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1. Introduction

Decomposition numbers describe to a great extent the connection between
ordinary and modular representations of finite groups. For groups of small
orders explicit calculations are possible. Nowadays a computer is often used.
Some tables on decomposition numbers of special groups may be found in
Parker [18]. For most important groups of infinite series one may hope to
obtain some formulas for decomposition matrices. An account of the modular
representation theory of symmetric and alternative groups with an emphasis on
decomposition matrices is presented in James [13]. As to Chevalley groups the
situation is of crucial difference depending on whether p is the characteristic of
the definition field or not. Only the former case is discussed here. The first
result of this kind is that of Brauer and Nesbitt [2] who calculated the
decomposition matrix modulo p for PSL, (p), where p is odd. Further essential
results were obtained more than 20 years later. Srinivasan [22] constructed the
decomposition matrices modulo p for the groups SL, (p*), p > 2. The case p = 2
was considered by Burkhardt [3]). Moreover Burkhardt determined the
decomposition matrix modulo 2 for the groups PSU, (2%), see [4], and Sz (2%,
see [5]. For other Chevalley groups only fragmentary results are known., The
detailed information may be found in Humphreys surveys [9, 10, 12]. Results
of a general character [9, 14, 15] do not seem yet to yield any explicit formulas
of decomposition numbers for groups of rank > 2.

The aim of this paper is to expose some recent results on explicit
calculations of the decomposition numbers for certain representations of the
groups SL, ("), SU, (", (1 >2), Sp,, () (n > 1, p > 2).

P always denotes an algebraically closed field of characteristic p. It is
convenient to parametrize irreducible representations of the groups in question
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by their highest weights. It is well known that every irreducibie representation
@ of a group G is a restriction to G of a certain irreducible representation ¢ of
the corresponding algebraic group G = G. This ¢ is not determined uniquely
by @. We always choose such ¢ whose highest weight 4 1s not of the form p* A’
where A" is dominant. Under this condition the correspondence ¢ — ¢ is
correctly defined and we shall call A the highest weight of ¢.

If ¢ 1s an irreducible representation of G over C (the field of complex
numbers) and u is an irreducible representation of G over P, then D{g, u)
denotes the element of the decomposition matrix D on the position (g, p).

2. Decomposition numbers for groups SL_ (p*), n > 2

Let g = p* and let V be a vector space of dimension n over the field F,, so the
group G = SL,(g) acts on V in the usual manner. Denote by IT the permutation
representation of G on vectors of V. If F is a field, then let [T, be the linear
representation of G over F associated with IT. It is easily checked that I7.
contains 1; with multipiicity 2 and g--1 other irreducible representations
Po, @y, --.» @,-, Whose multiplicitics are 1. Note that ¢, (1<i<g-2)1s
induced by a nonprincipal 1-dimensional representation of the parabolic
subgroup 2 (the stabilizer of a line of V), and 1§ = ¢, @ 1;. It is known that
dimg,=(g""'—1)g/(g—1) and dimep,=(@"—1)/(g—1) for i=1,...,g-2.

Let ®,, ..., w,_, be the fundamental weights of the algebraic group of
type A,_,. For reZ, 0<r<(p—1)n write r =(p—1)I+j where [, jeZ,
0<j<p—1 Set w()=(p—1—j)w,+jw,,, where the symbols w,, w, are
interpreted as the zero weight. Let Q, = {w(r}|0 < r < (p— 1) n}. Furthermore,
let Q%= {a,+a,p+...+a_,p* ay, ...,a,_,€2,} so Q, =0 If ieQl
then let 4(4) = {s|a, =0}. Use the symbol Ng (i, A) for the number of
solutions {x,} with x,€{0, 1} of the congruence

np—1) Y x,p° '+ Y rpl=i(modg—1)
sed(A) s¢d(A)
where r, is determined by the equality a,=w(r). If A1) =G then
we put Ny (i, 4) to be equal to | if the congruence above holds and to
0 otherwise.

2.1. THEOREM [28]. Let A be the highest weight of an irreducible represen-
tation u of G=SL (p*), n>2 over P. (i) If A¢Qt then D(p,, u)=0
(i=0,...,q9-2). (i) Let LeQk. Then D(p,, 1) = N (0,0)—2 and D(¢,, 1)
= Ng (i, A) unless i = 0, p = 1. Furthermore Y ; D(¢p,, 1) = 2' where t = |4(A)|
and p# ;.

2.2. CoroLLARY. The fragment of the decomposition matrix D of the
group G = SL,(p¥), n > 2 corresponding to its q ordinary representations 1,
@os ---s @, contains exactly ((p—1)n)* nonzero columns.
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2.3. CoroLLARY. If n(p—1) = O(mod q— 1), then D{¢p,, 15) = 2—2 and the
other numbers D (@;, p) are equal to 0 or 2° (0 <s< k—1).

2.4. COROLLARY. If k = 1, then the decomposition numbers D (¢, u) are equal
to 0 or 1.

3. Decomposition numbers for the groups
Splm(pk)’ p > 2, m > 1

Set n = 2m, g = p*. In this section we describe the fragment of the decom-
position matrix of the group H = Sp,,,(g), which corresponds to its irreducible
representations involved in I, (see § 2). It 1s convenient to identify the
parametrization of these representations with that of G in § 2. Set , = ¢l
(i=0,...,9—2).

3.1. Prorositton [28]. (i) ¥, is irreducible for i #0, (q—1)/2 and is
equivalent to ¢, _;_,. (i) ¥, is a direct sum of two irreducible representations Y,
o with
dimy5 = g(g"~1)(g" "'+ 1)/2(g—1) and
dimyg = q(g" + 1)(¢" "' = 1)/2(g—1).

(iti) W, 1,2 is a direct sum of two irreducible representations Wiz, Wig—1y2 of
equal dimensions.

Denote by ¥, the set of representations

{IH’ 'Vo, IO,:v l/’l! cea W(q—3),’2’ I'[/;‘l‘l)/ls ﬂ[’;;—l)/Z}'

In this section we describe the fragment of the decomposition matrix whose
rows correspond to ¥, . Note that y is just the reflection representation
introduced by Curtis, Iwahori and Kilmoyer [6]. Note also that the assertion
(1) of Proposition 3.1 is proved independently by Seitz [21].

Let @,, ..., @, be the fundamental weights of the algebraic group of type

C,.. The symbol ¢, which appears under certain values of parameters has to be
interpreted as the zero weight.

3.2. ProrPOSITION. Let u be an irreducible representation of SL, (p) with
p> 2, m> 1 over P and let 4 be the highest weight of p. Suppose that A€ Q,, .
(1) v = tlgy,, (p IS irreducible unless . = (p—1) w,. (W) If 2 = (p—1) w,,, then v is
a direct sum of two irreducible representations v, and v, whose highest weights
are (p—1) @, and @, _,+(p—2) @, respectively.

(1) follows immediately from results obtained independently by Suprunen-
ko [24] and Seitz [20]. (i) is established in [28].

Set o()=(p—-1—-j)o,+jo,,, where O0<j<p—1, i=(p-1Il+j,
O0gig(p—1)m. Let Q, ={0,_,+(p-2)o,, ®@0<i<(p—1)m}. Note
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that if A = (i) with i < (p—1)m in Proposition 3.2, then the highest weight of
Wsp,nip 15 @ (). It follows that the highest weights of irreducible components of
representations plg,, ,, Wwith 1€£,, belong to Q. Set

& ={ag+a,p+.. . +a_,p" Yag, ...,a,.,€Q,}, soQL=40,.

3.3. ProrOsITION. Let p be an irreducible representation of SL,(p*) over
P where n=2m>2, q is odd. Suppose that the highest weight A=
ag+a, p+ ... +a,_ p* 7" of u belongs to 2. Then v = pis,, . is completely
reducible. The number of irreducible components of v is equal to 2° where d is the
number of s with a, = (p—1)w,,.

3.4, ProposiTiON. If e W, and i¢ Q% then D(, u) =0 where A is the
highest weight of u.

This follows from § 2 and the definition of ¥, and QF.
Let y(@(@))=i and y(®,-,+(p—2)®,)=m(p—1) so 3 is a map
Q N If

A=ay+a,p+...+a_,p e,

then 4(4) = {s|y(a,) # m(p—1)}. Denote by Ng (i, 4} the number of solutions
x,e{l, —1} of the congruence

Y x,p* Y{m(p—1)—v(a)) = i(mod g —1).

sed(d)
If A(2) =@ then we put Ng (i, ) =1 provided i =0 and 0 otherwise.

3.5, THEOREM [28]. Let u be an irreducible representation of H = Sp,,, (p")
(p>2, m> 1) over P and let i be the highest weight of u. Suppose that )€ Q%
Then the following assertions hold:

() DWiy-1y2s W) = DWis- 1y2s 1) = 3 Ny ((@— 1)/2, ).

(i) D, ) = N5, (i, 4) for 0 <i<(g—1)/2.

(iii) D (Yo, 1y) = D5, 1y) = 3 Ng, (0, 0} 1.

(vi) Let p# 1. Then D(Yo, p) = D (Y5, 1) = 3N, (0, A) unless y(a)e
€{0,m(p—1)} for all s=0,...,k—1 and A(A) = 0.

(v) Let y(a,) = m(p—1) for all s. Then D (o, )+ D (Yo, p) = 1. Moreover
D(yg, u)=1 if and only if the number of o, _,+(p—1)d, among a,
(s=0,...,k—1) is even.

3.6. CoroLLARY. Let H=Sp,, (p*), p>2, m> 1. The fragment of the
decomposition matrix D of H corresponding to its (q+ 7)/2 ordinary represen-
tations ¥, contains exactly (m(p—1)+2) nonzero columns.

3.7. CorOLLARY. Let k = 1. (i) The decomposition numbers of the represen-
tations Y€ ¥, are equal to O or 1. (i) The highest weights of irreducible
components of the representation Yy(modp) are (p—1)w;, i=1,...,m.
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4. Weil representations

In the papers [27, 29] the decomposition numbers of certain representations of
symplectic and unitary groups are determined. These representations are
irreducible components of Weil representations. The latter were introduced by
Weil [26] for classical groups over local fields. Weil [26] mentioned that the
finite field case may be considered analogously. This was developed in detail by
Howe [8] and Gérardin [7]. The same representations were introduced
independently by Ward [25] for symplectic group and Seitz [19] for unitary
group. In this section we recall the construction of Weil representation.
Let p be a prime integer and ¢ C a pth root of 1. Let e;; be the matrix
units and E, the unit matrix. Consider the following pxp matrices:

' _ p—1 r
ay=ey teey,+ ... +efTle,,, by =e,te,+ .. te,_ ,te, - Set

4=E,®..QE,®4QE,8...0,
b=E,®. . QE®NRE®. . QEF,

where a}, b} are in ith position. Let » be the number of factors in the
expressions for a;, b;, so a;, b, are p" x p" matrices over C. The sign ® denotes
here the Kronecker product of matrices. Let &, be the group generated by a,, b,
(1 <i<runless p=2, and by a;, b;, /—1E,. if p = 2. Note that &, is an
extraspecial group realized by 1its irreducible representation of degree p’. Let
A" be the subgroup of all matrices with determinant F I of the normalizer of &,
in GL (p", C). Let Z be the center of A", It is well known that A/Z&, = Sp,, (p)
and the action of .4#” on Z&, by conjugation induces the structure of the natural
F,—8p,,(p)-module on Z¢&,/Z. Let I < Sp,,(p) be a subgroup and I, its
preimage in .#". Suppose that ', = Z& ) I, is a semi-direct product with
I'y=T.ThenI' > T, =« GL(p", C)is a linear representation which we shall call
the Weil representation of I". Usually very special groups are taken for I". The
following cases are of interest for us.

(1) I = Sp,,(p), p > 2 (note that for p =2 I'; = N is not splittable). There
are two Weil representations of I” up to equivalence depending on the choice
of the isomorphism I - I',. We shall denote them by the symbols 6
and 0, .

(2) Let r=kn, p>2 and I = Sp,,(p*) = Sp,,(p). This embedding is
realized by the change of matrix elements of Sp,,(p*) by k x k matrices from
a regular representation of the field F . over F,. The Weil representation of
I' is independent of the choice of a basis of F . over F, but the restrictions
0,,=0,,r and 0, =0, | are non-equivalent representations of I

(3) I = U,(9) = Sp,(9), q=p" Here U,(q) = U,(F,) is the unitary
group. Its embedding in Sp,,(g) is realized in the same manner as in (2). The
case p =2 is not excluded since I'; is splittable in this case. The Weil
representation of U, (q) does not depend on the choice of the basis of F,

r.p
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over F,. Moreover 0, | = 0, |- Thus there is a unique Weil representation of
U, (g) up to equivalence. We shall denote it by the symbol {, , omitting g if this
implies no confusion.

4) I = GL,(q) < Sp,,(q)- We mean here the diagonal embedding g —
—diag(g, '¢g”") < Sp,,(9) (g€ GL,(q)), where the group Sp,,(q) is written by
matrices with respect to a Witt basis. The case p = 2 is involved. The Weil
representation of GL,(g) is unique up to equivalence. We shall dencte this
by T,

4.1. ProrosiTioN (Ward [25], see also Gérardin [7]). Let ¢ be the central
involution. Let W be the space of the representation 8, or 0, . Set W* =
fweWlew =w}, W™ ={weW|cw = —w)}. Then W and W~ are irreducible
modules. Furthermore dim W . dimW ~e(q"+1)/2 and dim W™ is odd.

We denote by 6}, (resp. 07 ,) the component of dimension {g”— 1)/2 {resp.
{g"+1)/2) and analogously 8}, 0z, for 0,

n.q*

4.2. ProprosiTiON (Seitz [191, see also Gérardin [7]). Let ¢ be a generator of
the center of U, (q). Let W be the space of {, . Set W; = {we W|cw = &' w} where
& is a primitive (g+ 1)-throot of Land i =0, 1, ..., q. Let {}, , be the restriction of
(nq(SU,(q) on W,. Then (;, are irreducible pairwise nonequivalent repre-
sentations of the special unitary group SU,(q). Furthermore dim(?, =
((@"+q(=1)")/g+1) and dim{,, = (§"~(—1))/g+1) for i> 0.

5. Decomposition numbers for irreducible parts
of the Weil representation of Sp., (q), g odd

Let g = p*, p > 2. I' = Sp,, (q). The [ollowing assertion shows that it suffices to
consider only one of two Weil representations.

5.1. ProposITION [29]. Let p be an irreducible representation of I' over P.
Then D(0,q, ) = D04 1), i=1,2

Let 1} (resp. t7) be the irreducible representation of Sp,,(p) over P whose
highest weight is @&,_,+((p—23)/2) @, (resp. ((p—1)/2) w,).

5.2. ProrosiTion [27]. 0, (modp) =7, (i =1, 2).

Notice that there is a minor misprint in the formulation of the main result

in [27] where the weights @,_, +((p—3)/2) &, and ((p —2)/2) @, turned out to
be interchanged. '

5.3. CoroLLARY. The representations 0, , and 0, , remain irreducible under
reduction modulo an arbitrary prime p.

Corollary 5.3 follows directly from 5.2 and Ward’s results [25]. The
phenomenon described in 5.3 seems to be very rare. Another example of this
kind is the group A4 in § 4 for p=2.
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5.4. ProrosiTioN [29]. For p = 2 the group 4 (mod2) is irreducible and
isomorphic to Sp,,(2). The highest weight of this representation of Sp,,(2) is @,.

It is obvious that .4"(mod p) is irreducible for p > 2.

Let .#¢ be the set of irreducible representations of I' which are obtained
from {7., 17} with the aid of Steinberg's (or Curtis’) construction. More
precisely retain the notation s, 12 for the representations of I' which extend
1!, 12 (this is possible in accordance with Steinberg’s general theory, see [23],
Theorem 43). Let Fr denote a Frobenius automorphism of I'; this is induced by
a Galois -automorphism of the field extension F /¥, and has order k. The set
18 consists of representations of the form

(h R Frotd ®@...@ Fr* 1ok~
where ie{l, 2}, s=0,..., k-1
5.5. THEOREM [29]. Let p be as in (5.1). (i) If u¢ 4%, then D(0.,, u) =0

n.g»

(i=1,2). (i) If pe 42 then D(0),, u)+D(0;,, 1) = L. Moreover D(0} ,, ) =1
if and only if the sum ig+i,+ ... +i,_, in the expression (1) for p is odd.

5.6, CoroLLARY. The fragment of the decomposition matrix modulo p for
I =Sp,,(q), g =" p>2,n>1 corresponding to the ordinary representations
On.g> 024 004, 024 contains exactly 2* nonzero columns. The number of nonzero
elements of every such row is equal to 2*~ 1.

6. Decomposition numbers for components of
the Weil representation of SU (p"), n > 2

Let Q be as in § 2, {'={(,, (see § 4), q=p For ieQf write A=
ag+a,pt...+a_,p""" with ay, ...,a,_,€Q,. Let A(i)={s0<s<
k—1,a,=0} and Ng,(i, ) be the number of solutions x,e{0, 1} of the
congruence

n0-1) ¥ xpt Y ap=iv"l

(mod g+ 1)
sed(l) s¢A(A) 2

unless p = 2, and of the congruence

n Y xp'+ Y ap'=i+n (modg+1) for p=2.
sedA(A) s¢A(L)

If 4(4) =@ we put Ng, (i, 4) = 1, if this congruence is true, and 0 otherwise.
6.1. THEOREM [29]). Let p be an irreducible representation of SU_(p),
n > 2, over P and let i be the highest weight of n. (i) If A¢ Q%, then D ({', y) = 0.

(i) Let Ae Q5. Then D({', u) = Ngy (i, A). Furthermore >, D({', p) = 2' where
=14

32 — Banach Center t. 26, cz. 2
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6.2. CorROLLARY. The fragment of the decomposition matrix D modulo
p corresponding to (q+1) irreducible representations (°, (!, ..., (7 of SU,(g)
contains exactly {n(p—1))* nonzero columns.

6.3. CoroLLARY. If n = 0 (mod q+ 1), then the decomposition numbers of ('
i=0,...,9) are Qor 2°0<s<k-1)

6.4. CorROLLARY. The decomposition numbers of the representations (°, ..., (P
of the group SU,, (p), n > 2, are equal to 0 or 1 except the number D ({', 1) = 2 for
i=(p—1)/2, p>2,2n=0 (modp+1) or p=2,i=0, n=0 (mod3).

7. Composition factors of modular permutation
representations of SL, (gq) and Sp,(q) associated
with the action of these groups over vectors
or lines of the definition space

Let V be a vector space of-dimension n over F, in which the group I = SL, (q)
or Sp, (g) acts naturally (n is even for Sp). Let P (V) denote the set of lines of V.
Denote by IT, and L, the PI'-modules associated with the action of I" on the
vectors and the lines of V respectively.

7.1. TuEOREM [28]. Let I' = SL_(p"), n > 2. Then the highest weights of the
composition factors of I1p belong to Q. If ie QX then the multiplicity of the
representation with the highest weight A in Ilp is 2!, where t = |A(4)|, see § 2. The
length of the composition series of Mp is (n(p— 1)+ 1)

7.2. THEOREM [28]. Let I" be as in (7.1) and suppose that i is the highest
weight of a composition factor u of the PI'-module L,. Then ie Q¥ and the
multiplicity of u in Lp is equal to Ng; (0, A) (see § 2) if 2 # 0, and Ng; (0, 0)—1 if
i=0.

7.3. Tueorem [28]. Let I' = Sp,(p*), p > 2, n = 2m > 2. Then the highest
weights of composition factors of T1,\, belong to Q%,. For 4e Q% the multiplicity of
the representation with the highest weight A is equal to 2' where | is the number of
the weights a in the expression 4 = ag+a,p+ ... +a,_, p*~* which differ from
(p—1) o, and @, _,+(p—2)w®,. The length of the composition series of I1p|, is
equal to (2m(p—1)+2)~.

7.4. THEOREM [28] Let T be as in (71.3) and let A be the highest weight of
a composition factor ,u in Lp|r. Then ie (% and the multiplicity of u in Lp|, is
equal to Ng (0, 1) if A#0 and Ng (0,0)—1 for 1 =0.

Earlier Bhattacharya [1] proved that the length of the composition series in
(7.1) for k = 1 is equal to 1 +n(p—1). Mortimer [17] showed that the length of
the composition series in (7.2) is at least 3. Note also that Liebeck [16] described .
the structure of submodules of L, for Sp,(p*) and Mortimer [17] did this for
SL,(p*) provided F ‘is an algebraically closed field of characteristic f# p.
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8. Restriction of certain representations of
algebraic groups of type A, and C, on some subgroups

In this section T expose certain results on representations of algebraic groups
which were obtained in the process of the proofs of results of the previous
sections. They seem to be of independent interest.

Let X be a set of dominant weights of an algebraic group Y. Then R(X)
denotes the set of the irreducible representations of ¥ whose highest weights
belong to X.

8.1. THEOREM [28]. Let A,_, — A, _, be the natural embedding of algebraic
groups. Let ¢ € R(2,) be a representation of A, _ . Then (i) the restriction ¢|,__,
is completely reducible; (ii) the composition factors of ¢|,, , belong to R(Q,_)).

8.2. THeoreMm [27]. Let C,_,— C, be the natural embedding and
@€R(Q,). Then (i) the restriction ¢|c__, is completely reducible and (i) the
composition factors of ¢|c__. belong to R(Q,_,).

8.3. THeoreM [28]. Let C, — A,,_, be the standard embedding and
@€ R(L2,,). Then o|c_ is completely reducible and its factors belong to R(2,).

For p > 2 let £,, be the set of irreducible representations of C,, with the
highest weights ((p—1)/2)@,, and @, _;+((p—3)/2)®,

8.4. THeoreM [27]. For @ € E,, the restriction @|¢_ , is completely reducible
and its composition factors belong to =, _,.

8.5. THeoreM [29]. Let A,.,—»C, be a Witt embedding (that is
g — diag(g, ‘g~ ') e Sp,, (P) where g runs over SL,(P) and t denotes the trans-
pose. Here Sp,, (P) is written in a Witt basis). If pe =, then ¢|, _, is completely
reducible and its factors belong to €,.
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