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LIMIT THEOREMS FOR NON-HOMOGENEOUS
SEMI-MARKOV PROCESSES

Abstract. Non-homogeneous renewal processes and non-homogeneous
semi-Markov processes are considered. In particular, Smith’s Theorem is
extended to the case of non-homogeneous renewal processes and the Central
Limit Theorem for non-homogeneous semi-Markov processes is obtained.

1. Introduction. Homogeneous semi-Markov processes are not satis-
factory models for many problems in reliability theory. Hence it is necessary
to consider a wider class of processes, i.e. non-homogeneous semi-Markov
processes.

In [10] a non-homogeneous renewal process N(t) is generated by a se-
quence (T,)nen of independent and non-negative random variables with
distributions (F™) and expectations (m,,). If for every n € N we set So = 0
Sp = Y iuq T; then the renewal function H*(t — Sp_1,t) is defined as the
conditional mean of the number of renewal moments over the random inter-
val (Sy-1,1], i.e.

H™(t—§ B E(N(S —15t)|8n=1) fort >0, we{w: Sp_1(w) < t},
L otherwlse,
where N(z,y) = N(y) — N(z). In [10] the equality

(=]

H*(z,0) =) F™*(2)

k=n
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is shown, where

k() = 1 for k < n,
()= Jo F*(du)F™*=1(z —u) for k > n,
so H*(z,t) = H"(z). Moreover, some conditions for H™ to be finite are
given.
In 1956 T. Kawata proved the following theorem.

THEOREM 1.1 [4]. Suppose Ty, T3, ... are independent random variables
with distributions F1, F?, ... and ezpectations my, m,,... such that:

. (i) ffw e~**F"(dz) < oo, where 0 < 8 < sy for some sy, uniformly
in n;
(i) im go0 [ zF™(dz) = 0 uniformly in n;
(iii) lim 400 f__;: e~ **F"*(dz) = 0, where 0 < s < sq for some so,
uniformly in n;
(iv) impeoo ™1 Y0, mi = m, where 0 < m < co.
Then
h
- f (H'(z +h) - H'(z))dz = —.

t—oo t

H. Morimura [6] showed the equality

i g(“"m)P{’<5»Ss+h}- L (2-3)

where

1

M,,- m; —=m asmn-— 00,
a—l

Zv — v asn— o0, wherev =E(T}).

Similar problems were conmdered by H.Hatori, who presented the fol-
lowing result in [3]. Let ¢ denote any Baire function integrable over (0, c0)
and let m,, > C, D(T,) < K for every n € N, and limy oo ™! Y1, m; =
m > 0. Then

Th_’mw ks dt( f o(t —u) dN(u)) o f o(u)du  as.
In this paper a similar theorem will be presented with H!(u) replacing N(u)
and without the assumptions m, > C, D(T,) < K.

On the other hand, in [9] a non-homogeneous semi-Markov process is
defined as follows. Let (Tyn)neN, (Xn)nenu{o} be sequences of random

o bl
S .".‘.‘!'\'.-! ¥ 3" Y
L) ' .
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variables such that for n € N, T, : 2 - [0,00), X, : 2 - B C N.
Let p = {pi; i € B} denote a distribution on B and for n € N, let
Q™(t) = {Q%(1); 1,5 € B} denote a semi-Markov matrix such that
P{Xn = ja T, < tIXO, Xl; s ;Xﬂ—thaT2s .. °sTn--1}
The sequence (T),) generates a non-homogeneous renewal process N(1).
Hence the random process X (t) = Xy is called a non-homogeneous semi-
Markov process.
This process is considered over some interval (¢, + h] and therefore the
matrices of transition probabilities after moment ¢ are defined.
Fort,h>0,0<y<h,let
KJ(t,h,t + k) = 6;; (Kronecker’s delta),
I{ilj(t: h,t+ h) = P{XN(t)+1 = 7, Sny+1 St +h| XN =1},
Kt h—y,t+ k) = P{XN@)4n = J) SN@)4+n St + R XN(t)4n-1 = 1,
SN(t)+n—1 =t+ y} »
By [9] the matrices K™(-,-,-) can be obtained from the matrices Q™. More-
over, let
K?J-(t, h,t+h) for n < m,
K7}t hmyt + h) for n = m,
K"t hm,t + k) = 2 keB fohm K%t dz,t+ h = by + 2)
| X Ki™ '(t,hm — z,t + h) |
=Y ren Kk * K,’c’;—'“"l(t, hm,t+h) forn>m,
where

he = h forn=0,1,
" \h-y forn>1.

The functions K[;'"(t,hm,t + h) are the transition probabilities after
n —m + 1 steps, i.e.
P{XN(t)+n = J> SN(y4n S t+hRIX(2) =i} = KiJ"(t, bt + b),
n=1,2,:..,
P{XN()+n = J, SN@)4n S t+ B XN +m-1 =1, SN(t)4m-1 =t + ¥}
=K3"(t,h—y,t+h), m=23,..., n=mm+1,...

DEFINITION 1.1. For every n € N, t,h > 0, let K™(t,,t + k) =
{KE(t, -t + h); 4,7 € B} be a given semi-Markov matrix; L(t,-,t + k) =
{L%(t,-t+ h); 4,5 € B} be a given matrix of measurable and bounded
functions on the interval [0, k]; and U™(¢,-,t+h) = {U%(t,-,t+h);i,j € B}
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be an unknown matrix of measurable and bounded functions on [0, k). The
system of linear integral equations of the form

(1.1) U™t ,hn,t+h)
hy
= L™(t,hn,t + )+ [ K™(t,dz,t+h = hy +2)U™(t,hn — 2,8 + h)
0

is called the renewal equation for a non-homogeneous semi-Markov pro-
cess.
In [9] it is proved that a unique solution of this system exists under some
conditions and can be presented in the form
U™ty hp,t+ h) = L™(t, hn,t + h)
00  ha
+3 [ K™t dz,t+h—hy+2) ¥ (8 by~ 2,4 h)

k=n 0

o0
= L™(t,hn,t + h)+ Y K™+ L¥1(t, ho,t + h).

k=n

2. Limit theorems for non-homogeneous renewal processes -

THEOREM 2.1. Let a sequence (T, )neN of non-negative, independent ran-
dom variables with distributions (F"),eN and ezpectations (my)neN Satisfy
(i) limg—oo [ @ F"(dz) = 0 uniformly in n;
(ii) mp > 0 for n € N and there exists 0 < pu < oo for which
].imk...m(ml + ...+ m;,)/k =M.
If L : Ry — R is a measurable and integrable function of finite
variation on [0, 00), then

t
i L J (B« L)(z)dz =

t—o0
¢ 0

®Il=

f L(z)dz,

where H denotes the renewal function H?.
Proof. Without loss of generality assume L is decreasing and non-
negative. For some zg > 0 introduce the following notations:
1 t = ;
I(t)= 7 J [ H(duw)L(z - u)dz
0 0
Ty T t =z t =
([ [+ [ [+ ] [)E@Lea-vds
0 o zo 0 Zo

To

]
| -

= Il(ts 30) + fz(t, 30) + I3(t’ 271’.!):
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e(t)y= [ L(z)dz.

Let ¢ > 0, b > 0 satisfy h < £/L(0) and let zg > 0 be such that for all
z 2z

1 fH(y+h)-H(y) 1
;J N dy—;; <e¢ and H(z) > 0.

(Theorem 1.1 implies the existence of such an zg.) Finally, define v =
((t - 20)/R].

By Theorem 1.1, H(z) < oo for z > 0. From the integrability of L we
can choose t to satisfy

f L(z)dz < m,

2) - E hiL(hi) < &,

|-1
3) = E L(hi) < —
l-l
' 1
5) t Z 2.."'}0 + h.

Now bound the integrals Ii(t,zo), k = 1,2, 3, as follows:

0.€ Liltozs) = % jPH(du) } B =) i

Tp—u

-—fH(du) J L(y)dys@ff‘(y)dys.s,

0< I(t,20) < = f L(z — z0)H (o) dz < H’(zg) f L(y)dy<e.

=u
For I3(t,z0) we have

(2.1) Ia(t 1‘0)

v=1 z—hi z—hv

-t f (2 [ H@wLez-w+ [ H(dui(z-v))ds,

xo i=0 z-h(i+1) Tg
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so that
v-1 . P
I, zo)<-:f ghL(h) hz)-‘f;'l(a:—h(z-i-l))dz
zot+h
f H(du) [ L(z - u)dz = As(t,0) + Bs(t,20)-
But
t
Bs(t, zo) % [ L(z =20 — h)(H(zo + k) - H(z0)) da
+

i
1
< H(zo + h)7 JLwdy<e
0

and if we change the order of the sum and the integral and substitute y; =
z — h(i + 1) for every i in As(?,2o) then we get

t

Klia) g Z apriy [ 0 EEoh)- ’i(“ —H+ 1) 4
= To+h(i+1)
= . t=h(i+1) o 4 h) = Hy:
i ?ghf,(m) ] of (v :3 () g,
1 = ¢ H(y+ h H

< (:7 +s) (ghL(hi)+hL(0)) < G‘ +e) (c(t - z0) +€).

On the other hand, using the rectangle method for bounding c(t) we obtain

u—l x .
I(t,70) > ZhL(h( +1)) f L h‘)"f‘(”“h(‘“)) di
:_o

> (— —s) 3 hL(hi) - (— ) ”T"iu.(m)

i=1 =1

- (; - e) thL(h:) 2

> (}l—'—e)(c(t-—zo)—e)— (;+e)e~ (i-—s)s—?e.
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Finally, we get
1 2¢
(; - e) (c(t —z0) —€) — . 2e < I1(t, zo)
1
< (‘—‘ +e) (c(t—z0)+€)+¢,
so that

lim 1(t) = TL(z)da:

==

and the proof is complete.

THEOREM 2.2. Let the assumptions (i)—(ii) of Theorem 2.1 hold. More-
over, let (L™),eNn be a sequence of measurable and integrable functions of
finite variation on [0,00) and suppose there ezists an integrable and mea-
surable function L of finite variation on [0,00) such that the series

o0

> (L - L")(z)

n=1

is uniformly convergent Then for every n € N

f Z(F‘ k& LF)(z) de = fL(z) dz
D

t
—rootu 1

Proof. Using Theorem 2.1 it is enough to show that
Jim ~ f ;(F‘ * % (L - L**))(z) dz =

or

Jim Z(F‘ * 4 (L= LMY)(0)

= ..‘Eoi fFI”‘(dz)(L— LFY)(t-z) =0.
0

k=1
Since the series

(L) - L*(=))
n=1

is uniformly convergent, and for k € N the function L(z)— L¥(z) is integrable
and of finite variation on [0, 00), there is C > 0 such that |L(z) — L*(z)| <
Cforal k e Nz > 0. Forany 0 < € < 1, k € N take ; such
that for all £ > ¢,
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1) sup |L(z)- L*¥*(z)| < e/2F,
z€[t/2,1)

2) FUE(t) — FUk(2/2) < e/(C2F+1).

For any k € N, t > t; we can bound

|fFl,k(dx)(L(t—z)—Lk+1(t—:))|S| }f3|+| f ]
> 0 /2

< sup |L(z)— L*1(2)|F1*(t/2) + C(FV5(t) — FV*(1/2))
xGItlz,tl

£
+CC2"+1 = -2—;.

Hence we get the inequality

2k+1

Z|F‘*"*(L LY ()| = 2 lim |F'* + (L - L**)(1)|
k=1

t—aoo

=]

s —
o
=
leading to the asymptotical equality
S EF s @) ~ (3 ) « 1) @),
k=1 k=1

so the theorem is proved.

3. Limit theorems for non-homogeneous semi-Markov pro-
cesses. First for any n € N, #,j € B define the “counting process” M
connected with a non-homogeneous semi-Markov process X () by

' N(t)-n+1

M:"?(t = Sp-1,t) = Z OXur4nii+

k=1

The process M[; “counts” the number of hits of the jth state by the process
X(t) over the random interval (Sn-1,1t] under the condition X {N(t)+n-1 = %

Let us define the random variable
i7" (1) = inf{y > SN(ty4n-1 : M, !}’“’*"(y — SN(t)4n-1,Y) 2 m},
n,meN,

as the moment of the mth visit in the jth state for the process X(t) after
the moment Sn(s)4n-1 under the condition Xn(t)4n-1 = i. The random
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variables

qul(t) = "1 (t) - SN(‘)+n—1: n €N,
qij‘m(t) = u,m(t) ,m—] (i), neE N, me N \ {1},

represent time distances between the (m — 1)st hit and the mth hit in the
Jjth state. Denote the expectations of these random variables by u?™ (2).

Moreover, for t,h > 0, y € [0, k], set

VK (e, byt 4 B) = {P{ru(t) 5N(t)+h th(t) <t+h} forkeN,
R 0 for k = 0;

[ P{7}(t) = SN((:;+'¢! BS }
ol ~ () <t+ ", =ity
Vik(t,h—y,t+ ) = forn=2,3,..., k=n,n+1,.

L0 otherwise;
(Vi7" (t hnyt + h)
form=1,n=12,...,
E=ma,ntdlc.;
Thomtl [yt dz,t+ b — by + )
X ‘V"+l km=lcg h. —z,t+h)
zr.—-u+m 2 oh‘ Vs?'r‘m_l(t! d.'ﬂ,t+ h - h“ + 3)
x Vi (4, by — 2, + R)
forn=1,2,..., m=2,3,...,
k=n+m-1,n+m,...,
0 otherwise.

Vo™ (t, hayt + B) =

It is easy to show that
P{rl{™(t) = Sn(y4ko T (8) S t+ B} = V5™ (8, bt + b),
meN, k=m,m+1,...,
P{ry™(t) = SNk Tij T (8) S t+ hISN(4n—1 = 1+ 3}
= ].Q?’k'"‘(t,h —y,t+h),
neN\{1}, meN, k=n+m-1,n+m,...
If we denote the distributions of the random variables 7;7™(-) by
WE™ (4y050), e
W™ (t,h,t + h) = P{rjj™(t) < t +h},
Wi';'m(tih =%htt h’) = P{Ti';"m(t) Sit+ hl'SN(tH-n-—l =t+ y} ’
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then

N(t,t+h)
WE™(thayt+h)= Y V™t ha,t+h), n,meN.
k=n4+m-1

Using the properties of the integral mean it is easy to prove the following

LemMMA 3.1. If f,g : R — R are monotone functions such that f(t) =
g(t) =0 fort < 0, then

t t
:ILIEO%JU*Q)(’:) dz = i]in‘}of(t)t]ingo%!g(z) dz.

THEOREM 3.1. Let the following assumptions hold:

(i) the non-homogeneous semi-Markov process X(t) is irreducible and
regular;
(ii) imgoo [y IW;}'I (t,dz,t+ h — hy + z) = 0 uniformly in n;
(iii) foranyt >0 n €N, j € B the finite limit

Jim (n3; &)+ -+ u3E@))/k = 0}()

ezists;
(iv) for i,j € B, n € N, LY(t,hn,t + h) = 6;;L%(t,hn,t + h) is a
measurable and integrable funct:on of finite variation for h € [0, 00);

(v) the measurable functions I}(t, hn,t+ h) = supys, L5(t, hn,t+h) are
integrable and have finite variation for h € [0, 00).

Then for everyn € N, 7,7 € B

lim — fU,(: byt + h) dh

T=—+00 T
=n J

where the sequence (U™(t, hn,t + h)) is the solution of the renewal equation
(1.1). :
Proof. Recall that
'“'(t hrn t+ h)

Z b fK""tdzt+h hn + 2)LEE (8, by — 2,8 + B).
k=n—-1meB 0
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Let n =1,k > 1 and i,m € B. We can write

Kil';:(t, h,t+h) = P{XN(¢)+;¢ =m, SN(!)+k <t+ thN(t) = i}

k
=Y P{r}l(t) = Sny+ks SN@y+k S t+ B X NGy = i}
r=1

k
=) Vil (t byt + R)
r=1 "
k k-r+1
s V‘-},r'.k'l(t, h,t+ h) + E Z Vi}r;:'l * V;‘-l’;‘l,k,r—l(t, h,t+ h)),
r=2 s=1

which leads to

(e +]
(3.1) ULt h,t+h) = LY(t,hyt + h) + 3 (Viy* x LEF')(t, byt + B)
k=1

oo k k-r+1

k=2 r=2 a=1
)

= LY(t,h,t + h) + ) (Vi7" + LEY')(t, byt + )
k=1
00 00 o0

+Y5 Y (vAta v L LYt t+ B).

s=1r=2 k=s4r-1

The second term on the right-hand side can be bounded as follows:

00 00
S (VA « i)ty byt + b) < ((E V'_},k) . &)(t’ ht+h)
k=1 k=1

= (W.{f'l *12)(t,h,t + R).

Now let A — o0o; then from the integrability and Lemma 3.1

T=—+00

.17
lim —z-&fL},-(t,h,t+h)dh=0,

x
im 1 [ (WY B)(t,h,t + h)dh
0

z—00 I

_ o o NI s
= lim W (_t,h,t+h)zll.rr;°z!Ij(t,h,t+h)dh_0.
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Using the above equalities we get

fim. J UL(t,hyt + h)dh
0

r—oc0 I

< zrlm% f ii(m}v'v‘ . ( i V}?""""“l) x :})(t,h,t+ h) dh

0 s=1r=2 k=s4r-1

= lim i f i(v};’ " (i W;J.H-'*l) * zj?) (t,h,t+ k) dh.

0 s=1 r=2

By the uniform convergence in s and Lemma 3.1 we have

17
zllbmoo;&ryilj(i’h’t-I- h) dh

- . 1,8 . 1 ; - s+1,r—1
5zlh]i.mw VA (t,h,t + h) xlingo;c'f ((Zz weitr) +2)(t,h,t + h) db.
8= r=
The sum
(3.2) S wittmlt,h—y,t+h), seEN,
r=2

is the expectation of the number of visits in the jth state over (¢ + y, + h]
under the conditions Xn(1)+s = 7, Sn(1)+s = t + y. If we consider the non-
homogeneous renewal process with the renewal moments as the moments of
the visits in the jth state then (3.2) is a sequence of renewal functions and
hence Theorem 2.1 can be used. So

=00 I

Y, = J UL, byt + h) dh
0

[+.] ) " 1 o0 2
<Y lim V; ’(nhxm)w !Ij(t,h,t+ h)dh.

=1
For n > 1 the proof is similar and we omit it.

THEOREM 3.2. Let the assumptions (i)—(iv) of Theorem 3.1 hold. More-
over, suppose for j € B there exists a measurable and integrable function
l;(t,h — y,t + h)of finite variation for h € [0,00) and such that the series

o0

S (s = L)t h - vyt + b)
k=1
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is uniformly convergeﬂt inh. Then forn €N, i,j € B,

im — fU,(t ha,t + ) dh

T—00 I

= f Li(t, byt + h)dhz m() Jim V*(t, hayt + R).
0

s=n J'

Proof. Let n = 1. Consider the second and third terms on the right-
hand side of the equality (3.1). By Theorem 2.2 we obtain

Jim S(V3* s L0+ B) = Jim, ((g Vi) #15) (6t 4 h)

= h]i—»n:o(wi?l *1;)(t,h,t + h)

and
Jim D77 R 7 (N R )
o k=s+r-1
s+1,k,r-1
= Jim (( Z v ) #15) (&, bt + h)
k=s+r-1
r.ll.nio (W;jﬂ,r_1 *1;)(t,h,t + R).

The rest of the proof is like in Theorem 3.1 but instead < we write =.

COROLLARY 3.1. Let the assumptions of Theorem 3.2 hold. If the se-
quence (uj} 1(t))nen has a finite limit v;(t) then for everyn € N

lim —f 2(tyhnyt + h)dh

T—00 I
-1 n,1
= lim W' (8, hayt + h)~ )f!(t byt + h)dh.

Remark 3.1. Theorem 3.2 corresponds to a known theorem for
homogeneous semi-Markov processes (see for instance [5]).
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