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CONFORMING FINITE ELEMENT APPROXIMATION
OF THE STOKES PROBLEM
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This paper considers a conforming finite element method for the stationary
Stokes problem in the plane. An easy way of generating continuous and
divergence-free FE-basis functions (e.g. piecewise linear) with small supports is
shown. The approximate solution can be obtained solving a system of linear
algebraic equations.

1, Introduction

The Stokes probiem is usually solved by mixed (non-conforming) FE-methods
when the incompressibility condition dive = 0 is satisfied only approximately.
Some benefits and also disadvantages of these methods can be found e.g. in
(1, 2, 3, 9, 10]. To fulfil the condition diveo =0 exactly, conforming
FE-methods have to be employed (see [2, 4, 6, 10, 11]). Here we present
a conforming method mentioned in [6].

With the help of a stream function and C'-elements in R?, we shall
construct finite element spaces of continuous and divergence-free vector
functions. The method is applicable especially for polygonal domains, since
curved C'-elements are quite complicated [7, 12]. We shall deal with
approximation properties of the above-mentioned FE-spaces and apply them
to the stationary Stokes problem. However, these spaces may also be used for
the Navier-Stokes equations or non-stationary problems.

We denote by 2 a bounded plane domain with a Lipschitz boundary 0%Q2.
The outward unit normal n = (n, n,) to IQ2 exists almost everywhere (see [8],
p. 88). Let (.,.), be the inner product in (I2(Q)), d > 1. By (H*(@))", k=0, 1,
2,... we mean the Cartesian product of the Sobolev spaces H*(£2) with the
standard norm |- ||, and seminorm |-|,. Further we define the linear operator
curl: H' () — (I*(Q2))* by

curls = (d,s, —3,5), seH"(Q),

[389]
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where 9, = d/dx;, and recall that
H{(Q) = {veH' (Q)|v =0 on 02}
and

0.
H2(Q) = {SEHZ(Q)IS - 5% ~0 on ag}.
The homogeneous stationary Stokes problem of the motion of an
incompressible viscous fluid in 2 is classically formulated in the following way:
Given fe(I?(Q))* (volumic forces per unit mass) and a constant v > 0
(dynamic viscosity), find the velocity u = (u,, u,) and the preasure p such that

(1) —vdu+gradp=f 1n £,
(2) divu=0 in Q,
3) u=0 on 0,

where du = (du,, 4u,).

We shall be not concerned with the way of finding p (for this see e.g. [1]).
We roughly outline a variational formulation of (1)-(3) to find the velocity
u=(u,, u,)eV, where
4) V ={ve(H;()*|divo =0 in Q}
is the space of test functions which satisfy the conditions (2) and (3).
Multiplying (1) by an arbitrary function ve V' and integrating over (2, we arrive
at

—v(du, v)g+(grad p, v), = (f, v)p-

Now the Green formula yields
2

(5) Y (gradu,, gradv), = (fiv), VeeV.

a=1
It follows from the Lax-Milgram lemma that there exists a unique solution to
the variational problem (5).

2. The case of simply connected domains

In this section we assume that Q is simply connected.
THEOREM 2.1. The linear mapping

(6) curl: H3(Q) -~V

is bijective.

Proof. For se H5(2) evidently curl se(H}(Q))? and diveurls = 0 in Q, ie,,
curl seV (cf. (4)).
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Injectivity. Let se H§(Q) be in the kernel of the mapping (6), i.e., curls = 0.
Since 0, s = 8,5 = 0, the function s is constant in , and due to the boundary
condition s =0 on 98, we see that s =0 in the whole domain Q.

Surjectivity. Let ve V be arbitrary. Then by [3], p. 22, there exists the
so-called stream function se H' () unique apart from an additive constant
(this constant will be chosen later) such that

N v = curls.

Since veV, we find that 29,s, d,s¢ HY(Q), ie., se H?(Q). However,
d,5=0,5s=0 on 02 which implies that

o5 _0s _
ot on

where t = (n,, —n,) is the unit tangent vector to d8. Therefore, s is constant on
Q2 (as 9Q is connected). Choosing s in (7) so that s =0 on dQ, we get that
seH3(Q). =

COROLLARY 2.2. It is
(8) V = curl H3 (Q),

where the symbol curl HZ (Q) represents the space of the rotations of all functions
from H(Q). =

Now, let S, = H}(Q) be an arbitrary finite element space and let us define

0 on 0Q,

9 V, = curl §,.

From (8) we immediately see that I}, < V (ie., divy, = 0 whenever v,€ I4) and
thus V, is called the space of divergence-free (solenoidal) finite elements.

COROLLARY 2.3. We have
dim ¥, = dim$S,.
If {s'}7= is a basis in S, and if we set
(10) v=curls’, i=1,...,m,
then {v'}jL, is a basis in V,. m

The proof follows directly from (9) and Theorem 2.1. Moreover, from (10)
we find that

(11) suppv' = supps’, i=1,...,m,

where supp denotes a support. Consequently, if the basis {s°}7, is generated by
the standard C!-elements, then thanks to the definition formula (10), the basis
functions »' are continuous, exactly divergence-free and by (11) they have small
supports (if supps' are small).
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Remark 2.4. In [5], Heindel has presented a triangular composed piece-
wise quadratic C'-element (see fig.) with only 12 degrees of [reedom (like the
Hsieh—Clough-Tocher element [1]). Hence, the corresponding divergence-free
basis functions v' = (v}, v5) satisfying (11) are piecewise linear (cf. [2]) as
follows from (10). m

’

A conforming FE-approximation of the problem (5) will consist in finding
u, = (u,,, 4y2) €V, < V such that

(12)

e

(grad uy,, gradvy)o = (f, v)e Vo€V,

[

q=1

Seeking u, in the form

we obtain from (12) a system of linear algebraic equations

2 m
> Y (gradvj, gradvl)y ¢/ = (f, v)y,  i=1,...,m,
q=1j=1
for the unknowns c!, ..., ¢™. The corresponding matrix is clearly symmetric
positive definite and by (11) it can be band.

The next theorem states the convergence of u, deflined by (12) to the
solution ue V of the variational problem (5) without any regularity assump-
tions upon u. However, to derive some rate of convergence, we shall later
assume that u 15 smooth enough.

THEOREM 2.5. Let {S,} be a system of finite element subspaces of H (Q)
such that the union | J, S, is dense in H§(Q) (with the topology of H*(Q)). Then

lu—u, |, =0 as h—-0.
Proof. By Theorem 2.1 there exists ze H2(Q) such that

u=curlz n Q.
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Since the bilinear form corresponding to (5) is evidently continuous and
V-elliptic, 1e.,
2
v 3 (gradu,, gradv), = cllvll]  VYoeV,
g=1
we may apply Cea’s Lemma (see [1], p. 104). Thus there exists a constant C > 0
independent of V¥, such that

| . .
(13} =lu—wl, < inl JJu~v,|, = inf |curkz—curls,|,
C vne¥ SHESH

= inf ||grad(z—s,)|, < inf |z—s,];, >0 when h-0. u

sShESH SheS)H
Remark 2.6. A sufficient condition for the density assumption in Theorem
2.5 can be found in [1], p. 354, Roughly speaking, this condition requires the
regularity of a family {Z,} of triangulations of a polygonal domain, the
existence of a referenée C'-element to which all elements are almost-affine
equivalent, and the validity of the inclusions

P,(K)c Py c H*(K) VKed,,

where P, (K) is the space of quadratic polynomials defined on K, and Py is the
space of ansatz-[unctions of each element K (with appropriate degrees of
freedom). The foregoing inclusions are valid e.g. for the Heindel element
mentioned in Remark 2.4. n

Remark 2.7. (The rate of convergence.) Suppose that for some integer
k > 1 and for all se H(Q) n H**2(Q), we can define an §,-interpolant =, se S,
such that
(14) ”S_TChSHZ *<~ Chk |S|k+2y
where ¢ is independent of h. Then for any ve Vi~ (H**! (Q))* we may define the
V,-interpolant IT,ve V, by
(15) IT, v = curl(n,s),
where s corresponds to v by Theorem 2.1 and seH***(Q) as 9,s,
2, se H**1(Q).

Let us suppose that the solution of (5) belongs to ¥V~ (H**' (22))?, and let
ze H3(Q)n H**2(Q) be the corresponding stream function, ie.,
(16) u = curlz.

Then by Céa’s Lemma (cf. (13)), (16), (I5) and (!4), we obtain the lollowing
a priori error estimate

1 .
=lu—u,ll, < inf Ju=yg,l, < lu—M,ull, = |curl(z—=; 2)|,
C PHEV n

< z—-mzll, < ch* |zl s, = chtjeurl zlyy ;= ch* [ule ;-
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Thus the rate of convergence is k and we get the same rate in the I*-norm for
the so-called vorticity rotu =0 ,u,—3d,u;. m

3. The case of multiply connected domains

Let Q = R? be a multiply connected domain with a Lipschitz boundary, let
Q,..., 9, (1 <r<cw)be all bounded components of the set R*—Q and let

Q=0u 4,
j=1

ie, 0Q =080,uU00,u ... UIR,, where r is the number of holes in Q.
First of all we present an analogue of Theorem 2.1.

THEOREM 3.1. There exist functions z*, ...,z e H*(Q)—H3(Q) such that
the mapping
(17) curl: L(HF(Qu{z',...,7}) -V,
where ¥ denotes the linear span, is bijective.

Proof. Let z2e H*(Q), j=1, ..., r, be arbitrary functions satisfying
(18) Z=8; ondQ, i=0,...,rj=1,..,r,
(¢;; is Kronecker’s symbol) and
(19) 0,2/=0,22=0 ondQ, j=1,...,r.

Note that the distances of the boundaries dQ; are positive because 99 is
Lipschitz. By Theotem 2.1 we already know that curl H3(2) = V and due to
(19), curlz’e ¥, too.

Injectivity. According to (18), any z/ vanishes on 0Q, and thus we may
proceed as m Theorem 2.1.

Surjectivity. Let ve V be arbitrary. Since v = 0 on each component 0Q,,
there exists (by [3], p. 22) a stream function se H' () (unique apart from an
additive constant) such that

(20) v = curls.

As 0,5, 0, s€ H(Q), we observe again that se H*(Q), ds/on = 0 on 09 and that
the tangential derivative of s vanishes on the boundary, ie., ds/dt = 0 on 0.
This implies that s equals to a constant ¢; (j = 0,1, ..., r) on each part 9Q;.
Let s in (20) be chosen so that ¢, =0, ie., 5|y, = 0. Putting

,
(21) 2 =5—3 ¢;7,
i=1

we find that z% e H*(Q) and by (18) and (19) it holds that 2° = 9, 2° = 8, 2° on
0Q. Hence, z°e H3(Q) and the mapping (17) is due to (21) surjective. m
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COROLLARY 3.2. According to Theorem 3.1, it is
V=curl Z,
where
Z=2(H{Qu{z, ..., 7}

oz

={zeHz(.Q) %=O on 09, z|sn, =0, 3¢y, ..., c,eRY;

ZlaQJ.:CJ-,j: 1, ...,r}. |

We may therefore define the space of divergence-free finite elements as
follows.

V,=curl Z,,
where Z, is an arbitrary finite element subspace of Z.
Remark 3.3. Let us set
Z,=2(S,uiz', ..., 2'}),
where z/ belong to a fixed finite element space X,, = H*(2) and satisfy (18)
and (19),
S)

:XhomH%(Q)a

and let the union U,, S, be dense in H () (with respect to the | :|,-norm).
Then we may again easily prove that

lu—u,ll, =0 as h—0.

Assuming further (14), we can derive that the rate of convergence is k when u is
sufficiently smooth. If {s'}/L, is a basis of S, then

(22) {curl s'P y U {curl 2/} |

is a basis of V,. The supports of the basis functions curl z/ may have, for
instance, a circular shape around any hole Q;, j=1,..., r. Hence, to save
computer memory, we should store only non-zero entries of the Gram matrix
corresponding to the basis (22), and then use some iterative method for finding
the discrete solution. For r fixed merely O(m) memory cells are needed. m
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