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A REMARK ON SELF-CENTROIDAL GRAPHS

Abstract. The concept of centroid of a graph, related to the concept of
convexity, is studied. A class of graphs G in which the centroid is equal to
the whole vertex set is shown.

The notions of monophonical convexity and of geodesical convexity were
studied e.g. in [1]. By means of these concepts the centroid of a graph is
defined. At the end of [2] W. Piotrowski poses three problems, including the
problem which graphs are self-centroidal and the problem of describing cen-
troids in particular classes of graphs. In [3] these problems were investigated
for graphs without a separating set of vertices inducing a clique and in par-
ticular for chordal, Halin, series-parallel and outerplanar graphs. Here we
shall show a considerably wide class of self-centroidal graphs. We consider
finite undirected graphs without loops and multiple edges.

A path P in a graph G is called chordless if no two of its vertices are
joined by an edge not belonging to P. A subset M of the vertex set V(G) of
G is called monophonically (resp. geodesically) convez if for any two vertices
u, v of M the set M contains all vertices lying on chordless (resp. shortest)
paths connecting « and v in M. Instead of monophonically convex we write
shortly m-convex, instead of geodesically convex we write g-convex.

Obviously any shortest path connecting two vertices is chordless. There-
fore each m-convex set in G is g-convex in G; the converse assertion is not
true.

For any type of convexity we may define the weight of a vertex in G.
The m-weight (resp. g-weight) of a vertex v in G is the maximum number of
vertices of an m-convex (resp. g-convex) set in G which does not contain v.
Then the m-centroid (resp. g-centroid) of G is the set of vertices of G whose
m-weight (resp. g-weight) in G is minimum.
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The graph G is called m-self-centroidal (resp. g-self-centroidal) if the
m-centroid (resp. g-centroid) of G is V(G).

Obviously all vertex-transitive graphs are m-self-centroidal and g-self-
centroidal.

A clique in a graph G is a subgraph of G which is a complete graph and
is not a proper subgraph of another complete subgraph of G. The maximum
number of vertices of a clique in G is called the cligue number of G and is
denoted by w(G). A clique in G having w(G) vertices is called mazimal.

The Zykov sum G ® G, of two graphs G, G is the graph obtained
from vertex-disjoint graphs G;, G2 by joining each vertex of G; with each
vertex of G; by an edge.

Note that a graph is the Zykov sum of some graphs if and only if it is
the complement of a disconnected graph.

THEOREM 1. Let G be the Zykov sum of two non-empty non-complete
graphs Gy and G3. If the intersection J(G) of all mazimal cliques of G is
non-empty, then J(G) is the m-centroid and the g-centroid of G. Otherwise
G is m-self-centroidal and g-self-centroidal.

Proof. Obviously each subset of V(G) inducing a complete subgraph
is m-convex and g-convex in G. Now let M be an m-convex set in G and let
M contain two non-adjacent vertices u, v. As G is the Zykov sum G; @ G2,
u and v are either both in Gy, or both in G;. Without loss of generality
suppose that u and v are in G;. Then the distance between z and v in G is
2 and each vertex of G is an inner vertex of a path of length 2 connecting
u and v in Gj such a path is obviously chordless. Hence V(G2) C M. As
G1, G, are not complete, there exist two non-adjacent vertices u’ and v' in
G, and ' € M, v' € M. The distance between u' and v' in G is 2 and
each vertex of G, is an inner vertex of a path of length 2 connecting ' and
v’ in G. Hence V(G1) C M and M = V(G). If we suppose M only to be
g-convex, we obtain the same result. Therefore m-convex sets and g-convex
ones coincide in G and we may just speak about convex sets. We see that a
non-empty subset M of V(G) is convex in G if and only if either M = V(G),
or M induces a complete subgraph of G. The weight of any vertex v is the
maximum number of vertices of a subset of V(G) — {v} which induces a
complete subgraph of G.

If the intersection J(G) of all maximal cliques of G is empty, then for
each vertex v of G there exists a maximal clique of G which does not contain
v. Hence the weight of each vertex v is w(G) and G is m-self-centroidal and
g-self-centroidal. If J(G) # 0, then the weight of each v € J(G) is w(G) — 1,
while for each v € V(G) — J(G) it is w(G) (obviously V(G) — J(G) # 0);
this implies that J(G) is the m-centroid and the g-centroid of G. m
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CoROLLARY 1. Let G be the Zykov sum of two non-emply non-complete
graphs Gy, G3. The graph G is m-self-centroidal and g-self-centroidal if and
only if in both G1, G2 the intersection of all mazimal cliques is empty.

Proof. A subgraph of G is a maximal clique in G if and only if it is
the Zykov sum of a maximal clique in G; and a maximal clique in G;3. Also
the intersection J(G) of all maximal cliques of G is the Zykov sum of the
intersections J(G1), J(G2) of maximal cliques of G; and G, respectively. It
is empty if and only if both J(G1) and J(G:) are empty. This implies the
assertion. m

In Theorem 1 we have supposed that both the graphs G;, G; are non-
complete. Now the case remains when at least one of them is complete.
Evidently a graph G is the Zykov sum of two graphs G;, G3, at least one of
which is complete, if and only if it contains saturated vertices; a saturated
vertez is a vertex adjacent to all other vertices. Let S(G) denote the set of
all saturated vertices of G.

THEOREM 2. Let G be a graph, and let its set S(G) of saturated vertices
be non-empty. Then S(G) is a g-centroid of G.

Proof. Let u € S(G). Let z, y be two non-adjacent vertices of G.
Then the distance between 2z and ¥ in G is 2 and u is the inner vertex of a
path of length 2 connecting z and y in G. Therefore each g-convex set in
G containing two non-adjacent vertices contains u. The g-convex sets in G
not containing u are exactly those which induce complete subgraphs of G
and do not contain u. A saturated vertex of G is contained in each clique
of G, therefore the weight of u is w(G) — 1.

Now let v € V(G) — §(G). If v is not contained in a maximal clique of
G, then evidently its g-weight is at least w(G). If v belongs to a maximal
clique of G, let w be a vertex of G non-adjacent to v. Consider the set
M = (V(C)—{v})U{w}. We haveu € M and w is adjacent to u. Therefore
the distance between w and any other vertex of M is at most 2, and the
distance between any two vertices of M — {w} is 1. As v is not adjacent to
w, it belongs to no shortest path from w to a vertex of M — {w}. Hence the
least g-convex set containing M (the g-convex hull of M) does not contain
v. Its number of vertices is at least w(G), therefore the weight of v is at
least w(G) and v does not belong to the g-centroid of G. This implies the
assertion. m

An analogous assertion for the m-centroid does not hold, as the following
example shows.

EXAMPLE. Let k > 5, let V(G) = {u1,...,uk,v,w}. Let the edges of G
be u;u; for any two distinct numbers i, j from the set {1,...,k} and further
v, U1 w, vw, ugw. The vertex u; is saturated in G and its weight is k — 1.



112 B. Zelinka

Now let M be an m-convex set with at least k vertices; it must contain at
least one of the vertices u;, v, w and at least one of the vertices u; for ¢ > 3.
There exists a chordless path of length 3 between u; and v over u; and w
and a chordless path of length 2 between u; and w over u;. Hence in any
case M contains uz. This implies that the m-weight of u; is at most k — 1
and it does not exceed the m-weight of u;, while u; is saturated and u; is
not.

It can be easily proved that S(G) is a subset of the m-centroid of G.

A complete n-partite graph is a graph G with the property that there
exists a partition (called n-partition) of its vertex set V(G) into n classes
Wi,...,Vyn with the property that two vertices of G are adjacent if and only
if they belong to different classes of this partition. In other words, it is
the complement of a graph consisting of n connected components which are
complete graphs.

The following corollary immediately follows from Theorem 1 and Theo-
Tem 2.

COROLLARY 2. Let G be a complete n-partite graph. The graph G is
m-self-centroidal and g-self-centroidal if and only if either G is a complete
graph, or each class of the n-partition of G' has at least two vertices.
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