7
but in fact also as cycles, once we choose «f to be the generic flag
A;= V(Y this i nXili+1 <h < n).

i=0

For the self-intersection T = X x X, it follows that the Vogel cycle consists of
ramification classes which are just twisted Johnson-Segre classes s(C, X x X)

V(X xX, o) =s5(Cy XxXDNHR®O(-1)),
so if X is non-singular

v( X xX, &) =s(T,®@)®O(—1))n[X].
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If X is singular, Stiickrad and Vogel’s algorithm enables us to compute the
contribution of singularities to the Johnson-Segre classes (see [107]).

5. On Stiickrad and Vogel’s algorithm

In view of the generalized Bézout theorem and to understand Stiickrad and
" Vogel’s algorithm better, it would be interesting to have a geometric inter-
pretation in the case of a correspondence for the rest cycles ¢/ and the
multiplicity of the empty set j, as well. We recall the description from [9].
Consider the rational map relating the join and the diagonal space

¢ Pl L Prx P,
(xg:i...: XpiPgieeet Yy (g ix), Bgteeiya)
which is not defined in xq = ... =x,=0and in y,=... =y, =0, it gives ar

isomorphism between L and 4. Denote the strict transform of T under the
blowing up (P"xP"~ of P'xP" along 4 by p: T-»T Let o:
(P"xP")~ — G, P" and the Schubert cycle a(4,_;_,) be as in Section 3, where
we choose for o/ the generic flag of Section 4.

DeriNtTION. The cycle of new fixed points NF(T, ;) of the correspondence

‘T under the projection n; P"—A4, ., —»P/is

NF(T, )= p,(¢*a(A,_,_ ) T)

Indeed, it consists of points of T which are generically not fixed, but become
fixed under x;. In the case T = X x X, the new fixed point cycle is just the
double point cycle D(r;) of =n; restricted to X.

ProPOSITION 5.1. The push forward under @ of ¢ is the new fixed point cycle
of T under m;_,

®,0' = NF(T, m;_,).
If T=XxX, the defining relation
Lj+1 'Qj =o/*! +Q'i+1
pushes forward to
c (0()D(n;_ )= P, +D(n)ed, X,

(and @, &’*! =v*7"*/(X x X) is the ramification cycle of n;_,|y), this is the
connecting formula found by Johnson [13] and explained by Hansen using the
diagonal construction [11]. Indeed, (forget ¢, for a moment) eliminating one
variable less, i.e. considering n; instead of n;_, comes down to intersecting the
double point cycle D(n;_,) with the hyperplane Lj corresponding to this
variable in the join space. The intersection cycle decomposes into a part not
contained in the diagonal, consisting of pairs of points (x, y) whose line joining
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them xy hits the smaller projection centre 4,_;_,, thus giving D(xn;), and
a part contained in the diagonal, consisting of points with tangents hitting
A,_;, thus giving the ramification cycle o/**
The equality of Proposition 4.1
L'J-'...'L'l (X x X)* = Z Cl((o(l))j_kmak+gj
k<

pushes forward via @, to

Ap;-1 X xX = Z cl((ﬁ’(l))j_"moz"+D(nj_l)

k<)
and as

Y (@MY rdk = {m (T ) n (T A [X T v s -

k<]

one recovers the well-known double point formula for linear projections (cf. [6]
Th. 9.3, p. 166).

The multiplicity j, of the empty set has a similar interpretation. Consider
the incidence correspondence I = {([!/], x)e G, P" x P"}xel} with natural pro-
jections p,;: I - G,P" and p,: I - P".

DeriNniTION. The span T° of a correspondence T on P" is

T*Ep,(pr (e(M) = U .

(x,v)eT

The proper part T of the span is the part of expected dimension dim T+ 1 of
the fundamental cycle of T°

= def ~
TE (p,), 0¥ ¢, T€Zgimrs1 T

For T = X x Y, this T* is the imbedded joinin P"of X and Y, for T = X x X, it
is the secant variety.

PRoOPOSITION 5.2. The multiplicity of the empty set j, is the degree of the
proper part of the span of the correspondence

jo=degT.

6. The generalized Bézout theorem

Now that we have this geometric interpretation of the cycles of Vogel’s
algorithm and of the multiplicity of the empty set at our disposal, it is worth
reconsidering the generalized Bézout theorem for a correspondence. We obtain,
following [9], from Proposition 4.1 applied in the cone over the join space the
following principle for fixed points.

THEOREM 6.1. For a correspondence T on P" the following relation holds

degv(T)+deg T = totalbidegree T.
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COROLLARY 6.2. For a correspondence T on P" the following relations hold

(1) T has no fixed points iff deg T = totalbidegree T
(2) T has fixed points if dim T° < dim T+ 1.
(3) Let 7 — B be a flat family of correspondences on P". The change in the
degree of T is compensated by that of v(T)
limdeg 7 ,—degJ ,+limdegv(7,)—degv(T,) =0. -
b—0 b—0
If dimT >n, then T=0 as dimT* < n < dim T+1, so Pieri-Fulton’s
theorem reappears. If T = X x Y, the above is Stiickrad and Vogel’s theorem,
but it can also be read as

deg X x Y =deg X -deg Y—degv(X x Y).

Applying the formula for Segre classes for twisted cones and standard
arguments for Segre classes of bundles, we get a formula due to Adlandsvik

L1]:

I+m+1

deg X x Y = deg X -deg Y—Z(H_m _
- —i

)deg Si+m-i(Cxar X X Y)

where | = dim X, m = dim Y and 5,(Cy,y X x Y) denotes the part of the Segre

class of dimension j. The cycle X x X is twice the secant variety if this has the
right dimension 2dim X + 1, and we get

2degSec X = (deg X)* —degv(X x X).

For non-singular X, expressing v(X x X) in the Chern classes of X, a formula
due to Peters and Simonis [17] reappears.

If the secant variety has not the expected dimension, X might be imbedded
in a smaller projective space via a linear projection n;. The restriction =}y is for
non-singular X an imbedding iff D (n;) = 0 (indeed, there are no ramification
points by the connecting formula), and we see that this is the case iff

j*1

0 =dego’*! =(deg X)*— ) dega.
' k=0

Expressing the o in the Chern classes of X, we obtain Holme's imbedding
obstructions [12]. For X singular, these obstructions are more subtle, however
under some conditions, the same result holds (see [12]).

Concluding the comparison of the different approaches to excess intersec-
tions, we see that the normal cone C, ., X x Y plays a fundamental role behind
all of them. Different approaches centre about different aspects of the cone. In
the Severi, Samuel, Behrens, Stiickrad—Vogel line in fact the Segre class of the
twisted cone s(C ® 0 (—1)) was studied, first only the top-dimensional com-
ponents, although the way of arriving at these classes is very different from
their definition. In the Pieri-Fulton approach, the focus is on the extrinsic
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geometry of the cone, the way it is situated in projective space, measured by
pulled back Schubert cycles. Fulton—-MacPherson's intersection product, and
also the Severi, Murre, De Boer, Lazarsfeld multiplicities, describe the stable
part under deformation of the Segre class {¢(N )N s{(C)}aimx+dimy -n-

In the same way, the generalized Bézout relation

deg,V =deg, 2 n V+deg,o*™"

gives the Philippon and Kirby versions of Bézout’s theorem and gives for
a correspondence a fixed point principle

degv(T)+deg T = totalbidegree T,

which gives rise to statements concerning the intersection product and the
extrinsic geometry (Pieri’s theorem, Stiickrad and Vogel’s Bézout theorem and
double point-, imbeddings-, secant- and join formulas).

7. Examples

(1) The self-intersection of a hypersurface in P"

Let X be a reduced hypersurface of degree d defined by F =0, let o/

Ajc...c A,_, < P" be a flag. Then every tangent space meets A,, so
(X xX)=p,(0p*0(A,) [P(Cx X x X)]) =[X].

The zeroes of Y,a;0F/0x; form the polar variety with respect to
Ay =1(ay:a,:...:a,) and
oF
Ox;
So only the singularities in codimension 1 contribute to the Vogel cycle, with
the multiplicity of the Jacobian ideal. We can compute the Johnson—-Segre

classes of X using the formula for twisting Segre classes (cf. Yokura [26]).
Bézout theorem gives indeed

4> = d+d(d—1) = deg v° (X x X)+degv' (X x X).

V(X x X, &) =p,(p*c(4,) [P(Cx X x X)]) = V(Za,- )n[X].

(2) The non-singular case

Suppose X,Y and W= XnY are non-singular. The excess normal
bundle of the intersection is defined as

EXN,PY,/Ny X.
Then
v(XxY)=s(Ny J(X, V)QO(—1)n[W]=c(E®RO(—1))n[W].
This follows from the exact sequence
0> NJ->N P - E—0
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after tensoring with ¢ (—1). Fulton ([6] Ex. 12.3.6, p. 225) already gives for the
case dim X +dimY >n

deg X -deg Y = degc(E®Q G (— 1)) n[W].
(3) Bilinearity

Let the curves C and D in P? be defined by x?y = 0 and xy*> = 0. Note
that the Vogel cycle v(X x Y) is defined on cycles and therefore is bilinear in
X and Y and that

[CxD] =Q2IVI+IV) x (V)1 +2V(»)])
=2[V(x)x V)]+2[V(n)x V)] +5 V() x V(y)].

It is easily seen (e.g. using the Bézout theorem) that v{V(x) x V(x)) = [V(x)],
hence

v(CxD)=2[V(x)]+2[V(NI+5[V(x, y)].
Indeed, 2+2+4+5=3x3.
(4) The imbedded join

Let X, and Y, be flat families of projective varieties of degrees d, and d,,
over a non-singular curve B, disjoint for b # 0 and having a finite number of
points P,,...,P, in common for b=0, with multiplicities
m; = (€x,ny, X0 X Yo)p,- Then the imbedded joins satisfy

deg X, x Y, =d;d, (b+#0),
deg Xox Yy =d,d,—Y m,.

The limit cycle lim,ﬁo_X,, x Y, falls apart in X, x Y, and components of degree
m; for each point of intersection P;.
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