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This appendix is in a sense a continuation of [13], in which we proved
a conjecture of Fulton and Lazarsfeld ([11, Remark 2, p. 50]) on the
connectedness of symmetric and skew-symmetric degeneracy loci, when the
rank is even. We now deal with the remaining case of odd-rank symmetric
degeneracy loci. We are able to prove the following,

THEOREM. Let E be a vector bundle of rank e and L a line bundle over an
irreducible variety X. Suppose u: E® E — L is a symmetric bundle map and
r a positive odd integer <e If (Sym*E*)®L is ample and dim.X
—(¢73*Y) = e—r, then the degeneracy locus D,(u) is connected.

This is not quite the result that we would like, for in the conjecture the
dimension hypothesis is that dimc X —(°75"") > 1.

The key observation in our proof is the linear-algebra fact that just as the
set of symmetric bilinear maps of rank at most an even integer can be
characterized by the existence of an isotropic subspace of a suitable dimension,
so the symmetric bilinear maps of rank at most an odd integer can be
characterized by the existence of a pair of subspaces V, < ¥, of suitable
dimensions such that the bilinear map vanishes on V, x V,. Section 7 is devoted
to a proof of this characterization. For the proof of the main theorem, we found
it useful to introduce for two subspaces A4, B of a vector space E the concept of
symmetric bilinear maps on A x B and dually that of the symmetric product
Sym (A, B) of A and B. This is done in Section 8. Using the linear algebra
developed in Sections 7 and 8, it is then possible to represent an odd-rank
symmetric degeneracy locus as the image of a zero locus on a flag bundle.

[249]
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To prove the connectedness of this zere locus, we proceed more or less as in
[ 13], replacing the Grassmann bundle there by the flag bundle. The cohomolo-
gy companson lemma ({13, Lemma 3.6]) again applics, but curiously the
numbers yield only the result above, instead of the full conjecture.

§ 7. Symmetric maps of rank at most an odd integer

Let E be a vector space of dimension e and ¢: E x E — C a symmetric bilinear
form. An isotropic subspace of ¢ s a subspace V such that ¢ vanishes on V'x V.
Proposition 1.4 says that rk ¢ < 2p if and only if E contains such a subspace of
dimension e —p.

ProrosiTion 7.1. The symmetric bilinear form ¢:. Ex E — C has rank
< 2p+1 if and only if E contains a pair of subspaces V|, < V, of dimensions
e—p—1 and e—p respectively such that ¢ vanishes on V; xV,.

Proof. (=) If rk¢ < 2p, choose V, to be an isotropic subspace of
dimension e—p and V, to be any subspace of V, of codimension one. If

rk ¢ = 2p+ 1, then relative to some basis {v,, ..., v}, ¢ is represented by the
matrix
1
OP IP ,
IP OP
Oe—lp—lJ

where 0, denotes the k x k zero matrix, and I, the p x p identity matrix. Choose
V, to be the subspace with basis {v,,,, ..., v} and V, the subspace with basis
{0, 0,42, ..., 0,}. The matrix of ¢|y,.,, relative to this basis is

oo
0 Oe—p—l ,

which shows that ¢ vanishes on V, x V.

(<) Suppose E contains such a pair of subspaces V;, < V,. Then V] is an
isotropic subspace of dimension e—p—1, and rk(¢|,,«y,) < 1. By [12, Prop.
41, whenever the dimension of a subspace drops by 1, the rank of the restriction
of a quadratic form to the subspace drops by at most 2, so that
rk (¢, «y,) =k ¢—2p. Hence, rk¢ <2p+1. m

§ 8. The symmetric product of two subspaces

Given a vector space E and two subspaces A and B, we say that a linear map ¢:
A® B— C is symmetric if it is the restriction of a symmetric linear map:
E® E - C. The space of all symmetric linear maps on 4 ® B is denoted



SYMMETRIC DEGENERACY L.OCl: ODD RANKS 251

Hom*(A &® B, C). In other words,
Hom’(4 ® B, C):= image(Sym? E* 5 (E ® E)* - (4 ® B)*).
We also define the symmetric product Sym(A, B), a subspace of Sym? E, to be
Sym (A, B):= image(4 @ B 5 E® E -5 Sym? E),
where j: E® E - Sym? E is the natural projection.

ProrosiTionN 8.1. The dual of Sym (A, B) is canonically isomorphic to the
space of all symmetric linear maps on A ® B:

Sym(4, B)Y* ~ Hom*(A ® B, C).

Proof. The definition of Sym(A4, B) may be rephrased in terms of the
following exact commutative diagram:

0 A®B - EQ®E

l li
0 — Sym(A, B) — Sym?E

} |

0 0.

Dualizing gives
0— (A®B* < (EQRE)*

T T
0 « Sym(A4, B)* « Sym?E*

li 1

0 0,

which shows that
Sym(A. B)* = image (Sym? E* 5 (E ® E)* - (4 ® B)¥)
=Hom*(A®B,C). =

In general the dimension of Sym (A, B) depends on the dimension of
AN B; in the special case when A = B, we have the following formula.

LEmMMA. If A c B, then
dim Sym (A4, B} = (a+ 1)a/2+a(b—a),
where a =dim A and b = dim B.

Proof. Choose a basis v, ..., v, for A, and extend it to a basis v, ..., v
Uys1s---» U, for B. Then a basis for A@B is

ar

p,®u, I<i<a 1<j<h.
The images of these vectors in Sym? B are

(=) bvy= 0 ®u 0@, 1<i<a l<j<b.
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Because of redundancies, for example v, v, = v, v, the vectors (*) are obvious-
ly not linearly independent in Sym2 B, but at least they span Sym (4, B).
Deleting redundant vectors from (x), we are left with

vv;,, I<i<j<a,

and
vv, 1<i<ga, a+1gjgh,

which are linearly independent in Sym? B. So they form a basis of Sym (A, B).
Consequently,

dim Sym (A4, B) = (a+1)a/2+a(b—a). =
ProrosiTION 8.2. Suppose A  B. Then there is an exact sequence
0 - Sym (A4, B) - Sym? B — Sym?(B/A4) - 0.
Proof. Tensoring the exact sequence
0~ A—->B->B/A-0
by B yields the exact sequence
0-A®B->B®B—-+(B/A)® B-0,

which fits into the commutative diagram

0> A®B — B®B — (B/AY®B — 0,
l ! !
0 —» Sym(4, B) —» Sym? B —» Sym?(B/A) - 0.
A little diagram-chasing shows that Sym (A, B) is contained in the kernel of the
natural surjection a: Sym? B - Sym?(B/A). Since
dimkero = 3(b+1)b—3(b—a+1)(b—a)
=4(a+1)a+a(b—a)= dimSym (A, B),

the two spaces Sym(A, B) and kera are actually equal. This proves the
exactness of the sequence in the proposition. m

ProposITION 8.3. Suppose A — B and ¢ € Sym? B. Let ¢: B* ® B* — C be
the symmetric linear map associated to ¢. Then ¢ lies in Sym (A, B) if and only if
(B/A)* is an isotropic subspace of ¢.

Proof. By the exact sequence of Proposition 8.2, an element ¢ of Sym? B
lies in Sym (A, B) iff its image in Sym?2 (B/A) is zero iff it is zero as a symmetric
map: (B/Ay* x(B/A)* —» C iff (B/4)* is an isotropic subspace of ¢. m

If E is a vector space of dimension e and y: Ex E —» C is a symmetric
bilinear map, we define the isotropic Grassmannian G, (k, L), sometimes written
G, (k. e), to be

G,(k, E):={V = G(k, E)]V is an isotropic subspace of y}.
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Note that for dim¢E = 2, G, (!, E) is precisely the quadric defined by v in the
projective space P(E).

ProPOSITION 8.4. Let B be a vector space of dimension b, ¢ € Sym? B, and ¢:
B* ® B* — C the symmetric linear map associated to ¢. Then the variety W of all
a-dimensional subspaces A of B such that ¢ e Sym(A, B) is isomorphic to the
isotropic Grassmannian Gg(b—a, B*).

Proof. First observe that every subspace of B* is of the form (B/A)* for
some subspace A of B. By Proposition 8.3, the map: W — G;(b—a, B*) defined
by A+ (B/A)* is an isomorphism. m

§ 9. A flag bundle construction

We now begin the proof of the main theorem, assuming r to be an odd
integer, say 2p+ 1. By the argument of [13, Section 5], we may take X to
be a smooth irreducible projective variety and L to be the trivial line bundle
over X.

Using the characterization in Proposition 7.1 of symmetric maps of rank
at most an odd integer, one can represent an odd-rank symmetric degeneracy
locus as the image of a zero locus on a flag bundle, as follows. If V is a vector
space of dimension e, let F(a,, a,, V) be the flag manifold

{(VicV, c V|dim.V, = a;}.
The dimension of this flag manifold is easily shown to be
9.1 ay(a,—a,)+a,(e—a,).

Now let E—~ X be a vector bundle of rank e, and let n: F(e—p—1,
e—p, E)— X be its associated flag bundle. Over F:= F(e—p—1,e—p, E)
there are two universal subbundles S; and S, of ranks e—p—1 and e—p
respectively. By the construction of Section 8, Sym(S,, S,) is a subbundle of
n* Sym? E and therefore, Sym (S,, S,)* is a quotient bundle of n* Sym? E*. The
section u of Sym? E* pulls back under 7 to a section n* u of n* Sym? E* over f,
which in turn projects to a section ¢ of Sym(S,, S,)*:

tx, VeV, c E)=ux)y «vy,

By Proposition 7.1, = maps the zero locus Z(t) in F surjectively onto the
degeneracy locus D,,, , (¥) in X. Hence, 1t suffices to prove the connectedness
of Z(t). This we do by following the same strategy as in Section 5.

Let P =P(Sym(S,, S,)) and P’ = P(Sym? E). There is a natural map h:
P — P’ defined by

hix, V€ V, € E,, ¢eSym(V,, V,)) = (x, peSym’ E).
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We then have the diagram
9.2)

/\

PZH )} € P = PISym(5,,5,))

Scme *Sym‘E -—FSyl'ntSr , Sy 0¥
cohomology

Y

FZHCF F‘ep1epE)

\ SymZg™ PlSymiE) = P! D>\Z(u*) = U
= \\H” 7
D, lu)C X -
ProOPOSITION 9.3, The natural mup h: P — P’ sends P—Z (t*) to P'— Z (u*).
Proof. Since
t*(x. VicV,cE,, ¢eSym(V,. V,)) =1(x, V, < V, < EJ*(¢)
= Xy, xv,)* (P)
= u(x)*(¢)
=u*(x, @)
=u*(h(x, V, = V3, ¢)),
t*( ) 0 iff u*(h())#0. Hence h sends P—Z(t*) to P'—Z(u*). m

To apply the cohomology lemma (Lemma 5.4) it is now necessary to
compute the fiber dimension of &.

§ 10. The fibers of h

The map h: P(Sym(S,, S,)) = P(Sym? E) can be factored into a composition of
two natural maps h, and h,:
P(Sym(S,.S,) = P(SymZS) B P(Sym?E)
l ' !
Fe—p—1l,e—p.E) - G(e—p,E) > X,
where S is the universal subbundle over the Grassmann bundle G(e—p, E),
h(x.V, eV, c E..deSym(V,. V,))=(x, V, = E,, peSym?* ),
and
h,(x, V, c E,. $eSym? V,) = (x, ¢ € Sym? E).

In [13, Section 3] we analyzed the fibers of h,, and found that if
(x. ®€eSym? E )e P(Sym* E), then
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hy'(x, ¢) ~{V,eGle—p, E)|imd c V, < E_}
~ Gle—p—r1k ¢, e—1k ¢).

We now analyze the fibers of h,. Let (x, V, < E_, ¢eSym? ;) be an
element of P(Sym?S). Denote by ¢: V¥ ® V* - C the symmetric linear map
associated to ¢. Then

B (x. V. ) = [V €Gle—p—1, V)l eSym (¥, Vy)
~ Ggz(1, V5*) (by Prop. 8.4)
~ a quadric in P*777 1
Therefore, for (x, ¢)eP(Sym? E),
(10.1)  dimch™ ' (x, ¢) = dim Gg(1, e—p)+dim G (e—p—r1k ¢, e—r1k ¢)
=e—p—2+(e—p—1k@)p
=(e—p—tkP)(p+1i+tkp—2.

§ 11. Completing the proof
Returning to Diagram 9.2, our goal now is to compute the cohomology of
P—Z(t*) by applying Lemma 5.4. Stratifying U = P'— Z(u*) by rank, we let
Y, =U,_ - = P(D,_,_,(Sym? E))— Z (u*) be the locus of rank < e—p—k in
U as in Section 3. Since Sym? E* is ample, U is affine, and each Y,, being
a closed subvanety of U, is also affine. Then

e, e .cY,
and if (x, p)e ¥, — Y., .
dimch™'(x, ¢) = k(p+1)+e—p—k—2=(k—1)p+e—2
by (10.1). In the cohomology comparison lemma (5.4) set d(k) = (k—1)p+e—2.
Then
R = max,,,{dim¢ Y, +2(k—1)p+2¢—4}

p+k+1

5 )+2(k— 1)p+2€—4}

= MaX,sq {dimc P —(

—k
= maxkzo{dich'--—(p 5 )+2e—3p-4}
= dim¢ P'+2¢—3p—4

: +1 .

=dlch+(e‘7 }+2e—3p—3

N
) e* + Se

= dlch+——’-2-——~ —3p—5.
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By Lemma 5.4,

2
. 5
HUP—Z(t*);Z)=0 for q > dime X +5 2%

—3p—4.

By (9.1) the dimension of the flag bundle F = F(e—p—1,e—p, E) is
dimc F = dim X +(e—p—1)- 1 +(e—p)p
=dimc X +(e—p)(p+1)—1.
A straightforward computation shows that

e’ 4 5Se

2
dimcxz(e zp)+e—2p—la2dimcF—lBdich+ _3p—4.

By hypothesis, dimg X > (¢~ ?Pf V") 4o —(2p+1). Hence,
HY(F—Z(t); Z) = HI(P— Z(1*); Z) = 0

forg =2dim.F, 2 dimc F —1. As in Section 5 this implies that Z (¢) and hence
D,,.,(u) 1s connected.
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