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Quasi-hereditary algebras have been introduced by L. Scott [S] in order to
study highest weight categories as they arise in the representation theory of
complex Lie algebras and algebraic groups. They have been studied by Cline,
Parshall and Scott [CPS], [PS], and in [DR1], [DR2]. Here, we are going to
give lower and upper bounds for the dimension of a quasi-hereditary algebra in
terms of its species, and we characterize those algebras where one of these
bounds is attained: we call them the shallow and the deep quasi-hereditary
algebras, respectively.

1. Definitions and results

Let 4 be a basic semiprimary ring with radical N, let e, ..., e, be a complete
set of orthogonal primitive idempotents. The simple right A-module which is
not annihilated by e; will be denoted by E(i), its projective cover by
P(i) = P ,(i). The simple left A-module not annihilated by e, is denoted by E*(i).
The species of A is, by definition, & = % (A) = (F;, ;M )i<:j<n» Where
F,=e,Ae;/e,Ne;, and M; = ¢,Nejje,N?e;. In our considerations, the total
ordering of the index set {1, ...,n} of the species will usually be of importance,
and in order to stress this, we will speak of a labelled species.

We recall that an ideal J of A is called a heredity ideal provided J* = J,
JNJ =0, and the right module J, (or, equivalently, the left module ,J) is
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projective. And A 1s said to be guasi-hereditary provided there exists a chain
F =1(J); of ideals

0=JycJjc...cJ, =4

such that J;/J;_, is a heredity ideal of A/J;_,; such a chain will be called
a heredity chain of A. Observe that any heredity ideal J is generated (as an
ideal) by an idempotent, and if e is any idempotent in J, then the ideal {e)
generated by e is a heredity ideal of A, and J/{e) is a heredity idcal of A/{e)>. It
follows that we can refine any heredity chain of 4 to a heredity chain ¢ such
that, in addition, J;/J;_ is generated by a primitive idempotent, and we call
such a heredity chain a saturated one. So, let # be a saturated heredity chain of
A, and we always asume that the idempotents e; are chosen in such a way that
Ji=d(ep-i+1+ ... +e,», for 0<i<n. In this way, the quasi-hereditary
algebra A together with the fixed saturated heredity chain determines uniquely
F(A) as a labelled species. Note that & (A4) is a species without loops.

Assume that A is quasi-hereditary, with heredity chain ¢ = (J)),, where
J;={ep-is1+ ... +¢,>. Let A, = A/J,_;. Note that E(i)) and E*(i) are
A;-modules, and we denote their A;-projective covers by A4(i) = 4,(i)) and
A*(i) = 4%(i), respectively. Since we deal with a quasi-hereditary algebra, it
follows that J,/J;_,, as a right A-module, is the direct sum of copies of
A(n—i+1) (so the modules 4(i) are just those modules which occur as building
blocks in the standard filtrations of the projective right 4-modules: the “Verma
modules”, or “induced modules”). Similarly, J,/J;_, is, as left A-module, the
direct sum of copies A*(n—i+1).

By definition, both 4(i) and A*(i) are local A-modules. In case all the
modules 4(i) and 4*(i), with 1 < i < n, have Loewy length at most 2, we call
A shallow. Thus, A is shallow if and only if all the modules rad A(i) and rad A* (i)
are semisimple. Observe that these modules are actually 4;_,-modules, and we
call A deep provided rad 4(i) is a projective right A;_;-module and rad 4*(i) is
a projective left A;_,-module, for all 1 <i< n.

Now, conversely, let & be a labelled species without loops, say
& = (F;, M) <ij<ar» With ;M; =0 for all i. The tensor algebra 7 (¥) can be

decomposed as follows. Let T = T'(n) be the set of all sequences (t,, ¢,, ...,t,)
where the ¢, are integers with 1 <, <n, and m > 1, such that, moreover,
ti_y# for 1 <i<m. For t=(ty, t,,...,t,)eT, let

M@H)= M, ®M®.. ®

Fe, Fo F

M

tm—-1 tm?

m-—1

and for T'= T, let
M(T) = @ M().

teT’

Let J5(&) = [[I=1 F; and’ 7,(#) = M(T), thus (%) = F(L)® T, ().
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We are going to define two factor algebras of 7 (%) which will turn out to
be quasi-hereditary. Both algebras will be of the form 7 (&)/M(T") for suitable
choices of T'. In order to define the first one, we define complementary subsets
U, U° of T as follows: Let

U=U(n) = {(ty, t)eTIu{(ts, ty, 1) Tty <ty > t,},
thus
U°=7\U = {(tg, ty, ..., t,)€T|there is 0 <i<m
with ¢; < max(t;-q, ;4 ,)}.
Obviously, M(U®) is an ideal of J (%), and
(72 (9) = MU < (7, (&),

thus M(U®) is an admissible ideal. We define $(%) = T(¥)/M(U®). Note that
as abelian groups, we can identify S(&) and (¥)@M(U).

For the second algebra, we define complementary subsets ¥, V° of T as
follows: Let

V="V(n)={(ty .. ty)eT|given i <j with t,=1¢,,
there exists | with i </ <j and ¢, <1t,},
Vo =T\V ={(ty, ..., t,)€ T|there are i <j with 1, =1,
and t; <t; for all i <! <j}.

As usual, we may consider a product on T by using the juxtaposition, thus
(Bgs -5 tm) (t0s - -stm) = (Lgs < =<5 tms Loy - - -+ tne). Of course, for subsets T', T” of
T, we define TT" = {tt"|teT’, t"eT” and tt"€T} and so on. Then,
obviously, for n > 2

Vi) =Vin—-1NouVmn—-1)ynun-Vin—NHuVn—-1)n-Vn-1).

By induction on n, we see that V(n) is finite. In particular, the sequences
(tos ---,t,)eV(n) are of bounded length, say m < v(n) for some v(n). Thus

(Ze )" e M) < (7.(9)),

so that M(V?) is an admissible ideal. We define D(¥) =  (¥)/M(V®), and
note that D(%) can be identified, as an abelian group, with Z,(¥)® M (V).

THEOREM 1. Let & be a labelled species without loops. The rings S{¥) and
D(%) are quasi-hereditary, with labelled species ¥ . The ring S() is shallow, the
ring D(&) is deep.

In particular, we see that the nonexistence of loops is the only condition
on a species for being realizable as the species of a quasi-hereditary ring.
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Let k be a (commutative) field. In case & is a finite-dimensional k-species,
labelled and without loops, we denote by s5,(¥) and d,(%) the k-dimension of
S(¥) and D(¥), respectively. We are going to formulate an estimate for the
Cartan invariants of a quasi-hereditary algebra A in terms of the Cartan
invariants of the corresponding algebras S(%) and D(%). In this way, we
deduce that the dimension of 4 is bounded from below by s,(%) and from
above by d,(%).

THEOREM 2. Let A be a basic, finite-dimensional k-algebra which is
quasi-hereditary with labelled species . Then, for any i, j

dim, (¢,S(¥)e;) < dimy(e; Ae) < dim,(e,D(S)e)).
In particular,
5, (¥) < dim, 4 < d,(¥).

We have s5,(¥) = dim A if and only if A is shallow, and d, (¥} = dim, A if and
only if A is deep.

The proof of Theorem 1 is given in Section 2, the proof of Theorem 2 in
Section 3. We add examples showing that besides the algebras S(&) and D(¥),
there are other shallow or deep algebras. A detailed study of the
ring-theoretical and homological properties of quasi-hereditary rings which are
shallow or deep will be given in a subsequent publication.

2. The rings S(¥) and D(%)

The aim of this section is a proof of Theorem 1. Thus, let & be a labelled
species without loops, with index set {1, ...,n}. The proof is by induction on n.
If n =1, then S(¥) = D(¥) = F,, thus quasi-hereditary (and trivially both
shallow and deep). Thus, let n > 2, and let %' be the restriction of ¥ to
{1,...,n—1}.

Consider first S(¥). Given meN, let [1, m] = {ieN|1 <i<m}. Then

S(P)e, = F,@M([1, n—1]-n),
e,S(%) = F,@M(n-[1, n—1]),
(e,y = F,®@M({teU]|t; = n for some i})
=F®&M({1,n—1)nun[l,n—-1]u[l,n—1}n[1,n—-1]
= (F,®M([L, n—11'n)®@¢ (F,®M(n-[1, n—1]))
= S(9)e,®5, €,S().

In particular, e,S(¥)e, = F,, and the equalities above show that (e,) is
a heredity ideal. Of course, radd(n) = M(n-[1,n—1]) is a semisimple right
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module, rad4*(n) = M([1,n—1]-n) is a semisimple left module. Since
S(&)/ e,y = S(¥'), we use induction and conclude that S(.%¥) is a shallow
quasi-hereditary ring.

Next, we consider D(%). We have

D(¥)e, = F,®&M(Vin—1)-n),
e,D(¥) = F,@M(n V(n—1)),
e,y =F,®@M({V(n—1)ynun-Vin—-)uV(n—1)nVHh-1))
= (F,oM(V(n—1)n))®; (F,OM(n-V(n—1)
= D(¥)e,®F, e,D(¥),

so that e,D(¥)e, = F,, and {e,) is a heredity ideal. Since D(¥)/{e,> = D(¥),
it follows by induction that D(¥) is quasi-hereditary. Now

n—1

radA(n) = M(n-V(n—1)) = @ ,M;®p Ppsrli),

i=1

thus A4(n) is a projective right D(¥’)-module. Similarly, rad 4*(n) is a projective
left D(¥’)-module. By induction, it follows that D(&) is deep.

3. Quasi-hereditary k-algebras

Let k be a field, and 4 a basic finite-dimensional quasi-hereditary k-algebra
with labelled species &. Let {1,...,n} be the index set of &. Note that
e,Ae, = F,, and, in the same way, ¢,S(¥)e, = e,D(¥)e, = F,. In particular, for
the proof of the dimension inequalities, we may assume n = 2. Let &’ be the
restriction of & to {l,...,n—1}; clearly, this is the labelled species for
B = A/{e,>. By induction, we know that

dim,(e;S(¥")e;) < dim,(e; Be)) < dim, (e, D(F")e;),

for all i, j<n—1.

First, consider e, Ae;, with 1 <j < n—1. Let X = @7=] ¢, de;, thus X is
the radical of the right A-module e,A4; this is a B-module with top
X = @2 M,. Let d, = dim(,M);,. We denote by P the B-projective cover of
X, thus P is the direct sum of d; copies of ¢,B, for 1 <i<n—1. The
epimorphisms P—X-—X yield epimorphisms Pe;,— Xe;—Xe,. Now,
Xe,= M, Xe;=e,Ae;, and Pe; = @i (e;Be)", thus

n—1

dim, (,M ) < dim,(e,de;) < Y, d;-dim,(e;Be)).
=1

However, e,5(¥)e; = ,M;, so the left-hand term is the desired one. Now,
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rad(e,D(¥)ps)) is the D(¥')-projective module with top @7={ ,M;, thus

n—1

rad(e,D(¥)ps) = @ (e, D(F )"

i=1
It follows that e,D(¥)e;, = @7=| (e;D(¥")e,)", and therefore
n—1 n—1

‘;1 d;dim,(e;Be)) < Y d;dimy(e,D(¥)e;) = dim,(e,D(F)e)).

i i=1

This finishes the proof for e,A4e,. The dual proof yields the similar inequality
for e;Ae,, where 1 <j<n—1.

It remains to consider e, Ae;, where 1<i,j<n—1. Since <{e,>
=Ae,®r e, A, there is the exact sequence

0—ede,®5,e,Ae;—e,Ae;—+e;Be;—0,
and similar ones for S(¥) and D(¥), namely
0—e,8(%)e,®f e,5(F)e;—e,S(F)e;—e;S(F)e; >0,
0—e,D(¥)e,®f e,D(F)e;—e;D(F)ej—e;D(F)e; 0.

The desired inequalities follow from the inequalities for e; de,, e, Ae;, and e, Be;,
by taking into account that for a right F,-space X and a left F -spacec Y, we
have

~

dim X®, Y =

im, X -di .
&im, F dim, X -dim, Y.

n

This finishes the proof of the first part of Theorem 2.

Now assume that A4 is shallow. By induction, we know that
dim, (e;S(¥")e;) = dim,(e;Be;), for i,j<n—1. Since X =X, we have
e,5(¥)e; = M;=e,Ae;, for j<n—1, and similarly e;S(¥)e, = ¢;4e, for
j<n—1 1t follows that dim(e,S(¥)e;) = dim,(e;de)), for all i, j.

Similarly, if we assume that A 1s deep, then, by induction,
dim, (e, Be)) = dim, (e;D(¥")e;), for i, j < n—1. On the other hand, we have in
this case X = P, thus e,Ae; = @?=](e;Be))", and therefore

n—1 n—1
dimy(e,Ae) = ) d;-dim,(e;Be) = Y d;-dimy(e;D(¥")e;) = dim,{e,D(F)e;)).
i=1 i=1
It follows that dim,(e,de) = dim,(e;D(¥F)e)).

Note that dim 4 = ) ; ,dim,(e; 4e)), thus always s5,(¥) < dim, 4 < d,(¥).
Let us first assme s,(¥) = dim, A, thus dim,(e;Ae)) = dim,(e;S(¥)e)), for all
i,j.1fi, j < n—1, a proper inequality dim,(e;S(¥")e;) < dim,(e; Be;) would yield
that dim,‘(e,-S(y)ej) < dim,(e; Ae)) for the same pair i, j of indices, since

dim,(e; Ae;)— dim, (e;S(¥)e;) = dim, (e; Be)) —dim,(e,S(#")e;) +a,
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with
a = dim,(e; Ae,® 7 e,Ae) —dim,(e;S(¥)e,®; €,5(F)e;) = 0.

Thus s5,(¥') = dim, B, and B is shallow by induction. On the other hand,
dim,(e,S(¥)e;) = dim,(e,Ae)) implies that Xe;, = Xe;, for all 1 <j <n, and
therefore X = X is semisimple. This shows that the right 4-module ¢, 4 has
Loewy length at most 2. Similarly, the left A-module Ae, has Loewy length at
most 2. As a consequence, 4 is shallow.

In the same way, we proceed in case dim, A = d,(%). We see immediately
that dim(e;de) = dim(e;D(¥)e;), for all i,j, and conclude that
dim; B = d,(¥"). Thus B is deep by induction. On the other hand,
dim, (e, Ae;) = dim,(e,D(¥)e;) implies that Pe, = Xe;, forall 1 <j<n—1,and
therefore X = P is a projective right B-module. Similarly, the radical of the left
A-module Ae, is projective as a left B-module. Thus A4 is deep.

4. Examples

The bounds s5,(&) < dim, 4 < d,(&) are optimal, but we should remark that
usually d4,(¥)—s,(¥) may be rather large. As an example, consider the
k-species &, = (F;, ;M))1<ij<n With Fy=k and M, =0 for all i, whereas
M; =k for all i+ j; thus T(&,) is the path algebra for the quiver with
n vertices, a unique arrow i —j for i # j, and no loops. We are going to exhibit
s(n):= 5,(¥,) and d(n): = d,(¥,). It suffices to calculate the cardinalities of the
index sets U(n) and V(n), since

s(m=n+Um), dn=n+Vn).
Clearly, |U(1)j =0 =|V(1). For n > 2, we have

Uny=Umn-NHoull,n=1])nun-[1,n=1]J0[1, n—1]n[1, n—1]1,
thus

[Um)| =Um=-1D+2n—D)+(n—1?2=|Un—-1)|+n*-1,

and consequently,

{Um) = —n+ i 2= —n+inn+D2n+1).

Similarly, from
Vin)=Vn-1)uVn-=1ynunVin-1)oVin-1)nvn-1
for n > 2, we obtain
[V (m)] = 3IV(n—1+V(n—1)*
It follows that s(n) = $(n+1)(2rn+1), and that d(n) is given recursively by
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d(1) = 1, and d(n) = d(n—1)+(d(n—l)+l) for n = 2. The first values for s(n)
and d(n) are the following:

sy=1, d()=1,
s2)=5, d(2)=S5,

s(3)= 14, d(3)=

s(4) =30, d(4)= 1805,
s(5) =55, d(5) = 3263441,

Let & be a labelled species without loops. Let us assume that there are
even no oriented cycles. Then D(%) is the tensor algebra of &. In particular, if
& 1s, in addition, a finite-dimensional k-algebra where k is a perfect field, then
D(&) 1s the only deep quasi-hereditary algebra with species & . If the labelling
is chosen in such a way that }M; = 0 for i > j, then S(¥) = T(¥)/T, (%)%, so
again S(¥) is the only shallow quasi-hereditary algebra with labelled species
& . Of course, in general there may be shallow rings which are not of the form
S(¥), the first example is the path algebra of the quiver of Fig. 1 with the
commutativity relation.

Fig. 1

For a labelled species & without loops but with oriented cycles there
usually also will exist deep rings which are not of the form D(%). For example,
consider the algebra A given by the quiver of Fig. 2 with relations fa—yd = 0

SN
N

Fig. 3
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and ¢y = 0. The labelled species corresponding to this quiver will be denoted
by &. Then A 1s deep with labelled species &, but not isomorphic to D(.¥).
Also, we should remark that there are quasi-hereditary algebras A with
radical N such that no ideal I = N? yields a shallow algebra A/I. A typical
example is the algebra 4 given by the quiver of Fig. 3 with the commutativity
relation. Note that 4 has a unique minimal nonzero ideal J. An ideal I with
A/I shallow must contain J, but there is no ideal I with J = I = N2 such that
A/I is quasi-hereditary with respect to the given ordering of the vertices.
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