ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
21,1 (1991), pp. 3342

A. GRZYBOWSKI (Czestochowa)

MINIMAX STATE ESTIMATION
- FOR LINEAR STOCHASTIC SYSTEMS
WITH AN UNCERTAIN PARAMETER

0. Introduction. Various papers are devoted to the problems of Bayes
and/or minimax state estimation for stochastic systems (see [1], [3]-[7], [10]).
The estimates have been derived under different assumptions about the
uncertainty of the system. Major types of uncertainty are connected with
the statistical characterization of the process and observation disturbances.
The problem of state estimation for systems with uncertain first or second
order statistics of the disturbances have been studied e.g. in [1] (the Bayes
approach), and [3]-[7], [10] (the minimax approach).

In our paper we deal with the problem of state estimation for discrete
time stochastic systems with an additive, time-invariant, random parameter.
The parameter may have different values for different realizations of our
process but its value is the same at every moment through a fixed realization.
Various practical processes have got such a parameter. For instance some
devices have parameters which are being stabilized when the device is being
switched on, but every time we switch the device on the parameters can
be stabilized on a different level. Another example is when the random
parameter changes “very slowly” in comparison with a single realization of
the controlled process. Then sometimes we can assume that for a fixed
realization the parameter has the same value at every moment.

In the sequel we will assume that the parameter has an unknown distri-
bution belonging to a given class of distributions. As usual the class will be
called an uncertainty class.

Systems with random, time-invariant para.meters are discussed in various
papers. The Bayes approach to the problem of parameter estimation for such
systems is presented in [8].

1985 Mathematics Subject Classification: 93E10.
Key words and phrases: state estimation, Bayes estimation, discrete time systems.



34 A. Grzybowski

The minimax estimation problem discussed in our paper involves
Bayesian estimation and statistical decision theory.

1. Preliminary remarks and notations. Throughout the paper,
Greek letters indicate matrices, bold letters indicate vectors. We shall also
use the following notations:

o = the zero vector of appropriate dimension,
aT (aT) = the transpose of a matrix a (a vector a),
lall? = aTa for every vector a,
tra = the trace of the matrix a,
N(m, Y) = the Gaussian distribution with the mean vector m and the
covariance matrix X,
Pxpy = the conditional distribution of a random vector X given a

random vector Y,
fxiy(x|y) = the density function of the distribution Px|y.

Let an,@n-1,...,0 be an arbitrary sequence of square matrices having
the same dimensions. We denote the product aja,—;...ax by ank. If
k > n then ay  is the identity matrix of an appropriate dimension.

Let X and Y be random vectors of known dimensions. Suppose that
the vectors depend on a random parameter V. Let E(- | V = v) denote
the conditional expectation with respect to (w.r.t.) the distributions of the
vectors X and Y when the parameter V' is known to be equal to v.

Let d(Y) be an estimate of X based on Y. The risk function R(v,d)

connected with the estimate d is defined by
R(v,d) = E(J]X - d|*|V = ).
Let the parameter V have distribution D. In this case we define the
Bayes risk as usual, i.e.
(1) r(D,d) = EpR(v,d) = E||X - d|*.
Denote the set of estimates d for which the Bayes risk r(D, d) exists by
AD'.I‘he estimate d which satisfies the condition

r(D,d) = 0t r(D,d)

is called a Bayes estimate (w.r.t. D).
Let G be an uncertainty class in our problem and let Ag denote the set
of estimates d for which the Bayes risk r(D,d) exists for each D € G.
The estimate d* which satisfies the condition
sup r(D,d*) = inf sup (D, d)
Peg dedg De
is called a G-minimaz estimate.
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The following lemma shows the relation between the Bayes and minimax
estimates and is often used in order to prove that an estimate is minimax.

LEMMA. Let {Dy}2,, Dk € G, be a sequence of distributions of V and
let {dx}2, and {r(Dk,di)}2, be the corresponding sequences of Bayes
estimates and Bayes risks. If d* is an estimate for which the Bayes risk
r(D,d*) satisfies
(2) sup r(D,d*) < lim sup r(Dy, di)

Deg k=00

then d* is a G-minimaz estimate.

The lemma is a slight generalization of Theorem 6.5.2 in [11]. For control
policies such a version of the theorem can be found in [9].
The following corollary is also well known.

COROLLARY. If the estimate d is Bayes w.r.t. some distribution belong-
ing to G and satisfies
VDeG r(D,d)= const

then it is a G-minimaz estimate.
2. Description of models. In the sequel we shall consider the following

two models. )
The model A is described by the plant equations

(3) xn+1=ﬂnxn+wnvy n=0,1,...,
and the observations
(4) Yn=ﬂan+Zn, n=0,1,...

The model B is given by
xn-I-l:aan'*‘zn: n=01,...,
Yn=‘3ﬂx,‘+w\nv, n=0,1,...

In the above equations the vectors X,,, Y,, have dimensions p, g respec-
tively, the matrices a,,, 8, and vectors w,, Z,, have appropriate dimensions,
V is a random, real parameter.

We assume that the initial state X¢ has distribution 91(mg, A¢) and that,
for every n, Z,, has distribution N(o, X;,). We also assume that V, Xy, Z,,
n=0,1,..., are independent.

In the model B we assume that p = ¢ and that the matrices §,, n =
0,1,..., are nonsingular.

3. Statement of problems. The uncertainty classes G; and G, which
will be considered in our paper are defined as follows:

DeG & EpVi<a,
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DeGy, & EpV =my A EpV? = my,

where the constants a, m;, m; are known.

PrOBLEM A.l. Let the nature’s choice of the distribution of the pa-
rameter V be confined to the class of distributions G;. For the model
A find the minimax estimate for X,;; based on the observation history
Y" = (Yo, Y1,..., Yy) against the nature’s choice of distribution in the
above class.

PROBLEM A.2. Let the nature’s choice of the distribution of the pa-
rameter V' be confined to the class of distributions G;. For the model
A find the minimax estimate for X,4; based on the observation history
Y" = (Yo, Y1,..., Y,) against the nature’s choice of distribution in the
above class,

Problems B.1 and B.2 concern the model B and are similarly formulated.

4. Bayesian estimation. Assume that the parameter V has distri-
bution N(rs~1,s~1), where the constants r, s are known, s > 0. This
distribution will be denoted by D,,. We shall find the Bayes estimates
w.r.t. such distributions and their risks. :

Under the given assumptions the problem of estimating X, 41 given Y”
is a standard Bayesian estimating problem. It is well known (see e.g. [2])
that the minimum mean squared error estimate is the expected value of the
conditional distribution of X, 41 given Y™.

Consider the model A. According to the Bayes rule we find that the
distributions Px,,,|yr=y»,v=v a0d Py|ys=y» are N(my41,0, Ant1,0) and
N(rns15,41) Snp1)» Tespectively, where

fm,,+1',,=an+1+bn+1v,' n=0,1,...,
Ant10 = a,,(ﬂ,‘{’ll‘;lﬁ,. + A;,l,,)a';':, =01y
(5) 4 mg,, =mg, Aoy = 4o,
Sntl = 8n + b?;ﬁ?;(ﬂn/ln,uﬂg + En)—lﬁnbn y n =0, 1} veny
T4l =Tp + b:ﬂ:(ﬂn/‘n,vﬁg &+ En)-l()'n - ﬂnn-n) , n=0,1,...,
\ S0 =38, To=T,

with a,, b, given as follows:
pn41 = an(ﬁg.‘ga:lﬁn + A;,ln)_l (A;,l-an + ﬁ:{)};‘ Yﬂ) H
n=01,...,
(6) bat1 = an(BTE 60 + A7L) 1A b + W, n=0,1,...,
ag=mg, bo=0.
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Using (5), (6) and the equation
fx--nlY" =¥"(xﬂ+1|Yn =y")
= [ fronlYr=ys,v=o(Xnp1|Y" = ¥,V = 0) fyya (o] Y™ = y*) dv
R

we find that Px_ |y~ is the distribution M(my41, An41), where the covari-
ance matrix and the mean take the form
ol

b

A7 by b7, 47D
(7) Apyg = A;l - n+1,u90n+10n41 40410
" T (sn41 bR ATk ba)

T -1

. — 1‘“4.1 - h +1A +1 an+1

M1 = Ang1dnt, |8ns1 + — bni1
(8n+1+bpyy4511,,bnt1)

It is easy to verify (but not so easy to find out) that the inverse matrix
Wluch appears on the right-hand side of (7) is equal to Apy1, +
81 basa bT.,. Now the mean can be expressed in the following obvious
way:
(8) Myt = any) + bn+13;_}_11"“+1 .

Let X,41(r, s) denote the Bayes estimate w.r.t. the distribution D, ,. In
view of our previous remarks, the estimate is given by the right-hand side

of (8).

5. The risk functions for the Bayes strategies. By using (3)-(6)
the state X, 41 and the estimate X,41(r, s) can be expressed as follows:

Xn+l=ﬂfﬂ0Xn+hV n—l]l
(9) Xnt1(7,8) = e1(n) + c2(")3n+1 + [g1(n) + 82(“)3n+1]V
+ [o1(n) + 02(")3n+1]X0 + Yicolmi(n) + 'y.-(n).sn“]z,- y

where the quantities h,, ck(n), gi(n), ok(n), ni(n), 7i(n), k = 1,2, i =
0,...,n, are independent of s and for » = 0, 1,... they are given by

n
h, = Zan,i+1 Wi,
i=0
Ci ('ﬂ) — ¢n,omo H

cz(n) = baya (f - E b?ﬂi¢i-1,omo) .

n-1
gi(n) = 2 Oni+2¥it1Bi41h;,
=0
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i—1

g2(n) = bpyr E bTk; (he—1 - E¢i-1.k+2¢k+1ﬂk+1 hk) ,
k=0

i=0

o1(n) = Z Oni+1¥iBici10,
i=0
i-1

o3(n) =bap Z bYk; (ae—l.o - Zﬂf’i—l,kﬂ ¢kﬁkﬂk—1,o) 5
i=0 k=0 d
q,-(n) = ¢n,i+1 Vi,
%(n) = baya [bT AT (BikinT + £ = Y blkadeor, it
k=i+1
with
Kn = ﬁs(ﬁn/ln,uﬁg‘ + Eﬂ.)_lﬁn »
¢l’l = an(ﬁ{Er:lﬁﬂ + A;,lv —IA;’L,
Pn = an(Br Ty Bn+ A7) AR 2T

We have also used the following expression for b,,:
n-1
bo =) bn-t,it1Wi-
i=0

Note that ¢z(n) is the only quantity which depends on r.
By the definition of the risk function, using (9) we obtain

(10) R(v,Zn41(r,5)) = §V[s]0? + {V[s, 7]v + c§V[s]

where the coefficients depend on the variables which are indicated in brackets
and take the form:

cf,")[.s] = — 21:1(11,)1":9,l mg + mgﬂzﬂnmg + cl(n)Tcl(n)
+tr670,40 + z trni(n)Tni(n) Z;
i=0

+2s4 [—c:(n)TBn my + ¢1(n)To3(n)mo — mJ 63 o2(n)my

+ ¢1(n) ey (n) — trog(n) 70,40 + Zn: tr -y,-(n)Tr;.-(n)Z‘,-]

i=0

£+ [mgdg(n)Ta'g(n)mg + eg(n)Teg(n) + 2¢2(n) Tz (n)mo

+ trog(n)Taz(n) Ao + E tr ’)’i(ﬂ)T‘}’i(n)Ei] ’
i=0
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&i"”ls,7] = 2{[hn — g1(n)] [0amo — e1(n)
— sy 11(82(n)"(Bamo — €1(n))
+ (hn — g1(n))" (02(n)mo + €2(n))]
+ 82 3182(n) T [o2(n)mo + e3(n)]} ,
V6] = [hy — g1(n)]"[hn — g1(n)] - 27} ,82(n)  [hy — g1(n)]
+571182(n) g2 (n),
with
Op =ang—o1(n), n=01,...
Note that the above coefficients depend on s through the quantity s,4,
and the coefficient cgn) [s,7] depends on r through cz(n).
For every real m let X,41(m) denote the estimate given by
Xn+1(m) = ans1 + bopam
where a,4+; and b,y are given by (6).

It is easy to verify that for every v

R(v)iﬂ'l'l(m)): 311,11(;10 R(v,§n+1(f,3))

rs"lem

and for every distribution D of the random parameter V
(11) r(D,Xn41(m)) = lim  r(D,Xn4a(r,9))-

rs~lom

6. Results for the model B. Considerations similar to those in
Sections 4 and 5 lead to the following facts holding for the model B:

FAcT 1. Let X, 41(r,s) denote the Bayes estimate w.r.t. the distribution
D, ,. Then

Xn+1(7:8) = Pnt1 + Qui1Tn41 3;1;1

where
rpn+1=&nﬁ;1Yﬂs n:(},l,...,
Po = myp, .
Qn41 = anf; Wy, n=01,...,
q =0,
(12) { Tk = Tat (Wn+ Baan)T(B) 7 BT (Yo — Bapn)
n=0,1,...,
Tg =T,
Snt1 = Sn + (Wn + Batn)T(87) 1 271 87 (Wa + ﬁnqn%],
=01,

\ 89 = S.
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FACT 2. The risk function R(v,Xn41(r,8)) can be expressed as follows:
R(v,%n1(ry)) = &5V [s]v? + d{Ps, r]o + &V [s]

where
dM[s] = tr Z, + 85t (qz+1¢h1+17'2 +truoq] 41 Gn4145 Ao
n—1
+) tr “i+1QZ+1Qn+1“?+12i) )
i=0
n
dgn) [s,7]= - 2q£+; qn+1 (1 = 8;},1 Z h.') 3;}_‘1',
i=0
n ) 2
& [s] = QR4 1n41 (1 ~ st ) h;) ,
=0
with

un=A;;;qna n=0,1,...,
hﬂ:(ﬂ;lwn"‘qn)Tun, =120y
ho = (85" wo)Tuo .

FAcCT 3. For every real m let X,,1(m) denote the estimate given by

Xn+1(M) = Pas1 + Quyam
where pny1 and qq41 are given by (12). Then

R(”!§n+l(m)) = ,Ii,ngo R(vain-l-l(rs 3)) ’

rs~lam

for every v, and
(D, Xn41(m)) = ,li.f{}o (D, Xn41(7, 8))
. rs~lam

for every distribution D of the random parameter V.

7. The minimax estimates. The following propositions provide solu-
tions for Problems A1l and B1.

PROPOSITION 1. A G,-minimaz estimate for the model A always ezists
and

(i) if Vs > a1, c1[s,Vs2a — 8] > 0 then X, 4+1(/a) is a Gi-minimaz
estimate,
(i) if Vs > a7, e1[s,—Vs%a — 3] < 0 then X, 41(—+/a) is a Gy -minimaz
estimale,
(iii) if 3s*, r* such that s* > 0, ¢1(s*,7*) =0, (r*)*(s*) "2+ (s*) ' =a
then Xp41(r*, 8*) is a Gy-minimaz estimate.
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PROPOSITION 2. The estimate X,,4+1(0,a™1) is a Gy-minimaz estimate
for the model B.

Proof of Proposition 1. By (1) and (10) the Bayes risk
(D, Xp+1(r, 8)) can be expressed as follows:

(D, Knt1(r,8)) = &SV [S|EpV? + ™ [s,r]EpV + c§]s] .

Notice that cgﬂ)[s] > 0 for each s.
Now, suppose that the condition in (i) is fulfilled. In view of (11) for
each D € G; we can write

(D, %n41(va)) = lim {§V[s]EoV? + &Ms, vVoa — 3| EoV + &V s])
< lim {¢{V[s]a + &[5, Vis?a — s]Va + e [s]}
= lim {¢{"[s]a + ¢{”[s, Vs?a — s}s™! V/s%a — s + ¢ [s]}
= lim r(D\/;e;—,,,an(\/-‘-tT——s s)).

In view of our Lemma (see Section 1) this implies that X,41(v/a) is a G-
minimax estimate.

The proof of (ii) is similar.

In case (iii), for each D € G; we obtain

. (D, Xn41(r*,8%)) = c(n)[s*]E‘sz + c(")[s r*|EpV + )[s’]

< c(n)[‘s‘]“ + c(n) [8*] = r(Dye =y X1 (7", 5%)) -

Setting Dg = Dy 4o and dig = Xp41(r*,s*) for each k in the Lemma we find
that the estimate fulfils the condition (2), so it is a G;-minimax estimate.

It remains to prove that a G;-minimax estimate always exists; but this

follows from the fact that one of the three conditions given in (i)-(iii) must
be fulfilled.

Proof of Proposﬂ.lon 2. Notice that the distribution Dy ,-1 be-
longs to G; and d(l [a"1 0] = 0. So our assertion can be proved in a similar
way to (iii) of the previous proposition.

The next proposition gives G;-minimax estimates for our models.
PROPOSITION 3. If 3= (mg —m?)™! and 7= my(my — m?)~! then

(i) Rn41(7,3) is a Go-minimaz estimate for the model A,
(i) Xp41(7,3) is a Gy-minimaz estimate for the model B.

Proof. Notice that D73 € G;. For each D € G; we have
(D, Zn41(7,3)) = SV EEpV? + V5,7 EpV + c§[3]
= cgﬂ)[s]mg + o.':{1 )5, 7l + c%")[ﬁ] = const.
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Hence, in view of the Corollary from Section 1 assertion (i) of the propo-

sition is valid. (ii) can be proved in a similar way.

(2]
(3]

(4]
(5]
(6]
(7]
(8]
9]

[10]

(11]
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