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§ 0. Introduction

(0.1). Let G be an absolutely simple, simply connected, algebraic group,
defined over a field K and G (K) be the group of K-rational points of G. It is
known that the structure of G (K) depends in an essential way on the properties
of the base field K. As was proved by V. P. Platonov [ 10], the quotient of G (K)
by its center Z (G (K)) may not be a simple group even when G is a K-isotropic
group. Therefore, it is natural to investigate first the cases when K is a local or
a global field. It is known that if K is a local or a global field and G is
K-isotropic then G (K) is projectively simple, ie., the group G(K)/Z (G (K)) is
simple as an abstract group [12], [13], [23]. When K is a local field and G 1s
a K-anisotropic algebraic group then every infinite normal subgroup of G (K) is
a congruence subgroup [15].

From now on we assume that G is anisotropic over K and that K 1s
a global field. In this case there exists the following conjecture due to V. P.
Platonov [11]: G(K) is projectively simple if and only if the groups G(K,) are
projectively simple for all nonarchimedean completions K, of the basefield K.
(Recall that the group of K-rational points G (K) is called projectively simple iff
the quotient G(K)/Z{G(K)) is a simple abstract group.) One of the important
aspects of the above conjecture is its close relation with the famous congruen-
ce-subgroup problem (see [22]). Note that by a general result of G. A. Margulis
[8] every infinite normal subgroup of G(K) has a finite index in G (K).

(0.2). At present the projective simplicity of G(K) for K-anisotropic
algebraic groups G is proved for groups of type 4, [9], [14], for Spin(f), where
[ is a regular quadratic form over a number field of n > 5 variables [7],
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for the special unitary group SU(F”, h), where F is a quadratic extension of
a number field K and his an hermitian form on F", n =23, [2]. In [2] the
simplicity of G(K)/Z(G(K)) is also announced for groups of type C,, F., G;.
In [4] it 1s announced that G (K) is projectively simple, provided K is a number
field and the K-algebraic group G splits over a quadratic extenston of K. The
proof is based on a general idea and it is carried out by successive
consideration of the types 4, — G, which split over a quadratic extension of K.
Finally, in the work [3] the proof of the Platonov conjecture for groups of type
D,, n = 4, different from 3D4 and "D4, 1s reduced to the proof of this conjecture
for groups of type A4, (not yet proved)('). A direct prool of the projective
simplicity of G (K) for groups of type D, is announced in the author’s note [22].

(0.3). The aim of this paper is to prove that G (K) is projectively simple if K 1s
anumber field and Gisoftype C,. D,, F,or G,. Our proofs are based on different
approaches from the above mentioned announcements [2]. [4] and the partial
result [3]. For groups of type D,, n > 4, we give a second proof of the simplicity of
G (K)/Z (G (K)) which is also valid when K is any global field of characteristic # 2.
The “exceptional™ cases D, and °D, (see [19] for the notation). which are an
object of a separate investigation, are not considered in this paper.

(0.4). THEOREM. Let G be an absolutely simple, simply connected, algebruic
group defined over a number field K. Assume that G is of type C,, D,, F, or G,.
Then G(K)Z(G(K)) is a simple group.

The main part of the paper is devoted to the consideration of the case D, .
We shall assume that G is anisotropic over K, although a slight modification of
our proof i1s vahd for isotropic groups too.

§ 1. Notation and recollections

(1.1). In the sequel F will denote a quaternion division algebra over
a number field K. Let *: F — F be the standard involution of F over K and N:
F — K, x - xx* is the usual reduced norm on F. By Z, DIPS 2 we denote the
set of all places of K, the set of all nonarchimedean places of K, the set of all
archimedean places of K. We let (V, h) denote an n-dimensional, regular,
¢-hermitian, right vector space over F. Assume that ¢= +1. Set
G(K)y=SU(V, h) for e=1! and G(K)=Spin(V, h} for ¢ = —1. (For the
definition of the group Spin (¥, &) in the case when F is a quaternion skew field
we refer the reader to [17] or [20].) According to the classification of the
algebraic groups over number fields, SU(V, h) is a group of type C, and
Spin(V, h) 1s a group of type D,. In view of the Kneser result [7] for Spin(f)
and the classification [19], in order to prove the theorem for anisotropic

("} The casc A, was recently considered by the author in Remarques sur la structure des
yroupes alyéhriques définis sur des corps de itombres, C. R, Acad. Sci. Paris 310 (1990) 33 36.
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algebraic groups of type C, and D, we have to prove that SU(V, 1) and
Spin{V, h) are projectively simple.

Recall the standard realizations of the (K-anisotropic) groups of type F,
and G,. Let C = F @ F! be a vector space direct sum of F and an isomorphic
image Fl of F. Let pe K* (= the multiplicative group of K) and define
multiplication in C by

(a+b)(c+adl) = (ac+ pd* b) +(da +bc*) |,

where a, b, ¢, d are in F. The alternative algebra we get in this way is called
Cayley algebra. For x = a+ bl we define x* = a*—bl. Clearly, x - x* is an
involution on C. Also, xx* = Na— uNb, where N is the reduced norm on F.
The map x — xx* is called a norm on C and it is ailso denoted by N. The Cayley
algebra C 1s a division algebra if and only if the quadratic form N (of eight
variables) is anisotropic. The group G (K) of K-automorphisms of the algebra
C is the group of K-rational points of a K-algebraic group G of type G, and,
conversely, every K-algebraic group of type G, can be realized in this way [19].
G is K-anisotropic iff the quadratic form N is anisotropic.

Recall the definition of exceptional central simple reduced Jordan algebra
(see [1] for details). Let 7 = diag {y,, 72, ¥3}» 7; # 0 in K, be a diagonal matrix
and let C, be the set of 3 x 3 matrices with coefficients from C. Any exceptional
central simple reduced Jordan algebra is isomorphic to the algebra
J = J(C,, v), the set of y-hermitian 3 x 3 Cayley matrices. Thus, AeJ(C,, 7} if
and only if A=y"'(4A)y and the multiplication in F(C,,y) is
A.B=3(AB+BA). (Here A4 = (af), where 4 =(a;;), and A4’ is the matrix
transposed to A.) Now, the group G(K) of K-automorphisms of J(C,, 7) is
a group of K-rational points of a K-algebraic group of type F,. Conversely, the
group of K-rational points of every K-algebraic group of type F, can be
obtained in such a way [19].

§ 2. Proof of the theorem for groups of type D,

(2.1). Let V be a vector space over F of dimension n and let & be a regular
skew hermitian form in V with respect to the standard involution * of F.
During the course of the proof we shall often extend the basefield K. Let L/K
be a field extension and let F, = F @, L splits, i.e., F;, = M, (L). Denote by
(V,, h;) the hermitian module obtained by the extension of the basefield L/K.
(Here and later on we use the terminology from [16] which is generally
accepted.) The study of the hermitian form h;: V; x V, — F, is entirely reduced
to the study of some quadratic form f,. We briefly explain this phenomenon
(for more detailed discussion, see [ 16: 10.3.4]). Recall that the involution * acts

on F, as follows:
x yI*_ t —y
z t]| |-z x|
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10 00 01
EI;I:OO], e2=|:0 l:|’ e=':1 O:I and W, =V_e,.

We define a quadratic form f, on W, by the equality h, (xe,, ye,)
= f, (xe,, ye,)ee,, where x, ye V,. (When L = K, we abbreviate the notation
and write f,, h,, W, etc.) With x = xe, +ye, = xe, +-xee, e and y = ye, + yee, e
we have

Put

| —fi(xeey, ye}  —f (xee,, yee,)
() hL (. 9) = |: fr(xey, yey) fi(xe,, yee,) :l

We identify the elements (rom V, with the pairs from W, x W, by means of
the bijective map x — (xe,, xee,). Let 2, (x) (resp. Z,(x) when L = K ) be the
plane spanned by xe, and xee, . It follows from (1) that the determinant of the
quadratic form f} |, ., is equal to det(h, (x, x)). In particular, if K, is the field of
reals R then det(h,(x, x)) < 0 iff 2,(x) is a hyperbolic plane. Recall that the
hermitian module (V,, h,) is called isotropic if there exists a basis e, e,, ..., ¢,
of the free F,-module V; such that h, (e,, e,) = 0. (V,, h,) is isotropic iff f; is of
Witt index > 2 [16: 10.3.5]. Denote by SU(V,, h;) the group ol isometries of
(V4, h,) with determinant 1. It can be easily deduced from (1) that the map
c—oly,, 0eSU(V, hy), is an isomorphism between SU(V,, h;) and
SO(W,, f;). .

(2.2). As usual, by Cl we denote the Clifford algebra of (V, h). Let SU (V, hY
be the subgroup in SU(V, h) of all elements with spinornorm 1. (For the
definitions of Clifford algebra and spinornorm we refer the reader to [17] or

{20])
LEmMA. Let dimp V =2, det(h) = 1, and let (V,, h)) be isotropic for each

veX;. Then SU'(V, h) = [SU(V, h), SU(V, h)].

Proof. Since det(h)=1, we have an isomorphism of K-algebras
Cl= A, ® A,, where A, and A, are quaternion K-algebras [17: 6.1 and 9.1].
The standard involution * on C! induces the standard involutions on 4, and
A,. Denote C = {xeCl|xx*e K*}. Then Spin(V, h) = {xe C|xx* =1} [17:
9.2]. The natural homomorphisms € — SU(V, h) and Spin(V, h) - SU'(V, h)
are surjective [17] p. 348. Therefore, in order to prove the lemma it is enough
to show that [C, C] = Spin(V, h). Let S, = {ve X |A4,, = A, ®« K, is a division
algebra}. It follows from our hypotheses that S, NS, = @. Let Nrd; be the
reduced norm of A4,. Set R; = {x € A;|Nrd;(x) > 0 at every real place of K}, and
A} = {xe A;|Nrd,(x) = 1}. By the description of the normal subgroups in
Al [9], we get [R;, R,] = A!. Let R = {(x, y}e R, x R,|Nrd, (x) = Nrd, {x)}.
Obviously, R < C and, therefore, it is enough to prove that [R, R]
= Spin(V, h). 1t follows from the Hasse-Minkowski theorem that for every
xeR, (resp. y€ R,) there exists an ye R, (resp. x€ R,) with (x, y)e R. Therefore,
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[R, R] projects onto A} and Aj, respectively. Since [R, R] is a normal
subgroup of Al x A}, we get [R, R] = [A4}, A}]x[A4}, A2]. On the other
hand, ‘

(45, Allx[43, A)] = AixAin [ [Als, A% [43,, 4]

veSiuSs

Since [R, R] is dense in [],cs,0s, 410 X A3, and
l_[ [A}va Aib] X [A.l‘!v’ Afllv] is open in l—[ A}UX Aéu,

veS | US2 veS1uS:
it follows that [R, R] = Spin(V, h). This completes our proof.

(2.3). We denote by T the set of all real places v such that F, = M, (R) and
S, 15 of Witt index 1, and we denote by T’ the set of all real places v such that
F,= M, (R) and f, is anisotropic. (As fixed in Section 2.1, f, is the quadratic
form corresponding to h,.) A vector x € V will be called definite iff for all ve T
the plane 2, (x) is definite, i.e., the corresponding quadratic space of two
variables is definite. Let aeV, aeF and t,, be an unitary reflection, ie.,
1,.(a) = ax and t,,(x) = x for xe{a)>*. The unitary reflection 7,, will be
called definite iff a is a definite vector. Denote by SU (V, k)~ the subgroup of
SU(V, h) generated by the definite reflections.

(2.4). ProprosiTioN. Let n = 3. Then
SU(V, hy™ = SU(V, iy [1,er SU'(V,, h,).

The proof of this proposition is based on the following two lemmas, which
can be proved by direct computations.

(2.5). LEMMA. Let W be a regular quadratic 2n-dimensional (n = 2) space
nover R of Witt index 1. Let x, ye W and suppose that x and y span a hyperbolic
plane. Then there exists a g€ SO (W) such that the vectors x —gx and y —gy span
a definite plane.

(2.6). LeEmMma. Let x,yeV, x#y, and h(x,x)=h(y,y). Set o=
=h(x—y,x)"Yh(x—y, y). Then Teoys(X) =y

Proof of Proposition 2.4. The inclusion SU(V, k)~ < SU(V, i)
N [Loer SU'(V,, h,) is obvious (see 2.1). Let 6e SU(V, h) N [ ], SU'(V,, h,). Fix
a vector xe V with det(h,(x, x)) < 0 at every ve T. It follows from Lemma 2.5
and the weak approximatuon theorem that there exists a ge SU(V, k) with
det(h,(x—gox, x—gox)) > 0 at every veT. Let t=1, ., be a unitary
reflection given by.Lemma 2.6. Since teSU'(V,, h)~ for ve T we obtain
geSU'(V,, h,) when ve T. The density of SU (V, )™ in [ [,y SU’(¥,, h,) implies
the existence of a g¢'eSU(V, k)~ such that det(h,(x—g ox, x—g ox)) > 0 for
any veT. By Lemma 2.6 there exists a definite reflection 7’ such that
7' (x) = ¢’ ox. Denote V; = x* and h, = h|,,. Since SU (¥, h,) is generated by
definite reflections, we get v ' g’ o€ SU(V, h)~, i.e., se SU(V, h)~. The lemma is
proved.
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(2.7). ProrosiTioN. Let dimgp V = 4 and let xe V be a definite vector. Then
there is a 2-dimensional plane ',y  V with the following properties: (a) x € V,;
(b} det (V) = 1: (c) ¥, is isotropic over K, for all v¢ T U T"; (d) for every definite
vector yeV there is a zeV, such that h(y, y) = h(z, 2).

We precede the proof of Proposition 2.7 by the following lemma.

(2.8). LEMMA. Let F, = M,(K,), veX. Let A be a skew symmetric element
(le, A¥ = —A) with 22 =a +#0 and let ceKi. Then the 1-dimensional skew
hermitian forms {i> and {cA) are isometric if and only if (c, a), = |, where ( , ), is
the Hilbert symbol.

Proof. Let ueF,, p* = —p, pi= —Aiu and p?=>b+#0. By the Sco-
lem-Noether theorem such a p exists. Now (1) = {ci) iff ¢ is represented by
one of the quadratic forms (1. —a) or (b, —ab) [16: 10.3.4]. The following
equivalences hold: (i) = {cA) as hermitian forms < {c, —ac) = {1, —¢) or
(¢, —ac) = (b, —ab) as quadratic forms < (c,a),=(1, —¢),=1 or
(c, a), = (a, b),. On the other hand, F, = M, (K,) implies that (a, b), = 1. The
lemma is proved.

Proof of Proposition (2.7). Let R= {veXZ|F, is a skew field}. Set
A=h(x,x) and a=4i%’ Let ¢, =—1 for veTuT and ¢ =1 for
¢ RUTUT . Since R = and a < 0 for every ve T U T, there exists a ce K*
such that (c, a), = ¢, for every ve R. Let ¥, = x* and h, = h|,,. Then —c/i is
represented locally by h, at all places of K. Indeed, for ve R the assertion
follows from the basic properties of skew hermitian forms over local skew fields
{16: 10.3.6 and 10.3.7]. Since ¢ < O at every place ve T U T’, we get that h,
represents —cA over K, whenever ve TUT. For any v¢ RUTUT' he
quadratic form g, corresponding to h, (see (2.1)) represents over K, every
regular 2-dimensional form, that is h, represents —c¢A forv¢ Ru T U T'. By the
local-global principle for skew hermitian forms [16: Theorem 104.1], h,
represents —cA globally, 1.e., —cA = h,(y, y) for some yeV,.

Put V, = {x, y). It follows from the discussions in (2.1) that Vj is isotropic
for each ¢ RU TuU T'. Since det(V,) = 1, V, is also isotropic for ve R [16:
10.3.6 and 10.3.7]. Therefore V, is the plane we need and the proof is
completed.

(2.9). ProrosiTiON. Let n > 4. Then SU'(V, h) is generated by the com-
mutators [t, 1,], where 1, and 1, are definite unitary reflections.

Proof. Let geSU’(V, h). By Proposition 2.4 there exist definite unitary
reflections t; =1, , such that g =[]/ 7. By Proposition (2.7) there is
a 2-dimensional plane ¥, with the following properties: (a) dim (V) = 1; (b) ¥,
is isotropic over K, for each ve X ; (c) if ye V is a definite vector then there
exists a zeV, with h(y, y) =h(z,z). For each i=1,2,...,r fix a, b€V,
such that h(a;, a) = h(b,, b,). According to the Witt theorem there exist
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n.e SU(V, h) such that n;a; = b, for every i. It is easy to see that n, can be
chosen in such a way that n,e SU(V,, h,) for each ve T. By Proposition 2.4
neSU(V, h)~. We have

1 1 —1

oo — Thizi Thivi Laga; — Tb.-.cz.- (Tb:.:t.' n; Ib,—.a.— ni)‘

Let N be the subgroup of SU’(V, h) generated by the commutators of definite
reflections. Using the identity [x, y, »,] =[x, y,1 [x, y,] [[x, .1, y,] one
easily sees that [t, ,.nJeN. Therefore g =[]i.1,.,e[SU(V,), SU(V,)I.
But {SU(V,), SU (V,)] = N. Therefore ge N, which completes our proof.

(2.10). First proof of the simplicity for groups of type D,. Let N be
a normal subgroup in SU'(V, h) such that N & Z(SU'(V, h)). Due to Proposi-
tion (2.9), it 1s enough to prove that N contains all commutators [r,, 1,],
where 7, and 1, are definite reflections. Let 1, =1, ,, a;eV and 2, F*. Let
a,eV,, where V, is given by Proposition (2.7). Note that N is dense
subgroup of [ [,y SU'(V,, h,). Therefore there is a g€ N such that ¥, and ga,
span a 3-dimensional subspace V, with det(}]), >0 for all veT. Since
gT59 ' = T40,,-14,, Without loss of generality, we can replace 1, by gt,9 '
and assume that ¥, 1s spanned by V, and a,.

We contend that SU(V,) is a group ol K-rational points of
a K-algebraic group, which splits over a quadratic extension of K. Indeed, it
is known that CI(V,) = A, ® A,, where A, and A, are quaternion skew
fields over K [17: 9.1]. Denote R ={veX|F, 1s a skew ficld} and
Ri=veZ|A, ®sK, or A,®,K, 1s a skew field}. It follows readily from
the isotropy of V, at the places ve Tu T, that R =RuTuT. Let x be
a nonzero vector from ¥, such that xe Vg. Set 4 = h(x, x) and L= K(4).
Since det(V,), >0 for every ve TU T, we get —A* =det(h(x, x)) >0 for
every veTuT. On the other hand, F® L= M,(L). Hence A, ® L
>~ M,(L) and A, ® L = M, (L}). Since the plane 2, (x) (see 2.1) is isotropic,
our contention is proved.

The group SU (V) is a group of K-rational points of a simple algebraic
group of type A;. By [2] SU'(V)) does not contain infinite normal sub-
groups. Since N has a finite index in SU'(V, h) [8], we get that SU' (V) = N.
In particular, [t,, 1,]€N. Our proof is finished.

(2.11). One checks easily that the assertions proved in (2.1)}-(2.9)
remain true if the field K is replaced by any global field of characteristic
# 2. The result [2], which we have used in the final step (2.10) of the above
proof, is proved only for number fields. Now, we are going to prove the
simplicity for D, , n >4, in another way. The new proof is valid for any
global field of characteristic # 2 and it is based on an idea of M. Kneser
applied in [7] for the orthogonal groups. (It is likely that the same idea
works also for n =4.)
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(2.12). Second proof of the simplicity for groups of type D,, n > 4.

ProrosiTION. Let n > 4, let © = 1., be a definite reflection, let aeV be
a definite vector, and let N be an infinite normal subgroup of SU' (V, h). Assume that
a and ta are linearly independent. There exists then an ne N such that na = 1a.

Proof. By a result of Margulis [8: 2.4.9] we may assume that N is a normal
subgroup of SU(V, h). Set b = ta, V, = {a, b}*,and h; = h|, . For ne N we set

h{a,a) h(a,b) hia, na)
A= |h(b,a) h(a,a ha, na)}
h(ra, a} h(na,a) h(a, a)

Assume that Nrd(4) # 0. Let (V, g) be an abstractly defined 3-dimensional
hermitian F-space whose scalar product is given by 4 with respect to a fixed basis
a,, b,, z,. Choose t, e V such that a,, b,, t, generate V and ¢, is orthogonal
both to a, and b,. Set 8 = g(t,, t,). Assume that h, represents §. Then there
exists aze V such that {a, b, z} have 4 as their matrix of scalar products. By
Witt’s theorem there exist s and teSU (V, h) with s(a) = q, s(na) = z, t(a) = b,
and ¢ (na) = z. An easy computation shows that(tn~ 't~ ! sns™!)a = b. Therefore
in order to prove the lemma it is enough to find anne N with Nrd A # O and such
that 6 from the construction above is representable by h,.

Since ¢ is a definite vector one can easily derive from the local-global
principle that there exists z' e ¢ with h(z', z') = h(a, a). Let S be the set of all
places v of K which are real (when K is a number field) or for which F is a skew
field. Since « is a definite vector, for every ve S there existsan n, € SU’(V,, h,) such
that n,a = z’. Take ne N close to n, for all ve §. Now h, represents & for every
peS. In fact h, will also represent & for any v¢$. This follows from our
discussions in (2.1) and the following assertion [16: 6.4.7]: Let ¢ and y be
quadratic forms over K, with dim¢ = 4, dimy =2, and det¢p # —dety if
dim ¢ = 4. Then ¢ represents V.

Thus by the local global principle h, represents 6 globally. This proves the
proposition.

Now we are able to complete the second proof for D,, n >4 By
Proposition (2.9) SU'(V, h) is generated by commutators [7,,, T, 5], Where
a and b are definite vectors. Without loss of generality we can assume that
a and b are linearly independent, since otherwise, [t,,, 7, 3] = 1. According to
the above proposition there exists an ne N such that 1, , b = nb = ¢. We have
[Taur Topd = Tept ¥ =hr,,h” ' 154, Since N can be assumed to be normal
in SU(V, h) we obtain that N = SU'(V, h). The proof is completed.

§ 3. Proof of the theorem for groups of type C,, F,, G,

(3.1). First we shall consider the case when G is of type C, (n = 2), ie,
G(K) = SU(V, h). It is well known that G (K) is generated by unitary reflections
and that every reflection is contained in a subgroup H(K) < G(K), where H
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is a simple algebraic K-group of type C, = B,. By [7] H(K)/Z(H(K)) is
a simple group and by [8] every infinite normal subgroup N of G(K) has
a finite index in G (K). Therefore in order to prove the simplicity for G(K), it is
enough to show that Z(H (K)) < [H(K), H(K)]. The group H(K) is isomor-
phic to Spin (W, f), where (W, f) ts a 5-dimensional quadratic anisotropic space
over K. If Wy W is a 3-dimensional subspace of W then, naturally,
Spin(W,) < Spin(W) and —1eSpin(W,). (Here 1 denotes the unit element of
the Clifford algebra of W.) Therefore it is enough to find a 3-dimensional
subspace W, such that —1e[Spin(W,), Spin(W,)]. Recall that Spin(W,) is
isomorphic to the group D' of the elements with reduced norm 1 of a certain
skew quaternion field D over K. It is proved in [14] that [D!, D!]
= D' n[],r [Ps, D;] where R = {ve X |D,= D ®K, is a division algebra}.
LetveR and P, = {xe D, |v(x) > 0}. (Here, we identify the place ve X with its
order) It is known [15] that [D!, D}1=(1+P)n D), veR Therefore,
— 1 e[Spin(W,), Spin(W,)] if and only if W is K -isotropic for every ve X ; with
v(2) = 0. So, the following lemma implies that the group G(K)/Z(G(K)) is
simple.

(3.2). LEMMA. Let (W, f) be a 5-dimensional quadratic anisotropic space over
K. Then W contains a 3-dimensional subspace W, which is K -isotropic for every
veX, with v(2)=0.

Proof. Let T, = {ve X _|f is anisotropic over k,} and let v, be a nonar-
chimedean place over 2, 1.e., v,(2) > 0. We set T = T, if T, contains even number
of places and we set T = T, U {v,}, otherwise. Multiplying f by an element {rom
K™, if necessary, we can assume that (a) f = g L g, where g = x*—ax?, (b) g is
amisotropic over K, and (c) if v 1s real and f is K -1sotropic then g’ is also
K -isotropic. Set T, = Tu {ve X /|g’ is anisotropic over K,}. We fix a deK”~
such that if x # d (mod K,**) for every ve T; n Z, then g’ represents x over K, for
everyve Ty n X . Let(, ),, where ve 2, be the usual Hilbert symbol [18]. Since
the quotient K, /K, ? has at least four elements, it follows that there are a, b,e K
with (a, by),= —1 if veT,—T, and —b #d (modK,?) if veT, nX,. Fix
a ce K™ such that | [,.1, (b, ¢), = 1 and (by, ¢), = (—d, ¢), forve T, " X ;. We
set g, = (a, by), fve T, and e, = L ifv¢ T,. We also set 5, = (b,, ¢), if ve T, and
n, = 1 f v¢ T,. Consider the system of equations (a, x), = ¢, and (x, ¢), = n, to
hold simultaneously for all ve X. Since the system has a local solution (in K,') for
every ve X, it has also a global solution be K [18]. It 1s easy to see that
(b, ¢}, = (by, ¢), # (~d, ¢), when ve T, nZ,. This yields readily that g' re-
presents —b over K, for every ve 2. By the Hasse-Minkowski theorem —b is
represented by g’ over K, i.e, f contains a quadratic form x?—ay® —bz?. Since
(a, b), = 1 for v¢ T, we get that x* —ay® — bz® is isotropic over K, for each ve 2,
with v(2) = 0. The lemma is proved.

Remark. The idea of using the result [14] in proving the simplicity for the
groups of type C, was pointed out by A. S. Rapinchuk.



464 G. TOMANOV

(3.3) Groups of type F,. Let J = J(C5, I') be a reduced exceptional central
simple algebra, where C is a Cayley algebra over K and I' = diag{y,, 7, 73)>
y;€ K™ [1]. Denote by G(K) the group of automorphisms of J(C,, I'). We have
to prove that G (K) is a simple group. Our main sources of references will be the
works [1] and [6].

Let eeJ(C,, I') be a primitive idempotent. For a ge G(K) we set €' = ge.
According to the result [1: Theorem 1] we may and we wil! assume that e and
¢’ have coordinates in a quadratic subfield L of C. In other words, we assume
that e, ¢’ € J (L4, I'), where J(L,, I') is a special Jordan algebra consisting of the
matrices 4 € M, (L) invariant under the involution A - I' "' A’ I" (see (1.1)). Let
(L3, h) be a 3-dimensional hermitian space over L with a matrix of scalar
products I'. Then J(L,, I') can be identified with the set of all h-hermitian
linear transformations of L? (ie., the set of all 4eEnd,(L? with h(x, Ay)
= h(Ax,y) for any x,yeL’). We fix two orthogonal bases of L?
{wg, w,, w,} and {wg, wi, wh} such that w, = wy, welm(e) and w'elm(e).
Since the hermitian subspace spanned by Im(e) and Im(e’) is nondegenerate,
the choice of such bases is possible. Set r, = h(w;, w) and r; = h(w}, wj),
i=0,1,2 The following isomorphisms hold: J(C,, )= J(C,;, R) and
J(C,, I') = J(C,, R'), where R = diag(ry, ry, r,) and R’ = diag(ry, ry, r3), re-
spectively [1: Theorem 5]. In view of these isomorphisms, we can fix a set
of orthogonal idempotents E,, E,, E, (resp. Ey, E, E}) in J(C,, I'} such
that E, (resp. E;) maps w, on w; and w;, j #1i, on 0 (resp. w; on w; and
wj, j # i, on 0). Now let N* = N(C™). (Recall that N denotes the norm map
on the Cayley algebra C.) Note that E, = e, E] = ¢, and E, = E;. Since E,
and E) are conjugate, we get rg'r,=r"'ry (mod N*) [6: Corollary, p.
381]. On the other hand, the equality E, = E, implies r{'r, = rr,
(mod N*). Therefore, the ordered sets of idempotents (E,, E,, E,) are con-
jugate [1: Theorem 9], ie., there exists a 6 G(G) such that ¢E, = E; for
i=0,1,2. Our main conclusion from the above considerations is that
(67 'g)e)=e.

It is well known that the subgroup of elements of G(K) fixing a given
primitive idempotent is isomorphic to Sping (f), where fis a regular quadratic
form over K [6: Theorem 4, p. 376]. In fact, it is proved in (3.1) and (3.2) that if
H is a simply connected K-algebraic group of type B, (n = 2) then H (K) does
not contain proper infinite normal subgroups. On the other hand, every infinite
normal subgroup P in G(K) has a finite index in G (K) [8]. Since Spin,(f) is
a group of type B,, it follows that ¢,0 'geP. In particular, geP, ie,
G(K) = P. Therefore G(K) is a simple group.

(3.4) Groups of type G,. Let C be a division Cayley algebra over K and
G(K) be the group of automorphisms of C. Let N be the norm on C. The
bilinear form associated to N is given by

(x, ) =3[N(x+y)-N@)-N@G)], x yeC.
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Denote by C, the orthogonal complement of 1 (= the uvnity of C) in C. It is
easy to see that C, = {xeC|x* = —x} (see [5]). Let us fix an aeC,, a # 0,
and ge G(K). It is well known that a and ga are contained in a quaternion
division algebra F < C [5]. (In fact, if a # ga then the subalgebra generated
by a and ga coincides with F.) Let ie Ft n Cg, i #0. Set L = K (i). Then L* is
a 3-dimensiopal vector space over L. For any x, yeL' we set h(x,y)
=(x, y)+u " ti(ix, y), where pg=i% It is proved in [5], p. 70, that h is
a nondegenerate hermitian form on L and that the subgroup H(K)=
{o e G(K)|oi = i} is canonically isomorphic to SU(L*, k). It is easy to see that
h(a, a) = h(ga, gu). By the Witt theorem there exists a ¢ € H(K) with aga = a.
Note that the group P(K) = {tre G(K)|ta = a} is isomorphic to SU (L3, h,),
where L, = K(a) and h, is an hermitian form on L{ [5]. By virtue of [2] the
group H(K) (resp. P(K)) daes not contain proper infinite normal subgroups.
Therefore if N is an infinite normal subgroup in G(K) then N contains the
subgroups H (K) and P(K). (Recall that by [8] N has a finite index in G (K).)
This implies that @, 6g€ N. In particular, ge N, i.e, N = G(K). The theorem is
proved.

Remark. We refer to the work [5, Theorem 8] for another proof of the
simplicity for groups of type G, modulo the result [2] that every unimodular
unitary group in a 3-dimensional vector space over a quadratic extension of
K is projectively simple.
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