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STATISTICAL PROPERTIES OF THE EJGIELIES MODEL
OF A COGGED BIT

Abstract. We study the motion of cogged bits in the rotary drilling of
hard rock with a high rotational speed. When a cogged bit rotates in a
drilling fluid, it experiences random checks to its motion. For this reason
we consider a probabilistic model in which the motion of the bit is treated
as a realization of some dynamical system with a multiplicative perturba-
tion. Our aim is to give the conditions which should be satisfied by the
perturbation for the asymptotical stability of the model investigated.

. 1. The aim of the present investigations was to examine statistical prop-
erties of the random trajectory of the dynamical system describing the mo-
tion of a drilling tool. As in the paper of Lasota and Rusek [7] the theoretical
considerations are based on the R. M. Ejgielies model of a cogged bit. He
proposed replacing the whole tool with a cogged wheel turning over a flat
base (Fig. 1).

| T ——

27 37 4T y
Fig. 1. The Ejgielies model of a cogged bit
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We assume that the cogged wheel has diameter 2R, mass M and turns
with linear velocity v. The central angle between the cutting edges of
neighbouring cogs is 2¢. The cogged wheel is pressed against the base
with force F. A significant role in further considerations is played by the
quantity A = v2M/(FR) which is the Froude number for the system con-
sidered. The curve described by the arcs of circles of radii R and centres at
distances of T = 2R sin ¢ is called the basic curve and denoted by Z = p(y).
For A > 1, in the time between two successive contacts of the cogs with
the base, the wheel centre C moves above the basic curve according to the
equation

(1) d’z/dy® = —F[(Mv?).
At the initial point y = yo (0 < yo < T') the solution z(y) of equation (1)

satisfies the conditions

2(y0) = p(%), #'(%0) = 2'(w).
Let us denote by y, the successive points of the impact of the tool against
the bottom of the bore-hole. The points y, are called nodal points of the
trajectory (see Fig. 2). In the intervals (y;, ¥i+1) the trajectory z = 2(y) is
a solution of equation (1) and at the points y; it is tangential to the basic
curve Z = p(y).
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Fig. 2. Determination of the sequence of nodal points {yn}

In [7] it was shown that all the properties of the Ejgielies model that
are interesting from the technical point of view may be described by the
sequence

(2) 82 = Yn/T (modl).
This sequence may be expressed by the recurrence formula
(3) Sn4l1 = Ta\(sﬂ) ’
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where
(4) Ta(s)=s+ra(s)—I(s+rr(s)), 0<Ls<1.
In this formula
rA(8) = ag(s) — (a?(s)* + 2ag(s)(s — I(s)) — ag(s)(1 + a(s)))'/?,

N )

and I(s) denotes the integer part of the number s (I(s) equals 0 for s < 1
and I(s) is the largest integer less than or equal to s for s > 1). A. Lasota
and P. Rusek showed that for a small Froude number (A < 2) the motion
of the system is periodic and stable. For A > 2 the system does not have
stable trajectories; however, in this case there exists an absolutely continu-
ous invariant measure. From the theoretical point of view a basic drawback
in the theory formulated by A. Lasota and P. Rusek is the lack of proof
of the uniqueness and ergodicity of the invariant measure. This makes it
impossible to check whether the mean values they found associated with for-
mula (3) are uniquely determined. A proof of the ergodicity of the system
considered would present a considerable difficulty. From the practical point
of view it may also be objected that the model presented by A. Lasota and
P. Rusek does not take into account random perturbations. The cogged bit
rotating in the drilling fluid environment and hitting against a base covered
with drill borings has a motion subject to random deceleration. This usually
leads to a reduction in the real values of s, relative to the values calculated
from formula (2). Hence it would appear to be useful to replace (3) by the
sequence Sp41 = Th(85)én, where £, is a random variable with values in the
interval [0, 1].

It turns out that taking this more realistic model simultaneously allows
certain theoretical difficulties to be eliminated. We shall show that the
model considered is asymptotically stable, which is a much stronger property
than' ergodicity.

Dynamical systems with stochastic perturbations may often be viewed
as special cases of Markov processes; there is a large applied literature con-
cerning their stability properties [5].

In [2] and [3] we gave sufficient conditions for the asymptotical stability
of a Markov operator governing the evolution of densities corresponding to
a dynamical system with multiplicative perturbations. However, the trans-
formation T’ given by (4) does not satisfy those conditions.

2. Consider a stochastically perturbed discrete time dynamical system
of the form

(5) Zu41 = Ta(zp)én forn=0,1,...,
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where T, is the transformation given by (4) and ¢, is a random variable
with values in [0, 1].

We assume that the random variables £, are independent and all iden-
tically distributed with density g, i.e., for all n and a Borel set B,

Pr(én € B)= [ g(z)dz.
B

In addition, we assume that the initial condition z, is independent of the
sequence of perturbations {{,}.

Let D be the set of all nonnegative functions f € L'([0,1]) such that
171l = fo f(z)dz =1.

Our goal is to study the asymptotic behaviour of the sequence {z,}.
Since the £,, are random, our strategy is to study the sequence of distribu-
tions of z,,. Denote by f, the density of the distribution of z,. In order to
calculate f,41 fromf, denote by h an arbitrary bounded measurable func-
tion defined on [0,1]. The mean value E(h(2541)) of h(zn41) is evidently
given by

E(h(2n41)) = [ h(z)fata(2)dz.
0

Since Zn41 = Th(2n)En and the random variables z,, and £, are indepen-
dent, we also have

1 1
(6) E(h(za41)) = [ [ MTA¥)2)fa(v)9(2) dydz.
0 0

Furthermore, because the adjoint operator Pf, to the Frobenius-Perron op-
erator Pr, is given by Pr, f = foT) (cf. [6]), setting h.(y) = h(yz) we obtain

1 1
M) [rDO@2)fa)dy = [ ho(Tr(9))fa(y) dy
0 0

1 1
= [ Prfa@h(v)dy= [ Pr, fa(v)h(y2)dy.
V] 0

Using (6) and (7) it is easy to calculate that

11
E(b(zn41)) = [ [ Pr, fa(v)h(y2)9(2) dydz
o 0

1 y
[ Pr.fa(v) [ M(2)9(z/y)y™" dzdy
0 0
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1 1
N f h(2) f Pr, fa(¥)9(2/y)y ' dydz.

Since h is arbitrary, we obtain the following relation between f,4+1 and fy:

®) fanr(z)= [ P, fa(v)9(z/y)y " dy.

Thus, given an arbitrary initial density fy, the evolution of densities corre-
sponding to the system (5) is described by the sequence of iterates {P™ fo},
where

1
9) Pf(z)= [ Pr,f()e(=/y)y~"dy, fe€ L'([0,1]).

It is easy to prove that P : L!([0,1]) = L([0, 1]) is a Markov operator (i.e.
Pf > 0 and [|Pfl| = |fll for £ € L3 ([0, 1]) and / > 0).

3. We say that a Markov operator P is asymptotically stable if there
exists a unique f, € D such that Pf, = f, and

ﬂﬁr_ll_lw |1P*f— fJ|=0 forevery feD.

Our first step in the study of asymptotic stability of the Markov operator
P is to show that P is weakly constrictive. By definition, an operator P
is weakly constrictive if there exists a weakly precompact set F C L!([0, 1])
such that

(10) lim o(P"f,F)=0 for feD,

n—+40co

where o( f, F) denotes the distance, in L'([0, 1])-norm, between the element
f and the set F. An answer to the problem considered is given by the
following -

THEOREM 1. Assume that the density g of the random variables £, sat-
isfies the condition

(11) g(z) < Kz™ for z € (0,1),
where K and r are positive constants. Then the Markov operator P defined
by (9) is weakly constrictive.

In the proof of Theorem 1 we shall use the following

LEMMA 1. Let f € L'([0,1]) be given by the equality f(z) = 2"w(z), = €
[0, 1], where w is a nonnegative, nonincreasing function and r is a nonneg-
ative constant. Then

f@) < fl(r+1)/z  for z €(0,1).
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The proof of this lemma may be found in [2]. =

Proof of Theorem 1. For an arbitrary function h € L'([0,1]),
denote by F), the set of densities f satisfying f(z) < h(z) for z € (0,1).
Evidently, F}, is a weakly precompact set. We are going to find an h such
that condition (10) holds for F = Fj.

We consider two cases: the first where the Froude number A > 2 and the
second where 1 < A < 2.

In the case where A > 2, the transformation T given by (4) may be
written in the form '

( s+ ak(A) — k(A) — /@2K(N)? + 2ak(N)s — ak(V)(1 + F(V)

A=k(N)
<s<
for 0 3“2(,\—1)
Tx(s) =} s+ ap—p-\/a?p? + 2aps — GP(1+P)
A- p—l -
for 2(A—1) <s _2(,\ )a P—2:3:---$k('\) 1,
Ls+a—1-—-\/a=+2a8—2& i'ors);{i%;
where
E(X) = A—1 when A is an integer,
(A) = I()\) when ) is not an integer.
Set

A-p—-1 A-p
2(A-1)"2(A-1)

Trp=Trlv, U=[ p=2,3,...,k(\)~1,
A— k(A)

2(/\ -1)

where T |w denotes the restriction of T’ to the interval W.

The Frobenius—Perron operator Pr, corresponding to the transformation
T, may be expressed by the formula (cf. [6])

Ty =Talv, V= [0

17,000 (¥)
(12)  Prf@) = FT5hon )iz *) Tk @)

k(A)-1

T
t X 1O g g oW
+f(1+y- M) 1- J%] 1(0,0/2)(¥) »

where 14 is the characteristic function of the set A.
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Fix an arbitrary initial density f and set f, = P*fforn =0,1,... Using
(8) and (12) we may derive an explicit formula for fp41:

1
1 w1(z) = - (T) Tu(x)(V)(y) z d_y
(13) fon(@= [ 1Tl N m)(y))lg(y) C
k( N)-1 _
9(z/y)y~! o
% f ST O T O

z\ dy
Yioia =3 -
(0,a/2)(%)9 (g) e

1
! w(1+y - /2ay) 1—\/%

Using the inequality g(z) < Kz" we obtain

d;
frta(e) = f Pru()a (2) 2 < ka" f Pr, fa(0)
Putting
1 dy
w(z) = fPT.\fn(y)F
and applying Lemma 1 we obtain

(14) fa(z) £ K[z forn=12,..., z€(0,1).

Now we are going to estimate the first term in the sum (13). Since T is
a piecewise C?, decreasing function and

ax k() = T k() (20‘ k('\))) >0,

we have
1, k(a)(v)(y) z E?-
(15) A = ffn( Tk ))lTi (T }c(,‘)(y'))lgr (y) y

[ﬂx k(2)s T 1(1)(0])(9)
T3 ko) Tr ko @)y

< Kz" ffn k())(y))l

K
< fall €
@) k()) ,\k(.\)

Since
2a
T} ()| = ' d ~-1> ~1
IT5.5(2)! Va?p? + 2aps — ap(1 + p) via? - 2a
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and

A,p(y)> 2(': ;1)

and (14) holds, we may estimate the second term in the sum (13) as follows:
k2)-1 1

n,0) () d
(16) A = ;_; ! fn(T5p ))|T,{ (T;‘(y))l ( )

< 2Kz’ (A ~ 1)V4a? — 2a() - 2) f
(A = p)(2a - vi4a? - 2a) yrtt’

Setting
2K%(A - 1)(A = 2)vV4a? - 2a
(A =p)(2a — V4a? - 2a)r
we have A; < d. Furthermore, by the inequality
A-—-2
.. b R A
1+y—-+2ay 2> 0= 1) for y € (0,/2)

the last term in (13) may be estimated as follows:

(1) &= ffn(l"‘y WT)E—JC (o.a/zl(y)y( ) %

d=

< Kz™ fl+yK\/2—§\/_—\_/' fl(odzl(y)

2K?z"(\ -1
( )\/_f

r+1

yT+3/2

P K*/20(A-1) 1.

SP-r+12) Ve
Combining these inequalities and (15), (16) with equality (13) we immedi-
ately obtain

K DO-D 1
) St B a ) vE

Defining

2 =5
e) = i a4 AVDO-) L
PR P SV IV
we finally obtain P"f € F} for n = 2,3,... Thus we have proved that for
A > 2 the operator P is weakly constrictive.
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Now we consider the case where 1 < A < 2. Then
T(s)=s+a-1-+a?+2as—-2a, s€]0,1].

It is easy to verify that the Frobenius-Perron operator Pr, corresponding
to T, is given by

Pr g = 10+ v = VB YL ).

As a consequence,

1
fapr(2) = [ fal+y - \/ﬁ)—@\/;——ﬁl(o,a_,_m(y)g (%) @

Y
3 vea/2 - d
< Kzrf (l+y-v 209)%1(0.0—1——\/57:3?)@) -y—rg_l- =

Choose ¢ € (0,a -1 - va? —2a). Then
fn@ <K [ fa(l+y— 2L ‘/_ £

r+1
[2,1]0(0,c2) y
Ve/ dy
+ Kz" f (14 y—+/2ay) \/_y"'“
[::,l]n[c,\ :1]

< Kz" f K \/—‘\/_d

- r+3/2
ey L TY~VZY Y

+-’i- [ nasy- il

A [z lln{cl :1]

<
1 _|_c‘\ — /—20,“ f yr-l-:lf? r+l
K*\/a/2 _ K

< .
(14 ¢x —2acy)(r+1/2) V= * AR

hz) = KPyai2 o
(14 ex—v2acy)(r+1/2) vz = H
and proceeding as in the case where A > 2 we obtain the weak constrictive-
ness of the operator P. »

Setting

Using Theorem 1 we may prove the following result concerning the
asymptotic stability of the Markov operator P defined by (9).
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Denote by m the first moment of the density g, i.e. m = fol zg(z)dz
and set

d) =min{T)\(y): 0<y < m}.
THEOREM 2. If the density g satisfies condition (11) and there is a non-
negative constant € such that €) < d) and
(18) 9(z) >0 Jor z2e¢,,
then the Markov operator P defined by (9) is asymptotically stable.
To prove this theorem we use the following

LEMMA 2. Let P be a weakly constrictive Markov operator. Assume that
there is a set A C [0,1)] of nonzero measure, u(A) > 0, with the property
that for every f € D there is an integer ny(f) such that

(19) P*f(z)>0
Jor almost all z € A and all n > n1(f). Then P is asymptotically stable.
The proof of this lemma may be found in [4]. =

Proof of Theorem 2. Since P is weakly constrictive by Theorem 1,
we need only show that P satisfies the remaining assumptions of Lemma 2.

Define
1

E(f)= [zf(z)dz, feD.

0
From the properties of Frobenius-Perron operators it follows that (cf. [6])

1
z\ 1 :
ORI OY (5) L1teni(v)dy

1
= J ss) (7255) Ty e TG .

Then we may estimate E( Pf) as follows:

1
BP) = [ opfla)s= Ie f 1600 (23 ) oaasleat( D)) dude
1
= [ (D) f zg(z) dzdy
0 0

1
=m ff(y)’_l‘;(y)dy <m forfeD.
0
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As a consequence, E(P"f) < m forall n = 1,2,...and f € D. Thus
b

@) [Pf(z)dz=1- f P*f(z)dz =1—b" f bP" f(z) dz
b b

0
1
>1-b7" [zP"f(z)dz > 1 - b~'E(P"f)
b

>21-m/b>0
for arbitrary b > m and n = 1,2,... Using (20) we may write
1

PriE) = [ P () (my)) Tl D) dy.

0
Hence

b
n n— z 1 _
(22) Pf(x) > !P 1f(v)g (m) T‘\(y)]-[z,l](TA(y))dy'

From the properties of T and the inequality &) < d) it follows that there
exists a positive constant by > m such that

ex <min{Tx(y): 0 <y < bo}.
We set
u) = min{T\(y): 0<y < bo}
and define A = [e),u)]. Using inequality (19) it is easy to verify that

g (f‘f@) %(y)llx,l](Ta\(y)) >0

for z € A and 0 < y < by. From this and inequality (21) we conclude that
for a.]l z€A

f P*f(y)g (T (y)) Ty ) lz1)(Ta(y))dy >0  forn=2,3,...

As a consequence, applying inequality (22) we finally obtain P" f(z) > 0 for
all z € A and n = 2,3,... Thus, the proof of the theorem is complete. »
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