B. ZELINKA (Liberec)

A REMARK ON SELF-CENTROIDAL GRAPHS

Abstract. The concept of centroid of a graph, related to the concept of convexity, is studied. A class of graphs G in which the centroid is equal to the whole vertex set is shown.

The notions of monophonical convexity and of geodesical convexity were studied e.g. in [1]. By means of these concepts the centroid of a graph is defined. At the end of [2] W. Piotrowski poses three problems, including the problem which graphs are self-centroidal and the problem of describing centroids in particular classes of graphs. In [3] these problems were investigated for graphs without a separating set of vertices inducing a clique and in particular for chordal, Halin, series-parallel and outerplanar graphs. Here we shall show a considerably wide class of self-centroidal graphs. We consider finite undirected graphs without loops and multiple edges.

A path P in a graph G is called *chordless* if no two of its vertices are joined by an edge not belonging to P. A subset M of the vertex set V(G) of G is called *monophonically* (resp. *geodesically*) *convex* if for any two vertices u, v of M the set M contains all vertices lying on chordless (resp. shortest) paths connecting u and v in M. Instead of monophonically convex we write shortly m-convex, instead of geodesically convex we write g-convex.

Obviously any shortest path connecting two vertices is chordless. Therefore each m-convex set in G is g-convex in G; the converse assertion is not true.

For any type of convexity we may define the weight of a vertex in G. The m-weight (resp. g-weight) of a vertex v in G is the maximum number of vertices of an m-convex (resp. g-convex) set in G which does not contain v. Then the m-centroid (resp. g-centroid) of G is the set of vertices of G whose m-weight (resp. g-weight) in G is minimum.

¹⁹⁸⁵ Mathematics Subject Classification: 05C75.

Key words and phrases: centroidal graph, self-centroidal graph.

The graph G is called *m-self-centroidal* (resp. *g-self-centroidal*) if the m-centroid (resp. g-centroid) of G is V(G).

Obviously all vertex-transitive graphs are m-self-centroidal and g-self-centroidal.

A clique in a graph G is a subgraph of G which is a complete graph and is not a proper subgraph of another complete subgraph of G. The maximum number of vertices of a clique in G is called the clique number of G and is denoted by $\omega(G)$. A clique in G having $\omega(G)$ vertices is called maximal.

The Zykov sum $G_1 \oplus G_2$ of two graphs G_1 , G_2 is the graph obtained from vertex-disjoint graphs G_1 , G_2 by joining each vertex of G_1 with each vertex of G_2 by an edge.

Note that a graph is the Zykov sum of some graphs if and only if it is the complement of a disconnected graph.

Theorem 1. Let G be the Zykov sum of two non-empty non-complete graphs G_1 and G_2 . If the intersection J(G) of all maximal cliques of G is non-empty, then J(G) is the m-centroid and the g-centroid of G. Otherwise G is m-self-centroidal and g-self-centroidal.

Proof. Obviously each subset of V(G) inducing a complete subgraph is m-convex and g-convex in G. Now let M be an m-convex set in G and let M contain two non-adjacent vertices u, v. As G is the Zykov sum $G_1 \oplus G_2$, u and v are either both in G_1 , or both in G_2 . Without loss of generality suppose that u and v are in G_1 . Then the distance between u and v in G is 2 and each vertex of G_2 is an inner vertex of a path of length 2 connecting u and v in G; such a path is obviously chordless. Hence $V(G_2) \subset M$. As G_1, G_2 are not complete, there exist two non-adjacent vertices u' and v' in G_2 and $u' \in M$, $v' \in M$. The distance between u' and v' in G is 2 and each vertex of G_1 is an inner vertex of a path of length 2 connecting u' and v' in G. Hence $V(G_1) \subset M$ and M = V(G). If we suppose M only to be g-convex, we obtain the same result. Therefore m-convex sets and g-convex ones coincide in G and we may just speak about convex sets. We see that a non-empty subset M of V(G) is convex in G if and only if either M = V(G), or M induces a complete subgraph of G. The weight of any vertex v is the maximum number of vertices of a subset of $V(G) - \{v\}$ which induces a complete subgraph of G.

If the intersection J(G) of all maximal cliques of G is empty, then for each vertex v of G there exists a maximal clique of G which does not contain v. Hence the weight of each vertex v is $\omega(G)$ and G is m-self-centroidal and g-self-centroidal. If $J(G) \neq \emptyset$, then the weight of each $v \in J(G)$ is $\omega(G) - 1$, while for each $v \in V(G) - J(G)$ it is $\omega(G)$ (obviously $V(G) - J(G) \neq \emptyset$); this implies that J(G) is the m-centroid and the g-centroid of G.

COROLLARY 1. Let G be the Zykov sum of two non-empty non-complete graphs G_1 , G_2 . The graph G is m-self-centroidal and g-self-centroidal if and only if in both G_1 , G_2 the intersection of all maximal cliques is empty.

Proof. A subgraph of G is a maximal clique in G if and only if it is the Zykov sum of a maximal clique in G_1 and a maximal clique in G_2 . Also the intersection J(G) of all maximal cliques of G is the Zykov sum of the intersections $J(G_1)$, $J(G_2)$ of maximal cliques of G_1 and G_2 respectively. It is empty if and only if both $J(G_1)$ and $J(G_2)$ are empty. This implies the assertion. \blacksquare

In Theorem 1 we have supposed that both the graphs G_1 , G_2 are non-complete. Now the case remains when at least one of them is complete. Evidently a graph G is the Zykov sum of two graphs G_1 , G_2 , at least one of which is complete, if and only if it contains saturated vertices; a saturated vertex is a vertex adjacent to all other vertices. Let S(G) denote the set of all saturated vertices of G.

THEOREM 2. Let G be a graph, and let its set S(G) of saturated vertices be non-empty. Then S(G) is a g-centroid of G.

Proof. Let $u \in S(G)$. Let x, y be two non-adjacent vertices of G. Then the distance between x and y in G is 2 and u is the inner vertex of a path of length 2 connecting x and y in G. Therefore each g-convex set in G containing two non-adjacent vertices contains u. The g-convex sets in G not containing u are exactly those which induce complete subgraphs of G and do not contain u. A saturated vertex of G is contained in each clique of G, therefore the weight of u is $\omega(G) - 1$.

Now let $v \in V(G) - S(G)$. If v is not contained in a maximal clique of G, then evidently its g-weight is at least $\omega(G)$. If v belongs to a maximal clique of G, let w be a vertex of G non-adjacent to v. Consider the set $M = (V(C) - \{v\}) \cup \{w\}$. We have $u \in M$ and w is adjacent to u. Therefore the distance between w and any other vertex of M is at most 2, and the distance between any two vertices of $M - \{w\}$ is 1. As v is not adjacent to w, it belongs to no shortest path from w to a vertex of $M - \{w\}$. Hence the least g-convex set containing M (the g-convex hull of M) does not contain v. Its number of vertices is at least $\omega(G)$, therefore the weight of v is at least $\omega(G)$ and v does not belong to the g-centroid of G. This implies the assertion.

An analogous assertion for the m-centroid does not hold, as the following example shows.

EXAMPLE. Let $k \geq 5$, let $V(G) = \{u_1, \ldots, u_k, v, w\}$. Let the edges of G be $u_i u_j$ for any two distinct numbers i, j from the set $\{1, \ldots, k\}$ and further $u_1 v, u_1 w, v w, u_2 w$. The vertex u_1 is saturated in G and its weight is k-1.

Now let M be an m-convex set with at least k vertices; it must contain at least one of the vertices u_2 , v, w and at least one of the vertices u_i for $i \geq 3$. There exists a chordless path of length 3 between u_i and v over u_2 and w and a chordless path of length 2 between u_i and w over u_2 . Hence in any case M contains u_2 . This implies that the m-weight of u_2 is at most k-1 and it does not exceed the m-weight of u_1 , while u_1 is saturated and u_2 is not.

It can be easily proved that S(G) is a subset of the m-centroid of G.

A complete n-partite graph is a graph G with the property that there exists a partition (called n-partition) of its vertex set V(G) into n classes V_1, \ldots, V_n with the property that two vertices of G are adjacent if and only if they belong to different classes of this partition. In other words, it is the complement of a graph consisting of n connected components which are complete graphs.

The following corollary immediately follows from Theorem 1 and Theorem 2.

COROLLARY 2. Let G be a complete n-partite graph. The graph G is m-self-centroidal and g-self-centroidal if and only if either G is a complete graph, or each class of the n-partition of G has at least two vertices.

References

- R. E. Jamison-Waldner, A perspective on abstract convexity: Classifying alignments by varieties, in: Convexity and Related Combinatorial Geometry, D. C. Kay and M. Breen (eds.), Marcel Dekker, New York 1982, 113-150.
- [2] W. Piotrowski, A generalization of branch weight centroids, Zastos. Mat. 19 (1987), 541-545.
- [3] W. Piotrowski and M. M. Syslo, A minimax facility location problem, in: Proc. NATO Advanced Research Workshop on Topological Network Design, Copenhague, June 1989, to appear.

B. ZELINKA DEPARTMENT OF METAL FORMING AND PLASTICS INSTITUTE OF MECHANICAL AND TEXTILE TECHNOLOGY LIBEREC, CZECHOSLOVAKIA

Received on 13.4.1989