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This article contains a concept of completing varieties in enumerative geometry
and its application to the case of conics. A survey on the results about conics is
given.

1. Introduction

Hilbert’s fifteenth problem [HI] concerning the justification of Schubert’s
enumerative calculus was solved during the first part of our century in the sense
that one has to translate the enumerative problem into an intersection problem
on a suitable smooth variety Q. Intersection theory was then well developed.
To apply Schubert’s calculus is nothing else but working in the intersection
ring of the variety Q.

But from the beginning it is not evident on which variety Q the
enumerative problem can be well described as an intersection problem. In
terms of the classical enumerative geometry this means whether a formula is
valid with respect to a “condition” B or not. An element of the family of
geometrical objects in the support variety Z, in which the enumerative problem
is given, satisfies a “condition” B if the point representing the element in Q lies
in a subvariety B-of Q. The fulfilment of a number of conditions corresponds to
lying in the intersection of the respective subvarieties. The intersection has to
be proper(!). This can be reached by moving the subvariety B into an

(') Applying the modern intersection theory of Fulton or Vogel, one gets another approach
to enumerative geometry [FP], [SV].

This paper is in final form and no version of it will be submitted for publication
clsewhere.

(39]



40 K. DRECHSLER

equivalent subvariety with respect to an equivalence relation ~ that belongs
to the intersection theory. But this movement may destroy the geometric
significance of B on the support variety Z.

In general, one has a canonical group action GxZ — Z on Z, which
preserves the properties of B. It leads to an action G x Q — Q on Q. We want
to make an intersection proper by moving B by an element of G. If this is
always possible we shall say that Q is G-complete with respect to B.

We shall now explain this concept for the case of conics. Let Z be the
projective plane P? over an algebraically closed field k (of characteristic # 2
and 3(%) and let G = GI(3). The projective space P° parametrizes the family
of all conics in P2. We consider the condition B = B(C, 1) of simple contact
to a given smooth conic C. P® is not G-complete with respect to B(C, 1).
This is the background for Steiner’s problem. J. Steiner [ST] asked for the
number of conics of the plane which have a simple contact to 5 given
smooth conics in general position. “General position” here means that one
can move each of the given conics by elements of G. He answered himself
that the number was 6> = 7776, but this is erroneous. The reason is that he,
in fact, worked in the intersection ring of P>,

The so called “complete” conics solved the problem. The variety M> of
“complete” conics is G-complete with respect to B(C, 1). It is possible to
determine the intersection ring of M>. Thus we get formulae by which we are
able to compute numbers concerning enumerative problems of conics.

Already the geometers of the last century asked whether the formulae
are valid in every case [HA]. In fact, M® is not G-complete with respect to
the condition B = B(C, 3) of superosculating a smooth conic C. One has to
find another variety N°, which has the property of G-completeness.

First, we shall give the exact definition of completeness and mention
some general results. Afterwards we shall come back to the case of conics in
detail.

2. G-Completeness with respect to a condition

Let k be an algebraically closed field. We consider a variety Q over k in
a projective space P". Further, let G be a subgroup of the linear group
GI(N +1) over k so that Q is G-stable, the closure G of G is a variety over
k and each generic point of G is in G.

We put dim& = — oo which means that dim @ is less than each integer.
Let A and B be algebraic subsets (# @) of Q.

(*) Some of the results are true for any characteristic or at least for characteristic # 2. But
in connection with contact conditions one has to make particular considerations [V].
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DEerFiNniTION. We call 4 a G-degeneration subset with respect' to Bon Qif
‘and only if

(2.1) dim,,, (4 ngB) > dim A +dim B—dim Q

for all g€ G. A variety Q is said to be G-complete with respect to B if and only if
Q has no G-degeneration subsets with respect to B.

It is easy to see that if 4 is a G-degeneration subset with respect to B, then
B is a G-degeneration subset with respect to A. If B# Q and A # J and
A S gB for all geG, then 4 is a G-degeneration subset with respect to B. In
particular, if B # @ and (\,cc¢gB # O then (),.c¢B is a G-stable G-degenera-
tion subset with respect to B. In the case of codim?B = 1 the condition is also
necessary: A is a G-degeneration variety with respect to B if and only if 4 S gB
for all geG. Therefore each G-degeneration variety with respect to B is
contained in (\,.¢B and Q is G-complete with respect to B if and only if
(Neec 9B = D. If this is not so, then Q has a G-stable G-degeneration subset.

The last assertion is true also in the general case:

THEOREM 1. For any G-degeneration subset A with respect to B on Q there
exists a G-stable G-degeneration subset T with respect to Bon Q so that An T is
a G-degeneration subset with respect to B.

Sketch of proof (for details see [DS8]): Take a generic point g; of G.
Because A is a G-degeneration subset with respect to B, there exists a com-
ponent V, . of Ang;B so that

(2.2) dim,,,, V,,, > dim A +dim B—dim .

Let P, be a generic point of V, _ over the algebraic closure of k(g,) and let g;; be
another generic point of G, and choose all these points sufficiently independent-
ly. Py = g6 P, defines a variety T over k. T is G-stable. We shall see that T is
a G-degeneration variety with respect to B. Because of the assumed indepen-
dence, we have

(2.3) dim T = dim, g5 P, = dim, g g5 +dim,. ., g6 Py —dimy . 5. 96 96>

(2.4) dim, g5 g5 < dim, g,,
(2.5) dimyp,, 96 = dimyp, oo 696 < dimy . p,. g6 d6-

Combining these we see that

(2.7) dim, T < dim, P, —dim,,, P, +dim,,.,.,96 Py.
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Then it follows by (2.2) that
(2.8) dimy,. .., 96 Py > dim T+dim B—dim Q.

The element g, = ggy, of G is also a generic point of G.
Furthermore, P, = g P, € Tn Gz B. Thus

(2.9 dimy g, (TN Gg B) > dim T+dim B—dim Q.
Because of P, e T and P,eAng;B, we also have
(2.10)  dimy,,, (4~ T g B) 2 dimyg,, Py > dim A +dim B—dim Q
=2 dim(An T)+dim B—dim Q.
The assertions of the Theorem follow from (2.9} and (2.10).

CoroLLARY. Grassmannians and flag spaces are G-complete with respect to
any condition if G = Gl(n) is the linear group of the underlying vector space.

A way to complete a variety could be to blow up it in a smallest G-stable
G-degeneration subvariety T, because one then has a possibility to control the
completeness and the intersection ring under the blowing-up ¢: ¢ — Q.
(Assume that T is not singular on @, otherwise start with a desingularization.)
If no component of B is in T, then the total image T of T is not
a G-degeneration subvariety with respect to B=¢ !B of Q.

Is it always possible to get § G-complete with respect to B by a sequence
of blowing-ups of this kind?

Is it possible to replace an arbitrary condition B by a codimension-one
condition so that a completion with respect to it is a completion with respect
to B?

We have no answers to these questions in general.

3. Contact conditions

From now on we consider the family of all conics in P?, and we specify B to be
contact conditions. Firstly, we define a condition B(c, r) of r-fold contact to
a branch c (of a curve) in P2, re N. Choose a coordinate triangle in P2 so that
the support point of c is a vertex and the tangent line of ¢ is a face, and describe
¢ in the coordinates by power series in t. The intersection of ¢ with a conic
p leads to an equation in t. The conic p has an r-fold contact to the branch c if
and only if the multiplicity of the solution ¢t =0 of that equation is greater
than r.

Disregarding moving by elements of G one gets finitely many linear
subspaces B(c, r) of P° of two kinds: Either B(c, r) = P,, = {pe P*: rkp < 2}
(and we have no chance to get completeness), or there exists an ordinary
branch ¢’ and an r'e N so that B(c, r) = B(¢, ).



ON COMPLETING CONICS 43

Secondly, we define the condition B(C,r) of r-fold contact to an
irreducible reduced curve C(3) in P? (deg C = 2 if r > 1) to be the closure of the
union of all B(c, r) where ¢ is an ordinary branch of C. Q = P® is G-complete
neither with respect to B = B(c, 1) nor to B= B(C, 1) even if C is a line or
a conic. Namely, dim(P,, n B(c, 1)) = 1 and dim(P,n B(C, 1)) = 2, in par-
ticular P,,< B(C,1) and codimB(C,1)=1. Therefore P, = {peP*:
rkp = 1} is a G-stable G-degeneration variety with respect to B. A first step to
get completeness is to blow up @ =P° in T=P,,. Then § = M® is the
thoroughly investigated variety of “complete” conics [W]. We view it as
a subvariety of P°>x L’ where L° parametrizes the line conics. M® is
G-complete with respect to B(c,r) and B(C,r), r=1, 2.

Therefore, in particular, Steiner’s problem is solvable on M® if the
intersection ring H* M? is known together with a representation of B(C, 1) in
it where C is a conic in P2

Let P be the cycle given in M* by the image of a hyperplane of P° and
L~ B(C, 1) where C is a line in P2, Then a description of H* M is

(3.1) H*M3 =~ Q[P, L}2P*—3P2L+3PL?—2L% 2PL*—3P*[2+2P*L),

and

(3.2) B(C,1)~2P+2L in H*M?
(see [DS6], [DS4], (4.31)). A calculation gives us
(3.3) B*(C, 1) ~ 3264 P3,

and this is now really the number of conics touching fixed five conics in
a general position.

4. A problem similar to Steiner’s

Take a regular conic C;, i = 1, ..., 5 and let §(C,) be the closure of the union of
all B(C, 3) for all regular C in B(C,, 3). S(C,) is one of the so-called Halphen
conditions [SE]. It is of codimension one. We called it in [[DS4] a condition of
“mediate superosculation” and asked in [DS5] for the number of all conics
which superosculate five given smooth conics C;,,i=1,..., 5, in general
position in this mediate way. By a calculation which was done in [DS4], (4.32),
we have in H* M°

4.1) Sy~ B(C, 1)~2P+2L,

and the number would be the same as above in (3.3).
But this is incorrect. The Halphen locus

(4.2) Py, Ly, ={p, heM? = PP x L*: rkp = rkl =1}

(®) The definition is possible for reducible curves, too {see [DS9]).



44 K. DRECHSLER

is contained in S(C) for any C,. Py Ly, 1s a G-stable G-degeneration
subvariety of M> with respect to S"(C,-) and, by the way, with respect to B(C, 3)
and B(c, 3), too. The variety M> of point-line conics is therefore not
G-complete with respect to these conditions.

5. The variety of point-line superosculant conics

We blow up @ = M® in T = P, L, and call § = N? the variety of point-line
superosculant conics. Consider first an embedding of N> in P> x L® x §23!
where S$2°! is aprojective space of dimension 251. This embedding has

a geometrical interpretation in terms of mediate superosculation (see [DS7]).
Start with a k-vector space V of dimension 3.
Let

P? =ProjV, P°=ProjSym*V, L°= ProjSym?/\?V.
If feSym? V, then f: V — V* is a map into the dual space V*. The adjoint f* to
f is defined by
(5.1 % N V= A2VE % (A w—(fo A fw).
This leads to the adjoint map
(5.2) ad: Sym* V- Sym?> A?V, ad: fiof*

Then P, = ProjKerad, U = P°\P,, ¢; ' =(id, ad): U - P°x L’ and the
closure @' U is the variety M° of point-line conics. Next define

(5.3) d: Sym?VxSym? V*

— Sym?Sym? V*® Sym” A’ V@ Sym? Sym? V® Sym? A\ V* = W
by

(5.4) d: (f, f*)—> seg(ver f*, adf)+seg(verf, adf*)

where seg and ver are the Segre and the Veronese embeddings. Kerd cuts
out d)the Halphen locus P,,L,, on M° Let Y=M>\P, L, o5

Y —> M?>x §2°! and, finally,
(5.5) NS =o@r'Y.

A point (p, I, s) of N? is a point-line superosculant conic with s = [s.+5"] e §2°!
where s. and s* are in the first and the second summand of W, respectively.
There exist five G-stable subvarieties on N°: the proper images of P, and L,
of dimension 4 given by s. = 0 and by 5" = 0, the total image E of P,,L, of
dimension 4 given by adf'= 0, adf* = 0 and their two 3-dimensional intersec-
tions E. and E° given by adf* =0, s. =0 and adf =0, s = 0, respectively.
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a Lir

Fig. 1. G-stable subvarieties ol N7

In [DS1] we presented a more intuitive construction of N°. We started
with a regular conic p and a point X of it. The pencil of conics superosculating
p at X is a line in P° (called a superosculant of p) and therefore a point of the
Grassmannian I = Grass(2,6). If we move X along p we get a rational curve
sof order 4 on I’ = P'*. We considered its Chow form in [DS1]. Then N° was
defined to be the closure of the set of all triples (p, [, 5). The main point was to
study the Chow forms associated with a point'(p, /) of Py, L ,, (a fibre of ¢,). In
this case (p, I) 1s geometrically a double line w with a double point x on it,
which is the support point of a double pencil of lines (the corresponding line
conic). Let g, be the line in I' representing the set of singular conics in P> with
support point x, and let g, be the line representing the set of singular conics in
P? with fixed part w. They have a common point in " and determine an
involution i in the pencil given by them with fixed elements g, and ¢;.

Then it turned out that 2g,+ g’ + ¢g'®, where (¢g'*, g'?) is a pair of i, give
us the 1-dimensional set of all possible Chow forms s.

In particular, (g'V, g'*') may be equal to (g,, ¢,) or (g5, g7), i-€., s = 4g, or
s = 2g,+2g,. These Chow forms describe the points of the fibre belonging to
E' and E., respectively. In general, a line gY, j =1, 2, represents a two-di-
mensional set in P? of the following kind: Fix a smooth conic 7« touching w at
x and consider the set of all conics which osculate it at x. The choice of
n determines a point in the fibre of ¢,. Each of ¢'", g%, g, and g, can be
viewed as a line of pencils of conics. The description becomes symmetric if one
considers s together with its dual version (see [DS1]).

6. Completeness of N°

Let now B(c, r) and B(C, r) be the proper images of B(c, r) and B(C, r) on N*.
THEOREM 2. N3 is G-complete with respect to

(i) B(c, r) for any ordinary ¢ and for each reN,
(i) B(C, r) for each reN if C is a smooth conic,
(iii) B(C, r) for all C(*) and r =1, 2, 3,

(iv) S(C) if C is a smooth conic.

*)degC=2ilr>1.
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Proofs. For (1) see [DS3] and [DS9]. For (iv) see [DS5] and [SE]. For (i1)
and (iii) we shall give in (DS9] a suitable description of the points of B(C, )
belonging to branches ¢ of C which are not ordinary and check the
completeness by the intersection with E. and E".

Now we are able to solve the problem of § 4. Because of Theorem 2 (iv),
the computation of S° in H* N>, where § is the cycle corresponding to S(C),
with C a smooth conic, gives us the correct number. In [DS6] we summarized
the results of [DS2] and obtained the following description of the intersection
ring of N>

(6.1) H*N3>=Q[P, L. S]/(2P*-3P2L+3PL*-2L3,

2P +2L°—SP*—SL?+SPL, $*+9PL—-3SP—3SL).
By a rather lengthy but elementary calculation one gets
(6.2) S ~ 1296P°

(see [DSS5], [DS6]). Semple got in [SE] the same number basing on Schubert's
methods.

We remark with a look at Theorem 2 that if ¢ is ordinary then B{(c, 4) is
a single smooth conic, and B(c, r) = @ for r > 4. Moreover, B(C, r) = @ for
r > 4. Thus B(C, 4), where C is not a conic, is the only remaining case. For
a long time we thought that N3 is G-complete with respect to B(C, 4), too. But
our research in [DS9] showed that this is not true. The cusps or inflection
points of C give rise to the fact that E. and E’ are G-degeneration varieties of
N3 with respect to B (C, 4). Moreover, one can choose C so that one needs
further and further blowing-ups to complete the variety of conics with respect
to B(C, 4). In [DS10] we shall describe this in detail.

E.LEN /EE

Fig. 2. G-stable subvarictics of the blowing-up in the minimal G-stable subvarieties of N°
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