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1. Introduction. Our aim in this paper is to construct some approxi-
mate solution of the nonlinear Volterra type equation

(1.1). Z(t, 3) - f f m(ths 8, y)k(t - 8T y)G(Z)(S, y) dyds = f(t,:!':) ’
0D

where D C RY is a bounded domain with Lipschitz continuous boundary,
G(2)(s,y) = 9(2(s,9),8,y) and t € [0,T], 0 < T < 00. We assume that m
is a regular function and k is in a suitable Nikol’skii space.

After proving the unique solvability of (1.1) in the Nikol’skii or LP-spaces,
1 < p < 0o, we discretize our problem by the Galerkin method and we seek
approximate solutions in finite-dimensional spaces.

We apply a fixed point theorem due to Leray and Schauder ([4], p. 189)
to prove existence theorems for the approximate problem. The estimates of
approximations are given in the LP-norm, 1 < p < o0.

The results presented in this paper are a generalization of those obtained
in our previous paper [8], where similar questions for a one-dimensional
equation were considered.

2. Basic notations and assumptions. For ¥ C RN and § € RN we
set

U={zeRN:z2=z—yforsomez,yeU}, Us={z€U:z+5€U}.
The euclidean norm of a vector § is denoted by |6]. We put
Asf(u) = f(u+8)— f(u).
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Let g be a fixed integer. We set
2=[0,T)xD, $2a)=[0,e]xD, $(a,b)=][a,b]x D fora,beR.

Throughout this paper C' with or without a subscript always denotes a
constant. We permit it to change its value from paragraph to paragraph.

Given an operator T : LP(U) — LP(U) we let ||T’||,,, denote its operator
norm.

3. Some auxiliary definitions and theorems. For the convenience
of the reader we give in this section some definitions and theorems used in
the sequel.

By C8(U), 0 < B < 1, we denote the Holder space of functions defined
on l.

The Nikol’skit’ space N(U), 0 < @ < 1,1 < p < o0, is the set of all
functions ¢ € LP(U) satisfying the condition

iﬂolp,a = sup |‘5|‘a”AE‘P”p.Us <.
6£0

It is known [9] that N (U) equipped with the norm
lellp,a = llells + l¢lp,a
is a Banach space.

LeMMA 3.1. Let k € N{([0,1] x D), 0 < @ < 1, and put k(u) = 0 for
u € [-1,0) X D. Then k € N{(02).

Proof. For details, see [5], [6].

In the study of the integral operators appearing in the equation (1.1) we
need the following lemma.

LEMMA 3.2. Let nonnegative functions z,f € L'(f2(d)) and k € .
LY([0,d] x D) for some 0 < d < co satisfy the inequality

(3.1) 2w) < [ k(u—v)z(v)dv+ f(u)
a(t)
Jor u = (t,z), u € 2(d). Then ||z|1 £ C||f|l1, where C depends on k only.
Proof. Define

Z(T)= [ z(v)dv, I(T)= [k(v)dv, where A=[0,T]x D,
2(T) A

FT)= [ f(v)dv.

a2(T)
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Setting u = (,z) and v = (s,y) and changing the order of integration we
get

(3.2) f ( f k(u — v)z(v) dv)du

n(T) n(t)
T T
= [ fz(s,y)(f( fk(t—s,z—y)dz)dt)dyds

D 8 D

IA

T
f fz(s,y)I(T—s)dgds.
0 D

Let us integrate both sides of the inequality (3.1) on £2(T'). Since Z and I
are nondecreasing, in view of (3.2), we get

Z(T) L I(T)z(T))+ (T - T1)Z(T) + F(T),

for every 0 < T} < T < d. Therefore selecting 7 > 0 so that I(t) < 1/2 for
0 <t < n and applying once more the monotonicity argument we can write

Z(T) < 2(1(d)Z(Th) + F(d))

forevery 0<T) <T<dwithT-T; <.

Hence beginning with 77 = 0 and T = 7 we get the recurrent estimates
of Z(n), Z(27n) and so on. After a finite number of steps we obtain the
required estimate of Z(d) = ||z]|;.

Let [X] denote the Banach space of bounded linear operators L : X — X,
where X is a Banach space. Then a set K C [X] is collectively compact
provided that the set KB = {Lz: L € K, ||z||x < 1} is relatively compact.

The essential results concerning the integral operators which are con-
sidered in this paper follow from the properties of functions belonging to
suitable Nikol’skii spaces.

Let U C RN be an arbitrary bounded domain with Lipschitz continuous
boundary. The proof of the following lemma can be found in [9].

LEMMA 3.3. Let 0 < a < 1. Then the imbedding N{*(U) C L'(U) is
compact.

In the next sections we use the following fixed point theorem due to
Leray and Schauder ([4], p. 189).

THEOREM 3.1. Let X be a Banach space and let T : X — X be a
continuous and compact operator. Assume that for any fized point z of the
operator AT, ) € [0,1], we have an a priori estimate ||z)\||x < C, where C
is independent of A\. Then there ezists z € X such that z = T(z).
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4. The exact problem. We suppose from now on that g:RXx 2 — R
is a function which satisfies the following conditions:
(4.1) lg(t1,u) — g(t2,u)| < M|ty — t2], t,02 €R,
(4.2) |90, w)] < M

for almost every u € f2.
We assume that m and k appearing in (1.1) satisfy

(4.3) k € N{([0,1] x D),
(4.4) meC@xR), lmlleo <M,
(4.5) |m(u1,v) — m(ug,v)| £ M|ug —ug|* for uy,up € 2.

In (4.1)-(4.5), M is a constant and a € (0,1).

By Lemma 3.1 the function k extended by 0 to the whole set {2 belongs
to N{*(2). Therefore it will be convenient to replace (4.3) by the condition
(4.6) ke Nf(2) and k(u)=0 forue[-1,0)xD.

We denote by ||k||; and ||k||;,o the suitable norms of the kernel k over
the domain 2.
In view of (4.6), the Volterra type operator

Kz(u) = f m(u, v)k(u — v)2(v) dv,
a(t)

where v = (t,z),t € [0,1] and z € D, may be written in the form of the
Fredholm operator

Kz(u) = f m(u — v)k(u — v)z(v)dv forue 2.
2
Define the operator
G(2)(u) = g(z(u),u) for z € L}(R), ue N2.
Thus
KG(2)(u) = f m(u, v)k(u— v)G(z)(v)dv foru€ 2.
7
For an arbitrary 9 € L>°(2), ||¥||lcc £ M, we define the operator
L(p)z= ¢z forze L'(2).

The family of all these operators will be denoted by Las.
Let 2',2" € L'(£2). Taking

b(u) = { 9(2'(u),u) — g(2"(u), u) if 2'(u) # 2"(u),

2'(u) — 2"(u) _
if 2'(u) = 2"(u),
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we note that ¢ € L*®(12), ||¥|lcc £ M and
(4.7) G(#) - G(") = L($)(#' - 2").
LEMMA 4.1. The operators
(@) K: LN(®2) = N§(2),  (b) K : 12(2) — C*(@)
are bounded.

Proof. .For simplicity we prove part (a) only. Case (b) can be treated
in a similar way. For z € L!(12) we have

AsK2(u)=6L + I,
where

(48) L= [ m(u+8v)k(u+b—v)— k(u—v)(v)dv,
n

(4.9) L= [ [m(u+6,v)—m(u,v)k(u~v)z(v)dv
n

forue 25, 6 e R,
Changing the order of integration we obtain

@410) [ |nhldu< [ Iz(v)|( k(w4 6 — v) — k(u - v)| du)dv
2 fr} 2

S Mlkl‘l'a”zlll‘nlala .

Applying (4.5) to m(u+§,v)—m(u,v) and changing the order of integration
we get

(4.11) J 1l du < Mllk||1|2ll1,0181>.
125

Thus

(4.12) |K2|1,a < Mlkl1,all2ll1,2-

By the inequality
[IK=(u)|dus [ |z(v)|( I m(u, v)e(u~ v)|du)dv
n n n

it follows that

(4.13) 1K zlh,0 < Mlkllllzll1,0 < M{lk|l1,qllzll1,0 .
Now the inequalities (4.12) and (4.13) give
(4.14) K2l e < 2M|Ell1,allzll,2

which completes the proof.
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As a consequence of Lemma 4.1 we get

COROLLARY 4.1. The operators K : L'(2) — L'(2) and K : L>°(2) —
L*>(R2) are compact.

Using the Riesz—Thorin interpolation theorem we obtain

COROLLARY 4.2. We have K : L?(2) — LP(2), 1 £ p < oo, with
1K llpp < M|

LEMMA 4.2. Let0 < d < 1. Then

(a) for any 21,2, € LP(£2(d)), 1 < p < o0,

IKG(z1) - KG(z)llp,a@ < M [ k() dvliz = zllp,00)
A

where A = [0,d] x D,

(b) KG(z) € N{(92(d)) for any z € L(£2(d)),

(c) KG(z) € C*(2(d)) for any z € L*°(£2(d)).

Proof. First we note that for any z € L?(f2(d)), in view of (4.1), we
have
(4.15) 1G(2)(w)] < Mlz(u)| +|G(0)(u)|
for almost every u € £2(d). Therefore by (4.2) and Corollary 4.2 the operator
KG is well defined on L?(£2(d)), 1< p < oo.

(a) By (4.7) we get

IKG(21) — KG(22)llp < 1K ||p ol L(¥)llppllz1 — 221l

for 21,22 € LP(2(d)). It is clear that ||L(%)|lpp < M. Therefore our
assertion follows by Corollary 4.2.
(b) and (c). In view of (4.15) our assertions follow by Lemma 4.1.

LEMMA 4.3. The operators KG : L*(2) - L*°(R2) and KG : L'(2) —
LY(2) are continuous and compact.

Proof. By (4.7) and (4.15) it follows that G considered both on L'({2)
and on L*°(£2) is continuous and bounded. Therefore our assertion follows
from Corollary 4.1.

We are now ready to consider the equation (1.1):

THEOREM 4.1. Let f € L?(2), 1 < p < 00. Then the equation (1.1) has
a unique solution 2o € LP(R2). If f € C(12), then z € C(R2).

Proof. Choose a sufficiently small d > 0 so that 2M? fA |k(v)|dv < 1,

where A = [0,d] x D. By Lemma 4.2(a) the operator KG considered both
on L'(£2(d)) and on L*(£2(d)) is a contraction. Hence there exists a unique
solution zg of (1.1) defined on £2(d), if f belongs to L'(2) or to L°(f2).
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Consider the following complete metric spaces:
={z€ L'(2(2d)): z =z on 2(d)} in the first case,
= {z€ L*(2(2d)): z = z on £2(d)} in the second case.
For any z; and 2; either both in X; or both in X, we have
(4.16) KG(z1)(u)— KG(z2)(v)=0 for u € £2(d),
(4.17)  |KG(z1)(u) - KG(z)(u)|

< M? f |[k(u — v)||z1(v) — 22(v)|dv  for u € £2(d,2d).
02(d,2d)

Combining (4.16), (4.17) with (4.6) we get

IKG(n) - KG(z)llp < M? [ [k(o)|doljz1 — ],
2(d)
where p = 1 and oo in the first and second case, respectively. All the norms
are taken over £2(2d).

Therefore K G is a contraction on X; and on Xj. Asa consequence there
exists a unique extension of 2 to a solution of (1.1) on £2(2d). Repeating
this procedure we are.led to a unique solution of our equation defined on
the whole £2, when f belongs to L'(£2) or to L*®(2).

We now turn to the case 1 < p < co. Let f € L?P(2) C L'(2). Then
(1.1) has a unique solution 25 € L!(2). According to (4.7) we have

KG(z) - KG(0) = L(%0)20

for some 99 € L°(12), ||%0]lc £ M. Therefore taking fo = f + KG(0) we
can write

z0 — KL(to)z0 = fo.
According to Lemma 4.2(c), KG(0) € C*(R2). Hence f, € LP(2).
Now we consider the operator I — K L(3g). Define

g(t,u) =tpo(u) forteR, ueR.

Since g satisfies (4.1) and (4.2) the homogeneous equation z— K L(19)z = 0
has no nontrivial solution. Now Lemma 4.3 allows us to use the Fred-
holm alternative to prove the existence of the bounded linear operators
(I-KLg)™ : L*°(2) — L*°(R) and (I — KLg)™! : L'(R2) » L'(£2), where

= L(1o). By the Riesz—Thorin interpolation theorem (I — KLo)™! is
bounded on L?(R2) for all 1 < p < 0. Since zo = (I — KLo)™ fo, we get
z € LP(R2).

It remains to consider the case f € C(£2). Since then zp € L*°(£2), by
Lemma 4.2(c) it follows that KG(z) € C%(f2). Therefore by (1.1) we get

z € C(R).
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COROLLARY 4.3. Let f € NP(R2), 0 < B < 1. Then the solution z of
(1.1) belongs to N{(§2), where ¥ = min(e,B). If f € CP(R2), then z €
C (D).

Proof. Since zp = KG(2) + f our assertion follows from Theorem 4.1
and the obvious imbeddings

CX@UCA@ C U@ C C(@), N{@)UNE®R)C NY(@2) € L'(D).

5. The approximate problem. In this section we construct a certain
approximate solution of (1.1) in finite-dimensional function spaces.

Consider a sequence {X,}, n € N of finite-dimensional subspaces of
L*°(£2) and a sequence {P,}, n € N, of projections P, : L'(2) — X,, which
satisfy the following conditions:

(5.1) P,oP,=P,, mneN,

(5.2) |Pullig £ C foreveryn €N,

(5.3) [Pallco,c0 £ C  for every n €N,

(5.4) lo = Paplloo = 0 as n — oo for every v € C(2),

where the constant C in (5.2) and (5.3) is independent of n.
Since C(2) is a dense subspace of L!({2), the Banach-Steinhaus theorem
yields

Remark 5.1. ||¢ — P,¢|l1 = 0 as n — oo for every ¢ € L}(R2).
By the Riesz—Thorin interpolation theorem we immediately obtain

Remark 5.2. P, : LP(2) — L?(R2) with ||Py||,, < C for 1 < p < oo,
where C is the same constant as in (5.2) and (5.3).

Our approximate problem is formulated as follows: find 2, € X, which
satisfies
(5.5) 2y — PaKG(2,) = Paf.
For the study of (5.5) it will be convenient to introduce auxiliary functions
Yn defined by

yn = f+ KG(2,).

It is easy to verify that y, satisfies the equations
(5.6) Zn = Pnyn ,
(5.7) Yn — KG(Poyn) = f.
It should also be noted that if y, is a solution of (5.7) and 2, = P,yn, then
2, satisfies (5.5).

Before proving the existence and uniqueness theorem for (5.5) and (5.7)
we prove a lemma essential for our further considerations.
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For any n € N and for any function ¢ € L*®(#2) with ||¢|lcc < M we
denote by L(n,¢) the linear operator defined on L'(2) by the formula

(5.8) L(n,p)z= @Pyz for z€ L}(N).
The family of all these operators will be denoted by Las(N).
LEMMA 5.1. There ezist positive constants Cy,C, and Ny such that
(5.9) Cillzllp < (T = KL(n, $)zllp < Callzll,
for any z € LP(2), 1 < p < 00, and any L(n,9) € Lap(N) with n > Ny.

Proof. The right inequality in (5.9) follows immediately from Corollary
4.2 and the estimate (5.2).

Since
(5.10) Poz = KL(n,¥)z+ (Paz — KL(n,%)z)
we get
|Paz()l < M [ [k(u = 0)l[Paz(0)] dv + | Paz(u) = KL(n, 9)2(u)

2
for u € 2. Now applying Lemma 3.2 we conclude that
(5.11) |Pazlly < Cl|Paz — K L(n,%)z|l1,

where the constant C' depends on k only.

First we consider the case p = 1 or co. Of course, it suffices to study the
case ||z||, = 1. To get a contradiction assume that there exists a sequence
Zm € L1(R2) with ||2]l, = 1 and a sequence of operators Ly, = L(nm, ¥m)
with n,, — 00 as m — oo such that

(5.12) (= KLp)zm|l, =0 asm— oo.

Since, by Lemma 4.1, K is compact, and by (5.2), the L,, are uniformly
bounded, the set { K Ly, 2y, : m € N} is relatively compact in L'(£2). With-
out loss of generality we can assume that K L,,2,, — 2z in L}(2) asm — o0
for some z. It then follows by (5.12) that

(5.13) Zm >z asm—oo, |z,=1.
Since K L,,, m € N, are uniformly bounded we get

(5.14) | K Lin(2m = 2)|lp > 0 as m — 0.
Combining (5.12), (5.13) and (5.14) we obtain '
(5.15) |z—= KLnz||[, =0 asm — oo.

Noting that P,z — KL(%pm,¥m)z = (2 — KL(npm,¥m)z) — (2 — Py, 2) we
get, in view of (5.11),

(/O Prpzllt < |2 = K L(rm, Ym)zll1 + |2 = Pa 1 -
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By (5.15) and Remark 5.1 the right-hand side of this inequality tends to 0
as m — 0o, while the left-hand side tends to (1/C)||z]ls = 1/C. The derived
contradiction completes the proof in the case p = 1 or oco.

From the obtained estimates it follows immediately that the homoge-
neous equation

(5.16) 72— KL(n,$)z=0

has no nontrivial solutions in L(R2), if n > N,.

In view of Lemma 4.1 and the conditions (5.2) and (5.3) the operators
K L(n, ) considered both on L!(2) and on L*(£2) are compact. Therefore
we can apply the Fredholm alternative to prove the existence of the inverse
operators (I — KL(n,%))"! for n > Np both on L'(2) and on L*(12).
Taking C; so that

(I = KL(n,%)) lpp £1/C1 forp=1and o
from the Riesz-Thorin interpolation theorem we get
(I = KL(n, %)) Ylpp <1/C1 forl<p<oo.
This completes the proof.
The results obtained at the end of the proof of Lemma 5.1 are collected
in
COROLLARY 5.1. For n > Ng and ¢ € L®(R2) with ||¢||ec < M there
ezists the inverse operator (I — K L(n,%))™" : LP(2) — L?(R2),1 < p < o0,

with ||(I = KL(n,%))"Y|p» < 1/C1, where Cy is the same constant as in
Lemma 5.1.

Now we estimate the errors of approximations to the solution z of (1.1)
by solutions of (5.5) and (5.7). The results are collected in

THEOREM 5.1. Let f € LP(2), 1 < p < 0o0. Then for sufficiently large n
(a) the problem (5.5) has a unique solution 2, € X, for which

(5.17) Cillzo — Przo|lp < |[20 — 2allp < Call20 — Przoll,,
(b) the problem (5.7) has a unique solution y, for which
(5.18) 120 = ynll» < Csllzo — Pnzollp,

where the constants Cy,Cy and C3 are independent of n.

Proof. Similarly to (4.7) for any z we can find 9 € L*(£2) with ||#]|c0 <
M such that

9(Pnz(u),u) — 9(0,u) = Y(u) Prz(u).
Therefore for z € L'(12) we get
(5.19) KG(Paz) — KG(0) = K L(n, $)z.
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Now applying Lemma 5.1 we obtain the estimate
(5:20) Cillzlh - KGOl < (I = AKGP)z|l < Callzll + I KG(O)]l

for A € [0,1], z € L'(R2) and n > Nj.
Note that by (5.20) any solution z) of the equation

Z)\ - )&KG(PnzA) = f,
where A € [0,1] and n > Ny, can be estimated as follows:

llzalls < (1/CI Il + IEG(O)]lx) -

By Lemma 4.2(a) and (5.2) it follows that AKGP,, X € [0, 1], are continuous
and compact as the operators on L!(f2). Therefore using Theorem 3.1 we
conclude that (5.7) has a solution y,. Then P,y, satisfies (5.5).

We are going to demonstrate the required regularity of the solutions of
(5.7) in the case of LP(2) C L'(R2), 1 < p < co. Adding KG(0) to both
sides of (5.7) and proceeding similarly to (5.19) we find ¥; € L*°(f2) with
|¥1]loc £ M such that

(5.21) ¥n — KL(n,%1)yn = f + KG(0).

Since KG(0) € L*(£2), the right-hand side of (5.21) belongs to LP(#2).
Now, by Corollary 5.1 it follows that y, € LP(2).

We turn to the uniqueness problem for (5.7). In a similar manner to
(5.19) for any 21,2 € L'(£2) we can find ¥, € L®(£2) with [[]lec < M
such that

(5.22) KG(Ppz1) = KG(Prz2) = KL(n,%;)(21 — ).
Using (5.22) we can apply Lemma 5.1 to obtain the estimate
(5.23) Cillz1 = 22llp < (21 = 22) — (KG(Prz1) — KG(Pa22))l,

for any z; and 23 € LP(R2),1 < p < o0 and n > Np.

Hence we get immediately the uniqueness of solution of (5.7). If 2,
satisfies (5.5), then y, = f + KG(2,) is a solution of (5.7) and z, = Pyyn.
Therefore the uniqueness for (5.7) implies the uniqueness for (5.5).

Combining (1.1) with (5.7) we obtain

(5.24) (20 — yn) — (KG(Pnz0) — KG(Pryn)) = KG(2) — KG(Ppzy) .

Estimating the left-hand side of (5.24) in a similar way to (5.23) and applying
Lemma 4.2 to the right-hand side we obtain (5.18).

Since by (5.6), z0 — z, = 20 — Pnzo + Pn(20 — yn), the right inequality
in (5.17) follows from Remark 5.2 and (5.18).
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We now turn to the left inequality in (5.17). Combining (1.1) with (5.5)
we get

29 — Ppzg = 29 — 2y — Pa(KG(20) — KG(2y,)).
Therefore applying Lemma 4.2 and Remark 5.2 we get

120 = Pazollp < (14 C)llzo — 2allp

if 20 € L?P(£2),1 £ p £ 00. Thus it suffices to set C; = 1/(1+C) to complete
the proof.

6. An example. In practice, the X,, are certain standard finite element
spaces ([1]) and the P, are the L2-projections onto X,,. The stability of P,
considered as a map in L?, 1 < p < 00 , is usually shown under the require-
ments of quasi-uniformity of the triangulations underlying the definitions of
the X,, (see [2], [3]).

Now we present an example of the subspaces X,, and the projections P,.
Let £2 = [0,1]7*!. Consider a sequence of quasi-uniform partitions

II,: 0=¢<ae<a<..<a,=1, neN,
and set h = max[a;41 — a;], 0 < ¢ < n — 1. Thus we get regular partitions
of 12 given by the cubes
g+1
Al' = H[aij!a!'jq-l]s 1= (ils'-ﬂilﬂ'l)'
i=1

We are interested in the class of temsor product splines S,
@1 S(11,.), where S(II,) = {s € C[0,1] : s|[aj,a;j41] is linear, j
0, Lgry =1}

Now we define X, = {w € C(R2) : w|A; is a polynomial of degree

< ¢+ 1}. It was pointed out in [3] that the L?-orthogonal projections
P, : L*(22) = X,, satisfy conditions (5.2)-(5.4).

By Lemma 5.5 in [7] we have
inf If = wlh < O +0(5,h, 1), S € LY@),

where

w(f,h,1)= sup [ |f(z +8) - f(z)|dz, &€RI*,
181<h g,

Since S, C Xy, the same estimate is valid for inf¢ex, ||f — €||1. Therefore,
for the solution zy of (1.1) as regular as in Corollary 4.3 we get, in view of
Theorem 5.1, the estimate

llz0 — zn|l1 < const - A7
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