S. TRYBUŁA (Wrocław)

A NOISY DUEL UNDER ARBITRARY MOVING, IV

1. Introduction. In the papers [17]-[21] of the author and in this paper an m-versus-n-bullets noisy duel is considered in which duelists can move at will. The cases $m \leq 25$, $n \leq 6$, and n = 1 for any m are solved. Also an idea is given how to determine the optimal (in limit) strategies for any (m,n) using the computer.

In this paper we solve the cases n = 5, $m \le n$.

Let us define a game which will be called the game (m, n). Two Players I and II fight a duel. They can move as they want. The maximal speed of Player I is v_1 , the maximal speed of Player II is v_2 and it is assumed that $v_1 > v_2 \ge 0$. Player I has m bullets (or rockets), Player II has n bullets (rockets).

Assume that at time t = 0 the players are at distance 1 from each other and that $v_1 + v_2 = 1$.

Denote by P(s) the probability (the same for both players) that a player succeeds (destroys his opponent) if he fires at distance 1-s. We assume that P(s) is increasing and continuous in [0,1], has a continuous second derivative in (0,1), P(s)=0 for $s\leq 0$, and P(1)=1.

Player I gains 1 if only he succeeds, gains -1 if only Player II succeeds, and gains 0 in the remaining cases. It is assumed that the duel is a zero-sum game.

The duel is noisy—the player hears the shot of his opponent.

Without loss of generality we can assume that Player II is motionless. Then $v_1 = 1$, $v_2 = 0$.

We suppose that between successive shots of the same player there has to pass a time $\hat{\varepsilon}$. We also assume that the reader knows the papers [17]–[19] and remembers the definitions, notations and assumptions given there.

¹⁹⁸⁵ Mathematics Subject Classification: 90D26.

Key words and phrases: noisy duel, game of timing, zero-sum game.

For definitions and notations in the theory of games of timing see [5], [22]. For results see [1]-[3], [6], [7], [10], [11], [13], [23].

2. Duel (1,5), $\langle a \rangle$. In this section we solve the duel in which Player I has one bullet, Player II has five bullets and the game begins when the players are at distance a from each other.

We define the strategies ξ and η of Players I and II. We prove that for some a these strategies are optimal in limit (i.e. optimal as $\hat{\varepsilon} \to 0$, see [18] for the precise definition).

STRATEGY OF PLAYER I: Escape if Player II has not fired a shot yet. If he fired (say at a'), play optimally the resulting duel (1,4), $(2,a',a'\wedge c)$.

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ (at the beginning of the duel) and if Player I did not fire at that moment, play optimally the resulting duel $(1,4), \langle 2,a,a \wedge c \rangle$.

The duels (m, n), $\langle 1, a \wedge c, a \rangle$ and (m, n), $\langle 2, a, a \wedge c \rangle$ are defined in [18], Section 5.

(â) denotes the earliest moment when Player I reaches the point â.

"Play optimally" means: apply a strategy optimal in limit.

We prove that if $a \leq a_{15}$, where a_{15} is the root of the equation

(1)
$$Q^{5}(a_{15}) + Q^{4}(a_{15}) + Q^{3}(a_{15}) - Q(a_{15}) - 1 = 0$$

with $Q(a_{15}) \cong 0.889891$, Q(s) = 1 - P(s), then the strategies ξ and η are optimal in limit and the limit value of the game (1,5), $\langle a \rangle$ is

(2)
$$v_{15}^a = -1 + Q^3(a).$$

Suppose then that Player II fires at a' < a and later applies a strategy $\hat{\eta}_0$. For this strategy (call it $(a', \hat{\eta}_0)$; $\hat{\eta}_0$ may depend on a') we have

$$K(\xi; a', \hat{\eta}_0) \ge -P(a') + Q(a')_{14}^{2a'} - k(\hat{\varepsilon}),$$

where v_{14}^2 denotes the limit value of the game (1,4), $(2,a,a \wedge c)$ and $k(\hat{\epsilon}) \to 0$ as $\hat{\epsilon} \to 0$. Taking into account that $v_{14}^2 = -1 + Q^2(a)$ for $a < a_{12}$, $Q(a_{12}) \cong 0.853553$ we obtain

$$K(\xi; a', \hat{\eta}_0) \ge -1 + Q^3(a') - k(\hat{\varepsilon}) \ge -1 + Q^3(a) - k(\hat{\varepsilon})$$
.

Suppose then that Player II playing against ξ does not fire; call this strategy $\hat{\eta}$. Then

$$K(\xi; \hat{\eta}) = 0 \ge -1 + Q^3(a)$$
.

On the other hand, assume that Player I does not fire at (a); if we call this strategy $\hat{\mathcal{E}}$ then

$$K(\hat{\xi}; \eta) \le -P(a) + Q(a)v_{14}^2 + k(\hat{\xi}) = -1 + Q^3(a) + k(\hat{\xi})$$
 for $a < a_{12}$.

If Player I also fires at $\langle a \rangle$ we have

$$K(\hat{\xi}; \eta) \le -Q^2(a)(1 - Q^4(a)) + k(\hat{\varepsilon}) \le -1 + Q^3(a) + k(\hat{\varepsilon})$$

provided

$$Q^6(a) - Q^3(a) - Q^2(a) + 1 \le 0.$$

In the above bound on $K(\hat{\xi};\eta)$ we suppose that if both players have fired shots and survive then Player II fires all the remaining bullets immediately after those shots since otherwise Player I can escape.

Dividing the obtained polynomial by Q(a) - 1 shows that we need the inequality

$$Q^{5}(a) + Q^{4}(a) + Q^{3}(a) - Q(a) - 1 \ge 0,$$

which is satisfied for $a \le a_{15}$. This ends the proof of the assertion.

3. Duel (1,5), $(1,a \wedge c,a)$. Suppose that Player I can fire a shot from time (a) + c on and Player II can fire a shot from a on (but sometimes not at (a), see [18]). Denote by (t) the coordinate of the point at which Player I was at time t and let $(a_1 = c)(a) + (c)(a_1' = c)(a')(a')$ for a given (a'). We define the strategies (t) and (t) and (t) of Players I and II.

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the resulting duel (1,4), $(2,a'_1,a'_1 \wedge c_1)$.

STRATEGY OF PLAYER II: Fire before $\langle a \rangle + c$ and play optimally the resulting duel (1,4), $(2,a_1,a_1 \wedge c_1)$.

Now also

$$v_{15}^1 = -1 + Q^3(a)$$

for $a \leq \check{a}_{14}$; $Q(\check{a}_{14}) \cong 0.871757$ is defined in [19].

The proof that for these a the strategies ξ and η are optimal in limit is omitted.

4. Duel (1,5), $(2,a,a \wedge c)$. We define ξ and η .

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the resulting duel (1,4), $(2,a',a'\wedge c)$.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at $\langle a \rangle + c$ and play optimally the resulting duel (1,4), $(2,a_1,a_1 \wedge c_1)$. If he has fired, fire all shots as soon as possible.

The number

$$v_{15}^2 = -1 + Q^3(a)$$

is the limit value of the game but only for $a \leq \hat{a}_{15}$, where

$$Q^6(\hat{a}_{15}) - Q^3(\hat{a}_{15}) - 2Q(\hat{a}_{15}) + 2 = 0$$
, $Q(\hat{a}_{15}) \cong 0.902816$.

The proof that Player I, II assures in limit the value $-1 + Q^3(a)$ is the same as for the duel (1,5), $\langle a \rangle$ with the only exception that now Player I can fire before Player II does. Thus assuming that Player I fires before $\langle a \rangle + c$ we obtain

$$K(\hat{\xi}; \eta) \le P(a) - Q(a)(1 - Q^{5}(a)) + k(\hat{\varepsilon})$$

= 1 - 2Q(a) + Q⁶(a) + k(\hat{\varepsilon}) \le -1 + Q³(a) + k(\hat{\varepsilon}),

which requires the inequality

$$Q^{6}(a) - Q^{3}(a) - 2Q(a) + 2 \le 0.$$

This polynomial is zero for $Q = Q(\hat{a}_{15})$ and for Q = 1 and is negative for $Q(\hat{a}_{15}) < Q < 1$. Thus the inequality holds for $a \le \hat{a}_{15}$.

5. Results for the duels (1,5)

$$\begin{aligned} & \overset{1}{v}_{15}^{a} = -1 + Q^{3}(a) & \text{for } Q(a) \ge Q(\check{a}_{14}) \cong 0.871757 \,, \\ & v_{15}^{a} = -1 + Q^{3}(a) & \text{for } Q(a) \ge Q(a_{15}) \cong 0.889891 \,, \\ & \overset{2}{v}_{15}^{a} = -1 + Q^{3}(a) & \text{for } Q(a) \ge Q(\hat{a}_{15}) \cong 0.902816 \,. \end{aligned}$$

6. Duel (2,5), $\langle a \rangle$

Case 1. We define ξ and η .

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the duel (2,4), $(2,a',a'\wedge c)$.

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ and play optimally the duel (2,4), $\langle 2,a,a \wedge c \rangle$ or (1,4), $\langle a_1 \rangle$.

We prove that the above ξ and η are optimal in limit and

(5)
$$v_{25}^{a} = \begin{cases} -1 + Q(a) & \text{for } a \le a_{24}, \\ -1 + (1 + v_{23}^{a_1})Q^2(a) & \text{for } a_{24} \le a \le a_{25}, \end{cases}$$

where $v_{23}^{a_1} \cong 0.013757$ (see [18]), $Q(a_{24}) \cong 0.986429$ (see [19]) and the number a_{25} satisfies the equation

(6)
$$Q^4(a_{25}) - (2 + v_{23}^{a_1})Q^2(a_{25}) + 1 = 0$$
, $Q(a_{25}) \cong 0.943073$.

Suppose that Player II, applying the strategy $(a', \hat{\eta}_0)$, fires at $a' \leq a$. Then

$$K(\xi; a', \hat{\eta}_0) \ge -P(a') + Q(a')v_{24}^{a'} - k(\hat{\varepsilon})$$

$$= \begin{cases} -1 + Q(a') - k(\hat{\varepsilon}) & \text{if } a' \le a_{24}, \\ -1 + (1 + v_{23}^{a_1})Q^2(a') - k(\hat{\varepsilon}) & \text{if } a_{24} \le a' \le a_{25} \end{cases}$$

(see [19]). Both functions are decreasing in a', thus

$$K(\xi; a', \hat{\eta}_0) \ge \begin{cases} -1 + Q(a) - k(\hat{\varepsilon}) & \text{if } a \le a_{24}, \\ -1 + (1 + v_{23}^{a_1})Q^2(a) - k(\hat{\varepsilon}) & \text{if } a_{24} \le a \le a_{25}, \end{cases}$$

and $K(\xi; a', \hat{\eta}_0) \ge v_{25}^a - k(\hat{\varepsilon})$ for $a \le a_{25}$ if v_{25}^a is given by (5).

Suppose that Player II applying $\hat{\eta}$ against ξ does not fire. In this case

$$K(\xi;\hat{\eta})=0\geq \overset{2}{v}_{25}^{a}$$

if v_{25}^a is given by (5), since

$$-1+Q(a)\leq 0\,,$$

$$-1+(1+v_{23}^{a_1})Q^2(a) \le -1+(1+v_{23}^{a_1})Q(a) \le -1+(1+v_{23}^{a_1})Q(a_{24}) = 0$$
 (see [19], (7)).

On the other hand, if Player I does not fire at $\langle a \rangle$ then

$$K(\hat{\xi};\eta) \le -P(a) + Q(a)v_{24}^2 + k(\hat{\varepsilon}) = v_{25}^a + k(\hat{\varepsilon})$$

after taking into account the formulas for v_{24}^2 [19].

If Player I also fires at $\langle a \rangle$ we obtain

$$K(\hat{\xi};\eta) \le Q^2(a)v_{14}^a + k(\hat{\varepsilon}) = -Q^2(a) + Q^4(a) + k(\hat{\varepsilon})$$

if $a \leq a_{12}$, $Q(a_{12}) \cong 0.853553$. The first of the two cases considered in (5) requires the inequality

$$-Q^{2}(a) + Q^{4}(a) \leq -1 + Q(a),$$

or, after dividing by Q-1,

$$Q^3(a) + Q^2(a) - 1 \ge 0$$

which always holds for $a \leq a_{12}$. In the second case we need the inequality

$$Q^4(a) - (2 + v_{23}^{a_1})Q^2(a) + 1 \le 0$$

satisfied for $a \le a_{25}$ by (6). The assertion is proved.

Case 2. We define ξ and η .

STRATEGY OF PLAYER I: Fire at $\langle a \rangle$ and play optimally the duel (1,5), $\langle 1, a \wedge c, a \rangle$ or (1,4), $\langle a_1 \rangle$.

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ and play optimally the duel (2,4), $(2,a,a \wedge c)$ or (1,4), $\langle a_1 \rangle$.

Now we prove that

(7)
$$v_{25}^a = Q^2(a)v_{14}^a = Q^4(a) - Q^2(a)$$

for $a_{25} \le a < \check{a}_{14}$, $Q(\check{a}_{14}) \cong 0.871757$ (see [19]).

If Player II does not fire at (a) then

$$K(\xi; \hat{\eta}) \ge P(a) + Q(a)v_{15}^a - k(\hat{\varepsilon})$$

= 1 - 2Q(a) + Q⁴(a) - k(\hat{\varepsilon}) \geq Q⁴(a) - Q²(a) - k(\hat{\varepsilon})

if $a \leq \check{a}_{14}$.

On the other hand, if Player I does not fire at (a) then

$$\begin{split} K(\hat{\xi};\eta) &\leq -P(a) + Q(a) \overset{2}{v_{24}} + k(\hat{\varepsilon}) \\ &= \begin{cases} -1 + (1 + v_{23}^{a_1}) Q^2(a) & \text{if } a_{24} \leq a \leq \check{a}_{24}, \\ -1 + 2Q(a) - 2Q^2(a) + Q^4(a) & \text{if } \check{a}_{24} \leq a \leq a_{12}, \end{cases} \end{split}$$

 $Q(\check{a}_{24}) \cong 0.933827 \text{ (see [19])}.$

In the first case we need

$$Q^4(a) - (2 + v_{23}^{a_1})Q^2(a) + 1 \ge 0$$

satisfied for $a \ge a_{25}$, by (6).

In the second case we need

$$-1+2Q(a)-2Q^{2}(a)+Q^{4}(a)\leq Q^{4}(a)-Q^{2}(a),$$

which always holds. Thus the assertion is proved.

7. Duel
$$(2,5)$$
, $(1, a \land c, a)$

STRATEGY OF PLAYER I: Escape if Player I has not fired. If he fired (say at a'), play optimally the resulting duel (2,4), $(2,a'_1,a'_1 \wedge c_1)$.

STRATEGY OF PLAYER II: Fire before $\langle a \rangle + c$ and play optimally the duel $(2,4), \langle 2, a_1, a_1 \wedge c_1 \rangle$.

We recall that $a_1 = \langle a \rangle + c \langle a_1' = \max(a', a_1)$.

The limit value of the game is

The proof is omitted.

8. Duel (2,5), $(2, a, a \land c)$

Case 1. We define ξ and η .

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the duel (2,4), $(2,a',a'\wedge c_1)$.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at $\langle a \rangle + c$ and play optimally the resulting duel. If he fired (say at a'), play optimally the duel (1,5), $\langle 1,a'_1 \wedge c_1,a'_1 \rangle$.

We now prove that

where the constant \hat{a}_{25} is determined from the equation

(9)
$$Q^4(\hat{a}_{25}) - (1 + v_{23}^{a_1})Q^2(\hat{a}_{25}) - 2Q(\hat{a}_{25}) + 2 = 0$$
, $Q(\hat{a}_{25}) \cong 0.949181$.

The proof that Player I assures in limit the value v_{25}^2 given above is the same as for the duel (2,5), (a). The same holds for Player II with the only exception when Player I fires before (a) + c (call such a strategy $\hat{\xi}$). Then

$$K(\hat{\xi};\eta) \leq P(a) + Q(a)v_{15}^a + k(\hat{\varepsilon}) = 1 - 2Q(a) + Q^4(a) + k(\hat{\varepsilon}).$$

Consider two cases:

(i)
$$1-2Q(a)+Q^4(a) \le -1+Q(a)$$
 if $a \le a_{24}$.

This inequality can be presented in the form

$$(Q^3(a) + Q^2(a) + Q(a) - 2)(Q(a) - 1) \le 0$$

and is satisfied for $a \leq a_{24}$.

(ii)
$$1-2Q(a)+Q^4(a) \le -1+(1+v_{23}^{a_1})Q^2(a)$$
 if $a_{24} \le a \le \hat{a}_{25}$.

The polynomial

$$S(Q(a)) = Q^{4}(a) - (1 + v_{23}^{a_1})Q^{2}(a) - 2Q(a) + 2$$

is a decreasing function of Q and $S(Q(\hat{a}_{25})) = 0$ (see (9)). Thus the inequality holds for $a \leq \hat{a}_{25}$.

Case 2. We define ξ and η .

STRATEGY OF PLAYER I: Fire before $\langle a \rangle + c$ and play optimally the duel (1,5), $\langle 1, a_1 \wedge c_1, a \rangle$, where $a_1 = \rangle \langle a \rangle + c \langle .$

STRATEGY OF PLAYER II: If Player I has not fired before, fire at $\langle a \rangle + c$ and play optimally the duel (2,4), $\langle 2,a_1,a_1 \wedge c_1 \rangle$ or (1,4), $\langle a_2 \rangle$, where a_2 is the point where Player I is at time $\langle a \rangle + c + \hat{\varepsilon}$.

The above strategies are optimal in limit and

(10)
$$v_{25}^a = P(a) + Q(a)v_{15}^a = P(a) + Q(a)(-1 + Q^3(a)) = 1 - 2Q(a) + Q^4(a)$$
 for $\hat{a}_{25} \le a \le \check{a}_{14}$.

Player I applying ξ assures in limit this value for the above a.

On the other hand, if Player I fires before $\langle a \rangle + c$ then

$$K(\hat{\xi}; \eta) \le P(a) + Q(a)v_{15}^{1a} + k(\hat{\varepsilon}) = v_{25}^{2a} + k(\hat{\varepsilon})$$

if v_{25}^a is given by (10).

If Player I fires at $\langle a \rangle + c$ we have

$$K(\hat{\xi};\eta) \le Q^2(a)v_{14}^a + k(\hat{\varepsilon}) = -Q^2(a) + Q^4(a) + k(\hat{\varepsilon})$$

= 1 - 2Q(a) + Q⁴(a) + k(\hat{\varepsilon})

for $a \leq a_{12}$.

Finally, if Player I does not fire before or at $\langle a \rangle + c$ we obtain

$$\begin{split} K(\hat{\xi};\eta) &\leq -P(a) + Q(a)\hat{v}_{24}^{2} + k(\hat{\varepsilon}) \\ &= \begin{cases} -1 + (1 + v_{23}^{a_1})Q^2(a) + k(\hat{\varepsilon}) & \text{if } a_{24} \leq a \leq \check{a}_{24}, \\ -1 + 2Q(a) - 2Q^2(a) + Q^4(a) + k(\hat{\varepsilon}) & \text{if } \check{a}_{24} \leq a \leq a_{12}. \end{cases} \end{split}$$

The inequality

$$-1 + 2Q(a) - 2Q^{2}(a) + Q^{4}(a) \le 1 - 2Q(a) + Q^{4}(a)$$

always holds.

Consider

$$-1+(1+v_{23}^{a_1})Q^2(a) \leq 1-2Q(a)+Q^4(a).$$

From (9) one finds that this inequality holds for $a \ge \hat{a}_{25}$, which ends the proof of the assertion.

9. Results for the duels (2,5)

$$\begin{split} v_{25}^{1a} &= \begin{cases} -1 + Q(a) & \text{if } Q(a) \geq Q(a_{24}) \cong 0.986429, \\ -1 + (1 + v_{23}^{a_1})Q^2(a) & \text{if } Q(a_{24}) \geq Q(\tilde{a}) \geq Q(\tilde{a}_{24}) \cong 0.933827, \\ -1 + 2Q(a) - 2Q^2(a) + Q^4(a) & \text{if } Q(\tilde{a}_{24}) \geq Q(a) \geq Q(a_{12}) \cong 0.853553, \\ v_{25}^{a} &= \begin{cases} -1 + Q(a) & \text{if } Q(a) \geq Q(a_{24}), \\ -1 + (1 + v_{23}^{a_1})Q^2(a) & \text{if } Q(a_{24}) \geq Q(a) \geq Q(a_{25}) \cong 0.943073, \\ -Q^2(a) + Q^4(a) & \text{if } Q(a_{25}) \geq Q(a) \geq Q(\tilde{a}_{14}) \cong 0.871757, \\ v_{25}^{a} &= \begin{cases} -1 + Q(a) & \text{if } Q(a) \geq Q(a_{24}), \\ -1 + (1 + v_{23}^{a_1})Q^2(a) & \text{if } Q(a_{24}) \geq Q(\tilde{a}) \geq Q(\tilde{a}_{25}) \cong 0.949181, \\ 1 - 2Q(a) + Q^4(a) & \text{if } Q(\tilde{a}_{25}) \geq Q(a) \geq Q(\tilde{a}_{14}). \end{cases} \end{split}$$

10. Duel
$$(3,5)$$
, $\langle a \rangle$

Case 1. Let a_{mn}^{ε} denote a random moment, $\langle a_{mn} \rangle \leq a_{mn}^{\varepsilon} \leq \langle a_{mn} \rangle + \alpha(\varepsilon)$, with an absolutely continuous distribution in the above interval, where $\alpha(\varepsilon) \to 0$ as $\varepsilon \to 0$. We define the strategies ξ and η of Players I and II.

STRATEGY OF PLAYER I: Reach the point a_{24} and if Player II has not fired before, fire a shot at a_{24}^{ε} and play optimally the duel (2,5), $\langle 1, \rangle a_{24}^{\varepsilon} \langle \wedge c, \rangle a_{24}^{\varepsilon} \langle \rangle$. If Player II fired (say at a'), play optimally the duel (3,4), $\langle 2,a',a' \wedge c \rangle$.

STRATEGY OF PLAYER II: If Player I has not fired before, fire a shot at $\langle a_{35} \rangle$ and play optimally the resulting duel (3,4). If he fired (say at a'), play optimally the duel (2,5), $\langle 1, a' \wedge c, a' \rangle$. If Player I has not reached the point a_{35} , do not fire.

We have $Q(a_{24}) \cong 0.986429$ (see [19]). The number a_{35} is determined from the equations

$$v_{35}^a = P(a_{24}) + Q(a_{24})v_{25}^{1} = -P(a_{35}) + Q(a_{35})v_{34}^{2} \stackrel{\text{df}}{=} v_{35}^{a_1}.$$

Since

$$P(a_{24}) + Q(a_{24})v_{25}^{a_{24}} = P^2(a_{24}),$$

 $v_{34}^{a_{35}} = v_{34}^{a_1} \cong 0.020530 \text{ for } a_{35} < a_{34},$

we have

(11)
$$Q(a_{35}) = \frac{1 + P^2(a_{24})}{1 + v_{24}^{a_1}} \cong 0.980064$$

and $Q(a_{35}) > Q(a_{34}) = 0.903576$, as was assumed. Moreover,

(12)
$$v_{35}^a = P^2(a_{24}) = 0.000184$$
.

To prove that the strategies ξ and η are optimal in limit and v_{35}^a is given by (12) for $a < a_{24}$, assume that Player II fires at $a' < a_{24}$ and then plays according to $\hat{\eta}_0$. Denote this strategy by $(a', \hat{\eta}_0)$; then

$$K(\xi; a', \hat{\eta}_0) \ge -P(a') + Q(a')v_{34}^{a_1} - k(\hat{\varepsilon}) \ge -P(a_{24}) + Q(a_{24})v_{34}^{a_1} - k(\hat{\varepsilon})$$

$$\ge -P(a_{35}) + Q(a_{35})v_{34}^{a_1} - k(\hat{\varepsilon}) = v_{35}^{a_1} - k(\hat{\varepsilon}).$$

If Player II does not fire before $(a_{24}) + \alpha(\varepsilon)$ we obtain

$$K(\xi; \hat{\eta}) \ge P(a_{24}) + Q(a_{24}) v_{25}^{1} - k(\hat{\varepsilon}) = v_{35}^{a_1} - k(\hat{\varepsilon}).$$

Then

$$K(\xi; \hat{\eta}) \ge v_{35}^{a_1} - k(\hat{\varepsilon})$$
 for any $\hat{\eta}$

if the function $k(\hat{\varepsilon})$ is chosen properly.

On the other hand, if $a' < a_{35}$ then

$$K(a', \hat{\xi}_0; \eta) \leq P(a') + Q(a') \frac{1}{25} \frac{1}{25} + k(\hat{\varepsilon})$$

$$= \begin{cases} 1 - 2Q(a') + Q^2(a') + k(\hat{\varepsilon}) & \text{if } a' \leq a_{24}, \\ 1 - 2Q(a') + (1 + v_{23}^{a_1})Q^3(a') + k(\hat{\varepsilon}) & \text{if } a_{24} \leq a' \leq a_{35}. \end{cases}$$

The first function is increasing and the second is decreasing in a'. Therefore

$$K(a', \hat{\xi}_0; \eta) \le 1 - 2Q(a_{24}) + Q^2(a_{24}) + k(\hat{\varepsilon}) = v_{35}^{a_1} + k(\hat{\varepsilon}).$$

If Player I fires at (a_{35}) then

$$\begin{split} K(\hat{\xi};\eta) &\leq Q^2(a_{35})v_{24}^{a_{35}} + k(\hat{\varepsilon}) \\ &= Q^2(a_{35})(-1 + (1 + v_{23}^{a_1})Q(a_{35})) + k(\hat{\varepsilon}) < k(\hat{\varepsilon}) < v_{35}^{a_1} + k(\hat{\varepsilon}) \,. \end{split}$$

If Player I does not fire before or at (a_{35}) but reaches the point a_{35} then

$$K(\hat{\xi};\eta) \leq -P(a_{35}) + Q(a_{35})v_{34}^{a_1} + k(\hat{\varepsilon}) = v_{35}^{a_1} + k(\hat{\varepsilon}).$$

If Player I neither fires nor reaches a_{35} then

$$K(\hat{\xi};\eta) = 0 < v_{35}^{a_1}$$
.

Thus the strategies ξ and η are optimal in limit and $v_{35}^{a_1}$ is the limit value of the game.

Case 2. We define ξ and η .

STRATEGY OF PLAYER I: If Player II has not fired before, escape, fire at a_{24}^{ε} and play optimally the resulting duel (2,5), $\langle 1, \rangle a_{24}^{\varepsilon} \langle \wedge c, \rangle a_{24}^{\varepsilon} \langle \rangle$. If he fired (say at a'), play optimally the duel (3,4), $\langle 2,a',a'\wedge c \rangle$.

STRATEGY OF PLAYER II: If Player I has not fired before and reached the point a_{35} , fire at $\langle a_{35} \rangle$ and play optimally the resulting duel (3,4). If he fired (say at a'), play optimally the duel (2,5), $\langle 1,a' \wedge c,a' \rangle$. If Player I has not reached a_{35} , do not fire.

Now also

$$v_{35}^a = P^2(a_{24}) = v_{35}^{a_1}.$$

We prove that the above strategies are optimal in limit for $a_{24} \le a \le a_{35}$. Suppose that Player II fires at a', $\langle \langle a_{24} \rangle + \alpha(\varepsilon) \rangle \le a' < a \le a_{35}$. We have

$$K(\xi; a', \hat{\eta}_0) \ge -P(a') + Q(a')v_{34}^{a_1} - k(\hat{\varepsilon})$$

$$\ge -P(a) + Q(a)v_{34}^{a_1} - k(\hat{\varepsilon}) \ge P^2(a_{24}) - k(\hat{\varepsilon})$$

provided

$$Q(a) \ge \frac{1 + P^2(a_{24})}{1 + v_{34}^{a_1}} = Q(a_{35}),$$

which is satisfied.

If Player II intends to fire at $a' > a_{24}$ or does not fire at all we obtain

$$\begin{split} K(\xi; \hat{\eta}) &\geq P(a_{24}) + Q(a_{24}) v_{25}^{1} - k(\hat{\varepsilon}) \\ &= 1 - Q(a_{24}) + Q(a_{24}) (-1 + (1 + v_{23}^{a_1}) Q^2(a_{24})) - k(\hat{\varepsilon}) \\ &= 1 - 2Q(a_{24}) + (1 + v_{23}^{a_1}) Q^3(a_{24}) - k(\hat{\varepsilon}) = v_{35}^{a_5} - k(\hat{\varepsilon}) \end{split}$$

by the equations obtained in the proof of the previous case.

If Player I fires at $a' < a_{35}$ then

$$\begin{split} K(a',\hat{\xi}_0;\eta) &\leq P(a') + Q(a') \frac{1}{v_{25}^{a'}} + k(\hat{\varepsilon}) \\ &= \begin{cases} 1 - 2Q(a') + Q^2(a') + k(\hat{\varepsilon}) & \text{if } a' \leq a_{24}, \\ 1 - 2Q(a') + (1 + v_{23}^{a_1})Q^3(a') + k(\hat{\varepsilon}) & \text{if } a_{24} \leq a \leq a_{35}. \end{cases} \end{split}$$

Both functions are not greater than $P^2(a_{24}) + k(\hat{\varepsilon})$.

If Player I did not fire before or at (a35) but did reach this point we have

$$K(\hat{\xi};\eta) \le -P(a_{35}) + Q(a_{35})v_{34}^{a_1} + k(\hat{\varepsilon}) = P^2(a_{24}) + k(\hat{\varepsilon}).$$

If Player I fires at $\langle a_{35} \rangle$ then

$$K(\hat{\xi}; \eta) \le Q^2(a_{35})v_{24}^{a_{35}} + k(\hat{\varepsilon}) < k(\hat{\varepsilon}) < P^2(a_{24}) + k(\hat{\varepsilon}),$$

as shown in the previous case.

If Player I neither reaches a35 nor fires then

$$K(\hat{\xi};\eta) = 0 < P^2(a_{24})$$
.

Thus this case is also solved.

Case 3. We define ξ and η .

STRATEGY OF PLAYER I: If Player II has not fired before, escape, fire at a_{24}^{ε} and play optimally the duel (2,5), $\langle 1, \rangle a_{24}^{\varepsilon} \langle \wedge c, \rangle a_{24}^{\varepsilon} \langle \rangle$. If he fired (say at a'), play optimally the duel (3,4).

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ and play optimally the duel (3,4) or $(2,4), \langle a_1 \rangle$.

Let \hat{a}_{35} be the number satisfying the equation

(13)
$$(1+v_{23}^{a_1})Q^3(\hat{a}_{35}) - Q^2(\hat{a}_{35}) - (1+v_{34}^{a_1})Q(\hat{a}_{35}) + 1 = 0,$$

$$Q(\hat{a}_{35}) \cong 0.935980.$$

We now prove that the value of the game is

$$v_{35}^a = -P(a) + Q(a)v_{34}^{a_1}$$

if $a_{35} \le a \le \hat{a}_{35}$.

To prove this assume that Player II fires at a', $\langle a_{24} \rangle + \alpha(\varepsilon) \langle a' \leq a \leq a_{35}$. Then

$$K(\xi; a', \hat{\eta}_0) \ge -P(a') + Q(a')v_{34}^{a_1} - k(\hat{\varepsilon}) \ge -P(a) + Q(a)v_{34}^{a_1} - k(\hat{\varepsilon}).$$

If Player I intends to fire at $a' > a_{24}$ or not to fire at all then

$$K(\xi; \hat{\eta}) \ge P(a_{24}) + Q(a_{24}) v_{25}^{a_{24}} - k(\hat{\varepsilon})$$

= $P^2(a_{24}) - k(\hat{\varepsilon}) \ge -1 + (1 + v_{34}^{a_1})Q(a) - k(\hat{\varepsilon})$

provided

$$Q(a) \le \frac{1 + P^2(a_{24})}{1 + v_{34}^{a_1}} = Q(a_{35}),$$

which is satisfied.

On the other hand, if Player I also fires at (a) then

$$K(\hat{\xi};\eta) \le Q^{2}(a)v_{24}^{a} + k(\hat{\varepsilon})$$

$$= -Q^{2}(a) + (1 + v_{23}^{a_{1}})Q^{3}(a) + k(\hat{\varepsilon}) \le -1 + (1 + v_{34}^{a_{1}})Q(a) + k(\hat{\varepsilon})$$

provided

$$(1+v_{23}^{a_1})Q^3(a)-Q^2(a)-(1+v_{34}^{a_1})Q(a)+1\leq 0.$$

Since the function on the left hand side is increasing for $a_{35} \le a \le \hat{a}_{35}$ and the number \hat{a}_{35} is its root, the inequality holds for $a_{35} \le a \le \hat{a}_{35}$. This ends the proof of the assertion.

Case 4. We define ξ and η .

STRATEGY OF PLAYER I: Fire at (a) and play optimally afterwards.

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ and play optimally afterwards.

Now

$$(15) v_{35}^a = Q^2(a)v_{24}^a = \begin{cases} -Q^2(a) + (1 + v_{23}^{a_1})Q^3(a) & \text{if } \hat{a}_{35} \le a \le \hat{a}_{24}, \\ -Q^4(a) + Q^5(a) & \text{if } \hat{a}_{24} \le a \le a_{34}, \end{cases}$$

 $Q(\hat{a}_{24}) \cong 0.918836, Q(a_{34}) = 0.903576 \text{ (see [19])}.$

When Player II does not fire at $\langle a \rangle$ we have

$$K(\xi; \hat{\eta}) \ge P(a) + Q(a)v_{24}^{a} - k(\hat{\varepsilon})$$

$$= \begin{cases} 1 - 2Q(a) + (1 + v_{23}^{a_1})Q^3(a) - k(\hat{\varepsilon}) & \text{if } a_{24} \le a \le \check{a}_{24}, \\ 1 - 2Q(a) + 2Q^2(a) - 2Q^3(a) + Q^5(a) - k(\hat{\varepsilon}) & \text{if } \check{a}_{24} \le a \le a_{12}, \end{cases}$$

 $Q(a_{24}) \cong 0.986429, Q(\check{a}_{24}) \cong 0.933827, Q(a_{12}) \cong 0.853553.$

When $\hat{a}_{35} \leq a \leq \check{a}_{24}$ we need

$$1 - 2Q(a) + (1 + v_{23}^{a_1})Q^3(a) \ge -Q^2(a) + (1 + v_{23}^{a_1})Q^3(a),$$

which always holds.

When $\check{a}_{24} \leq a \leq \hat{a}_{24}$ we need

$$1 - 2Q(a) + 2Q^{2}(a) - 2Q^{3}(a) + Q^{5}(a) \ge -Q^{2}(a) + (1 + v_{23}^{a_1})Q^{3}(a)$$

10

$$S(Q(a)) = Q^5(a) - (3 + v_{23}^{a_1})Q^3(a) + 3Q^2(a) - 2Q(a) + 1 \ge 0.$$

The function S is decreasing in Q for $Q(\check{a}_{24}) \ge Q \ge Q(\hat{a}_{24})$ and $S(Q(\check{a}_{34})) = 0.004379 > 0$. Thus the inequality holds for $\check{a}_{24} \le a \le \hat{a}_{24}$.

Finally, when $\hat{a}_{24} \leq a < a_{34}$ we need

$$1 - 2Q(a) + 2Q^{2}(a) - 2Q^{3}(a) + Q^{5}(a) \ge -Q^{4}(a) + Q^{5}(a),$$

which is satisfied for any a.

Therefore Player I applying ξ assures in limit the value v_{35}^a given in (15).

To prove that so does Player II applying η , assume that Player I does not fire at $\langle a \rangle$. In this case

$$K(\hat{\xi};\eta) \le -P(a) + Q(a)v_{34}^2 + k(\hat{\varepsilon})$$

for $a \le a_{34}$. Then if $\hat{a}_{35} \le a \le \hat{a}_{24}$ we need

$$-1 + (1 + v_{34}^{a_1})Q(a) \le -Q^2(a) + (1 + v_{23}^{a_1})Q^3(a),$$

which is satisfied for $a \ge \hat{a}_{35}$ by (13).

If $\hat{a}_{24} \leq a \leq a_{34}$ we need

$$S(Q(a)) = Q^{5}(a) - Q^{4}(a) + (1 + v_{34}^{a_1})Q(a) + 1 \ge 0.$$

S is decreasing in Q and $S(Q(\hat{a}_{24})) = 0.004449 > 0$. Thus the inequality holds.

This ends the analysis of Case 4.

11. Duel (3,5), $(1, a \land c, a)$

Case 1: $a \leq a_{24}$.

Case 2: $a_{24} \le a \le a_{35}$.

For these two cases the strategies optimal in limit are the same as for the duel (3,5), (a) (and the limit values of the game are the same).

Case 3: $a_{35} \le a \le a_{34}$. In this case the strategies optimal in limit are the same as for the duel (3,5), $\langle a \rangle$ but the set of values of a for which these strategies are optimal in limit is different: there we have $a_{35} \le a \le \hat{a}_{35}$, and here $a_{35} \le a \le a_{34}$.

12. Duel (3,5), $(2, a, a \land c)$

Case 1: $a \leq a_{24}$.

Case 2: $a_{24} \le a \le a_{35}$.

Also here the strategies optimal in limit are the same as for the duel (3,5), (a) (and the limit values of the game are the same).

Case 3. We define ξ and η .

STRATEGY OF PLAYER I: If Player I has not fired before, escape, fire at a_{24}^{ε} and play optimally the duel (2,5), $\langle 1, \rangle a_{24}^{\varepsilon} \langle \wedge c, \rangle a_{24}^{\varepsilon} \langle \rangle$. If he fired (say at a'), play optimally the duel (3,4).

STRATEGY OF PLAYER II: If Player I has not fired before, fire at $\langle a \rangle + c$ and play the duel (3,4) or the duel (2,4), $\langle a_1 \rangle$, where $a_1 = \rangle \langle a \rangle + \hat{\varepsilon} \langle$. If he has fired, play optimally the duel (2,5), $\langle 1, a_1 \wedge c_1, a_1 \rangle$.

Moreover,

for $a_{35} \le a \le \check{a}_{35}$, where the number \check{a}_{35} satisfies the equation

(17)
$$(1+v_{23}^{a_1})Q^3(\check{a}_{35})-(3+v_{34}^{a_1})Q(\check{a}_{35})+2=0, \quad Q(\check{a}_{35})\cong 0.948807.$$

It is easy to see, comparing with the duel (3,5), (a), that Player I always assures in limit the value $\overset{2}{v_{35}}$ given by (16) if $a_{35} \le a \le \check{a}_{35}$.

On the other hand, comparing with the same duel, we find that Player II assures in limit the value \hat{v}_{35}^a for $a_{35} \leq a \leq \hat{a}_{35}$ if Player I fires at $\langle a \rangle + c$ or later or does not fire. Therefore assume that Player I fires before $\langle a \rangle + c$ (call this strategy $(a', \hat{\xi}_0)$). Then

$$K(a', \hat{\xi}_0; \eta) \le P(a) + Q(a) v_{25}^{1a} + k(\hat{\varepsilon})$$

= 1 - 2Q(a) + (1 + $v_{23}^{a_1}$)Q³(a) + $k(\hat{\varepsilon})$

if $a_{24} \leq a \leq \check{a}_{24}$, $Q(a_{24}) \cong 0.986429$, $Q(\check{a}_{24}) \cong 0.933827$.

Comparing with (16) shows that we need the inequality

$$S(Q(a)) = (1 + v_{23}^{a_1})Q^3(a) - (3 + v_{34}^{a_1})Q(a) + 2 \le 0.$$

The above function is increasing in a in the interval $a_{35} \leq a \leq \check{a}_{35}$ and $S(Q(\check{a}_{35})) = 0$. Thus the inequality holds.

Case 4. We define ξ and η .

STRATEGY OF PLAYER I: Fire before $\langle a \rangle + c$ and play optimally the resulting duel (2,5), $\langle 1, a_1 \wedge c_1, a_1 \rangle$, where $a_1 = \rangle \langle a \rangle + c \langle$.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at $\langle a \rangle + c$ and play optimally the obtained duel. If he has fired, play optimally the duel (2,5), $\langle 1,a_1 \wedge c_1,a_1 \rangle$.

Now

$$\begin{split} & \overset{2}{v}_{35}^{a} = P(a) + Q(a)\overset{1}{v}_{25}^{a} \\ & = \begin{cases} 1 - 2Q(a) + (1 + v_{23}^{a_1})Q^3(a) & \text{if } \check{a}_{35} \leq a \leq \check{a}_{24}, \\ 1 - 2Q(a) + 2Q^2(a) - 2Q^3(a) + Q^5(a) & \text{if } \check{a}_{24} \leq a \leq a_{34}. \end{cases} \end{split}$$

It is easy to see that Player I always assures in limit the above values.

Suppose then that Player I fires before $\langle a \rangle + c$. We have

$$K(\hat{\xi};\eta) \leq P(a) + Q(a)v_{25}^{1a} + k(\hat{\varepsilon}) = v_{35}^{2a} + k(\hat{\varepsilon}),$$

as desired.

If Player I fires at $\langle a \rangle + c$ we obtain

$$K(\hat{\xi};\eta) \le Q^2(a)v_{24}^a + k(\hat{\varepsilon})$$

$$= \begin{cases} -Q^2(a) + (1+v_{23}^{a_1})Q^3(a) + k(\hat{\varepsilon}) \\ & \text{if } a_{24} \le a \le \hat{a}_{24}, \ Q(\hat{a}_{24}) \cong 0.918836, \\ -Q^4(a) + Q^5(a) + k(\hat{\varepsilon}) & \text{if } \hat{a}_{24} \le a \le a_{12}, \ Q(a_{12}) \cong 0.853553. \end{cases}$$

Then for $\check{a}_{35} \leq a \leq \check{a}_{24}$ we need

$$-Q^{2}(a)+(1+v_{23}^{a_{1}})Q^{3}(a)\leq 1-2Q(a)+(1+v_{23}^{a_{1}})Q^{3}(a),$$

which always holds.

For $\check{a}_{24} \leq a \leq \hat{a}_{24}$ we need

$$-Q^2(a) + (1 + v_{23}^{a_1})Q^3(a) \le 1 - 2Q(a) + 2Q^2(a) - 2Q^3(a) + Q^5(a),$$

i.e.

$$S(Q(a)) = Q^{5}(a) - (3 + v_{23}^{a_1})Q^{3}(a) + 3Q^{2}(a) - 2Q(a) + 1 \ge 0,$$

which is the same as in the duel (3,5), (a), Case 4.

For $\hat{a}_{24} \leq a \leq a_{12}$ we need

$$1 - 2Q(a) + 2Q^{2}(a) - 2Q^{3}(a) + Q^{5}(a) \ge -Q^{4}(a) + Q^{5}(a),$$

which always holds.

Suppose then, finally, that Player I fires neither before nor at $\langle a \rangle + c$. In this case we have

$$K(\hat{\xi};\eta) \le P(a) + Q(a)v_{34}^{a_1} + k(\hat{\varepsilon})$$

for $a \le a_{34}$, $Q(a_{34}) \cong 0.903576$. Then for $\check{a}_{35} \le a \le \check{a}_{24}$ we obtain

$$-1+(1+v_{34}^{a_1})Q(a)\leq 1-2Q(a)+(1+v_{23}^{a_1})Q^3(a).$$

This inequality is opposite to that at the end of Case 3 and the function S(Q(a)) defined there is monotonic for $a_{35} \le a \le \check{a}_{24}$. Thus the inequality holds.

If $\check{a}_{24} \leq a \leq a_{34}$ we need

$$-1 + (1 + v_{34}^{a_1})Q(a) \le 1 - 2Q(a) + 2Q^2(a) - 2Q^3(a) + Q^5(a)$$

or

$$S(Q(a)) = Q^{5}(a) - 2Q^{3}(a) + 2Q^{2}(a) - (3 + v_{34}^{a_1})Q(a) + 2 \ge 0.$$

This function is increasing (in a) in the given interval and $S(Q(\check{a}_{24})) = -0.7152 < 0$. Thus the inequality holds also in this case.

13. Results for the duels (3,5)

$$\begin{split} \frac{1}{v_{35}^a} &= \begin{cases} P^2(a_{24}) & \text{if } Q(a) \geq Q(a_{35}) \cong 0.980064, \\ -1 + (1 + v_{34}^{a_1})Q(a) & \text{if } Q(a_{35}) \geq Q(a) \geq Q(a_{34}) \cong 0.903576, \end{cases} \\ v_{35}^a &= \begin{cases} P^2(a_{24}) \cong 0.000184 & \text{if } Q(a) \geq Q(a_{35}), \\ -1 + (1 + v_{34}^{a_1})Q(a) & \text{if } Q(a_{35}) \geq Q(a) \geq Q(\hat{a}_{35}) \cong 0.935980, \\ -Q^2(a) + (1 + v_{23}^{a_1})Q^3(a) & \text{if } Q(\hat{a}_{35}) \geq Q(a) \geq Q(\hat{a}_{24}) \cong 0.918836, \\ -Q^4(a) + Q^5(a) & \text{if } Q(\hat{a}_{24}) \geq Q(a) \geq Q(a_{34}), \end{cases} \\ \frac{P^2(a_{24})}{(1 + v_{34}^{a_1})Q(a)} & \text{if } Q(a) \geq Q(a_{35}), \\ -1 + (1 + v_{34}^{a_1})Q(a) & \text{if } Q(a_{35}) \geq Q(a) \geq Q(\hat{a}_{35}) \cong 0.948807, \\ 1 - 2Q(a) + (1 + v_{23}^{a_1})Q^3(a) & \text{if } Q(\hat{a}_{35}) \geq Q(a) \geq Q(\hat{a}_{24}) \cong 0.933827, \\ 1 - 2Q(a) + 2Q^2(a) - 2Q^3(a) + Q^5(a) & \text{if } Q(\hat{a}_{24}) \geq Q(a_{34}). \end{cases} \end{split}$$

14. Duel (4,5). Consider the duel (4,5), (a). We define ξ and η .

STRATEGY OF PLAYER I: If Player II has not fired before, reach the point a_{45} , fire at a_{45}^{ϵ} and play optimally the duel (3,5), $\langle 1, \rangle a_{45}^{\epsilon} \langle \Lambda c, \rangle a_{45}^{\epsilon} \langle \rangle$. If he has fired, play optimally the duel (4,4).

STRATEGY OF PLAYER II: If Player I has not fired before, fire at $\langle a_{45} \rangle$ and play optimally the duel (4,4) or (3,4). If he fired (say at a'), play optimally the duel (3,5), $(1,a' \land c,a')$. If Player I has not reached the point a45, do not fire.

Assume that the numbers v_{45}^a and a_{45} are related as follows:

$$(18) v_{45}^a = P(a_{45}) + Q(a_{45}) v_{35}^{1} = -P(a_{45}) + Q(a_{45}) v_{44} \stackrel{\text{df}}{=} v_{45}^{a_1}.$$
 If $0.980064 \ge Q(a_{45}) \ge 0.903576$ we obtain
$$P(a_{45}) + Q(a_{45}) v_{35}^{1} = 1 - 2Q(a_{45}) + (1 + v_{34}^{a_1})Q^2(a_{45}),$$
 which leads to the equation

$$P(a_{45}) + Q(a_{45})v_{35}^{1a_{45}} = 1 - 2Q(a_{45}) + (1 + v_{34}^{a_1})Q^2(a_{45}),$$

which leads to the equation

(19)
$$(1+v_{34}^{a_1})Q^2(a_{45})-(3+v_{44})Q(a_{45})+2=0, \quad Q(a_{45})\cong 0.919295.$$

We prove that for $a \le a_{45}$, a_{45} being the root of equation (19), the strategies ξ and η are optimal in limit and

(20)
$$v_{45}^{a_1} = -1 + (1 + v_{44})Q(a_{45}) \cong 0.023863$$

is the limit value of the game.

Suppose that Player II fires at $a' < a_{45}$. We have

$$\begin{split} K(\xi; a', \hat{\eta}_0) &\geq -P(a') + Q(a')v_{44} - k(\hat{\varepsilon}) \\ &\geq -P(a_{45}) + Q(a_{45})v_{44} - k(\hat{\varepsilon}) = v_{45}^{a_1} - k(\hat{\varepsilon}) \,. \end{split}$$

Suppose that Player II fires after $\langle a_{45} \rangle + \alpha(\varepsilon)$ or does not fire at all. Then

$$K(\xi; \hat{\eta}) \ge P(a_{45}) + Q(a_{45}) v_{35}^{1} - k(\hat{\varepsilon}) = v_{45}^{a_1} - k(\hat{\varepsilon}).$$

On the other hand, if Player I fires before he reaches a_{45} , $a' < a_{45}$, then

$$K(a', \hat{\xi}_0; \eta) \leq P(a') + Q(a') v_{35}^{a'} + k(\hat{\varepsilon})$$

$$= \begin{cases} 1 - (1 - P^2(a_{24}))Q(a') + k(\hat{\varepsilon}) & \text{if } a' \leq a_{35}, \\ 1 - 2Q(a') + (1 + v_{34}^{a_1})Q^2(a') + k(\hat{\varepsilon}) & \text{if } a_{35} \leq a' \leq a_{34} \end{cases}$$

(see Section 13).

The first function on the right hand side is increasing in a'. The second has its minimum at

$$Q(a') = \frac{1}{1 + v_{34}^{a_1}} \cong 0.979883.$$

Moreover,

$$1 - (1 - P^{2}(a_{24}))Q(a_{35}) \cong 0.020117 < v_{45}^{a_{1}},$$

$$1 - 2Q(a_{45}) + (1 + v_{34}^{a_{1}})Q^{2}(a_{45}) \cong -1 + (1 + v_{44})Q(a_{45}) = v_{45}^{a_{1}}$$

by (19) and (20). Thus

$$K(a', \hat{\xi}_0; \eta) \leq v_{45}^{a_1} + k(\hat{\varepsilon})$$
.

The rest of the proof is simple. If Player I does not fire before or at $\langle a_{45} \rangle$ then

$$K(\hat{\xi};\eta) \le -P(a_{45}) + Q(a_{45})v_{44} + k(\hat{\varepsilon}) = v_{45}^{a_1} + k(\hat{\varepsilon}).$$

If Player I fires at $\langle a_{45} \rangle$ then

$$K(\hat{\xi};\eta) \le Q^2(a_{45})v_{34}^{a_1} + k(\hat{\varepsilon}) \cong 0.017350 + k(\hat{\varepsilon}) < v_{45}^{a_1} + k(\hat{\varepsilon}).$$

If Player I neither reaches a45 nor fires then

$$K(\hat{\xi};\eta) = 0 < v_{45}^{a_1}$$
.

Finally, notice that if $a \le a_{45}$ then the same strategies are optimal in limit in the duels (4,5), $(1,a \land c,a)$ and (4,5), $(2,a,a \land c)$ as well.

15. Duel (5,5). We define ξ and η .

STRATEGY OF PLAYER I: If Player I has not fired before, reach the point a_{55} , fire at a_{55}^{ε} and play optimally the duel (4,5). If he has fired, play optimally the duel (5,4).

STRATEGY OF PLAYER II: If Player I has not fired before, fire at (a_{55}) and play optimally the duel (5,4) or (4,4). If he has fired, play optimally the obtained duel (4,5). If he has not reached the point a_{55} , do not fire.

The number a₅₅ is determined from the equations

$$v_{55} = P(a_{55}) + Q(a_{55})v_{45}^{1} = -P(a_{55}) + Q(a_{55})v_{54}$$
.

Since $v_{54} \cong 0.194191$ (see [21]) we obtain

(21)
$$Q(a_{55}) = \frac{2}{2 + v_{54} - v_{45}^{a_1}} \cong 0.921520,$$

which gives

$$(22) v_{55} = -1 + (1 + v_{54})Q(a_{55}) \cong 0.100470.$$

The proof that the strategies ξ and η are optimal in limit for $a \leq a_{55}$ is omitted.

This ends the analysis of the duel (m,5), $m \leq 5$.

The duels (m, 5), $5 < m \le 25$ (and some others) are solved by the author in [21].

Noisy duels with retreat after the shots are considered by the author in [14]-[16].

For other noisy duels see [4], [8], [12], [24].

References

- A. Cegielski, Tactical problems involving uncertain actions, J. Optim. Theory Appl. 49 (1986), 81-105.
- [2] —, Game of timing with uncertain number of shots, Math. Japon. 31 (1986), 503-532.
- [3] M. Fox and G. Kimeldorf, Noisy duels, SIAM J. Appl. Math. 17 (1969), 353-361.
- [4] S. Karlin, Mathematical Methods and Theory in Games, Programming, and Economics, Vol. 2, Addison-Wesley, Reading, Mass., 1959.
- [5] G. Kimeldorf, Duels: an overview, in: Mathematics of Conflict, North-Holland, 1983, 55-71.
- [6] K. Orlowski and T. Radzik, Non-discrete silent duels with complete counteraction, Optimization 16 (1985), 257-263.
- [7] -, -, Discrete silent duels with complete counteraction, ibid., 419-429.
- [8] L. N. Positel'skaya, Non-discrete noisy duels, Tekhn. Kibernetika 1984 (2), 40-44 (in Russian).
- [9] T. Radzik, Games of timing with resources of mixed type, J. Optim. Theory Appl., to appear.
- [10] R. Restrepo, Tactical problems involving several actions, in: Contributions to the Theory of Games, Vol. III, Ann. of Math. Stud. 39, 1957, 313-335.
- [11] A. Styszyński, An n-silent-vs.-noisy duel with arbitrary accuracy functions, Zastos. Mat. 14 (1974), 205-225.

- [12] Y. Teraoka, Noisy duels with uncertain existence of the shot, Internat. J. Game Theory 5 (1976), 239-250.
- [13] —, A single bullet duel with uncertain information available to the duelists, Bull. Math. Statist. 18 (1979), 69-83.
- [14]-[16] S. Trybuła, A noisy duel with retreat after the shots. I-III, Systems Science, to appear.
- [17]-[21] —, A noisy duel under arbitrary moving. I-III, V, VI, Zastos. Mat. 20 (1990), 491-495, 497-516, 517-530; this fasc., 63-81, 83-98.
 - [22] N. N. Vorob'ev, Foundations of the Theory of Games. Uncoalition Games, Nauka, Moscow 1984 (in Russian).
 - [23] E. B. Yanovskaya, Duel-type games with continuous firing, Engrg. Cybernetics 1969 (1), 15-18.
 - [24] V. G. Zhadan, Noisy duels with arbitrary accuracy functions, Issled. Operatsif 1976 (5), 156-177 (in Russian).

STANISŁAW TRYBUŁA
INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCŁAW
WYBRZEŻE WYSPIAŃSKIEGO 27
50-370 WROCŁAW, POLAND

Received on 30.12.1988