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A NOISY DUEL UNDER ARBITRARY MOVING. IV

1. Introduction. In the papers [17]-[21] of the author and in this
paper an m-versus-n-bullets noisy duel is considered in which duelists can
move at will. The cases m < 25, n < 6, and n = 1 for any m are solved.
Also an idea is given how to determine the optimal (in limit) strategies for
any (m,n) using the computer.

In this paper we solve the cases n =5, m < n.

Let us define a game which will be called the game (m,n). Two Players
I and II fight a duel. They can move as they want. The maximal speed of
Player I is v;, the maximal speed of Player II is v; and it is assumed that
vy > v > 0. Player I has m bullets (or rockets), Player II has n bullets
(rockets).

Assume that at time ¢ = 0 the players are at distance 1 from each other
and that v; + v, = 1.

Denote by P(s) the probability (the same for both players) that a player
succeeds (destroys his opponent) if he fires at distance 1 — s. We assume
that P(s) is increasing and continuous in [0,1], has a continuous second
derivative in (0, 1), P(s) = 0 for s <0,and P(1) = 1.

Player I gains 1 if only he succeeds, gains —1 if only Player II succeeds,
and gains 0 in the remaining cases. It is assumed that the duel is a zero-sum
game.

The duel is noisy—the player hears the shot of his opponent.

Without loss of generality we can assume that Player II is motionless.
Then v; = 1, v, = 0.

We suppose that between successive shots of the same player there has
to pass a time £. We also assume that the reader knows the papers [17]-[19)
and remembers the definitions, notations and assumptions given there.
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For definitions and notations in the theory of games of timing see [5],
[22]. For results see [1]-[3], [6], [7], [10], [11], [13], [23].

2. Duel (1,5), (a). In this section we solve the duel in which Player
I has one bullet, Player II has five bullets and the game begins when the
players are at distance a from each other.

We define the strategies £ and 7 of Players I and II. We prove that for
some a these strategies are optimal in limit (i.e. optimal as £ — 0, see [18]
for the precise definition).

STRATEGY OF PLAYER I: Escape if Player II has not fired a shot yet. If
he fired (say at a'), play optimally the resulting duel (1,4), (2,a’,a’ A ).

STRATEGY OF PLAYER II: Fire at (a) (at the beginning of the duel) and
if Player I did not fire at that moment, play optimally the resulting duel
(1,4), (2,a,a A c).

The duels (m,n), (1,aA ¢,a) and (m,n), (2,a,a A c) are defined in [18],
Section 5.

(@) denotes the earliest moment when Player I reaches the point a.

“Play optimally” means: apply a strategy optimal in limit.

We prove that if @ < a;5, where a;5 is the root of the equation
(1) Q%(a15) + Q*(a15) + Q*(a15) — Q(a1s)— 1 =10
with Q(a15) = 0.889891, Q(s) = 1 — P(s), then the strategies £ and 7 are
optimal in limit and the limit value of the game (1,5), {a) is
(2) vfs = —1+Q%(a).

Suppose then that Player II fires at @’ < a and later applies a strategy
fjo. For this strategy (call it (a’,7jp); fjo may depend on a') we have

K(&; d', i) > —P(a') + Q(a')b5; — k(¢),

where frf.‘ denotes the limit value of the game (1,4), (2,a,aAc)and k(€) — 0

as £ — 0. Taking into account that %{‘4 = -1+ Q?(a) for a < a2, Q(a12)
0.853553 we obtain

K(&ad',i0) 2 —1+ Q%(a) — k(&) 2 -1+ Q*(a) - k(&) .

Suppose then that Player II playing against £ does not fire; call this
strategy 7. Then

K(&4) =02 -1+Q%a).
On the other hand, assume that Player I does not fire at (a); if we call
this strategy £ then

K(§;m) < —P(a) + Q(G)‘E’ﬁ + k(&) = =14+ Q%*a) + k(é) fora < ay,.
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If Player I also fires at (a) we have

K(&n) < -Q*(a)(1 - Q*(a)) + k(&) < -1+ Q*(a) + k(¢)
provided
Q%(a) - @%(a) - Q*(a) +1 <0.

In the above bound on K (f, 1) we suppose that if both players have fired
shots and survive then Player II fires all the remaining bullets immediately
after those shots since otherwise Player I can escape.

Dividing the obtained polynomial by Q(a) — 1 shows that we need the
inequality

Q*(a) +Q*(a) + Q*(a) - Q(a) -1 20,

which is satisfied for a < a;5. This ends the proof of the assertion.

3. Duel (1,5), (1,a A c,a). Suppose that Player I can fire a shot from
time (a) + c on and Player II can fire a shot from a on (but sometimes not
at (a), see [18]). Denote by )¢( the coordinate of the point at which Player I
was at time t and let a; =)(a) + ¢(, a} = max(a’,a,) for a given a’. We
define the strategies £ and 7 of Players I and II.

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired
(say at a'), play optimally the resulting duel (1,4), (2, a},a] A ¢1).
STRATEGY OF PLAYER II: Fire before (a) + ¢ and play optimally the
resulting duel (1,4), (2,@a1,a1 A ¢1).
Now also
®) ofs = -1+ Q%(a)
fora < ﬁu} Q(fi“) >~ (0.871757 is defined in [19].

The proof that for these a the strategies £ and 7 are optimal in limit is
omitted.

4. Duel (1,5), (2,a,a A c). We define £ and 1.

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired
(say at a'), play optimally the resulting duel (1,4), (2,a',a’ A c).

STRATEGY OF PLAYER II: If Player I has not fired before, fire at (a) + ¢
and play optimally the resulting duel (1,4), (2,a1,a;1 A ¢;). If he has fired,
fire all shots as soon as possible.

The number
2 a

(4) vy = -1+ Qs(ﬂ)
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is the limit value of the game but only for a < @5, where
Q%(é15) — Q*(a15) — 2Q(a1s)+2=0, Q(a15) = 0.902816.

The proof that Player I, IT assures in limit the value —1 4 Q3(a) is the
same as for the duel (1, 5), (a) with the only exception that now Player I can
fire before Player II does. Thus assuming that Player I fires before (a) + ¢
we obtain

K(&n) < P(a) - Q(a)(1 - Q%(a)) + k(&)
= 1-2Q(a) + Q%(a) + k(6) < —1 + Q%(a) + K(&),
which requires the inequality
Q%(a) - @*(a) - 2Q(a) +2 < 0.

This polynomial is zero for @ = Q(a@,5) and for @ = 1 and is negative for
Q(d15) < @ < 1. Thus the inequality holds for a < a;s.

5. Results for the duels (1,5)

vis = -1+ Q%a) for Q(a) > Q(a14) = 0.871757,

vfs = =1+ Q%) for Q(a) > Q(a5) = 0.889891,
2,

vy = =1+ Qa(a) for Q(G) > Q(&IS) =~ (0.902816.
6. Duel (2,5), (a)
Case 1. We define £ and 7.

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired
(say at a’), play optimally the duel (2,4), (2,a',a' A ¢c).

STRATEGY OF PLAYER II: Fire at (a) and play optimally the duel (2,4),
(2,a,aAc) or (1,4), (a1).

We prove that the above £ and 7 are optimal in limit and
(5) 0l = -1+ Q(a) for a < ayq,

BT -1+ (1+v33)Q%a) for az < a < azs,

where v3} 2 0.013757 (see [18]), Q(a24) = 0.986429 (see [19]) and the num-
ber ay5 satisfies the equation
(6)  Q*axs)— (2+v53)Q%a2s)+1=0, Q(ass)=0.943073.

Suppose that Player II, applying the strategy (a',7p), fires at @’ < a.
Then

K(&;d',70) > —P(a') + Q(a")v3y — k(€)

_ =1+ Q(a") - k() if a' < ayq,
Tl =14 (1 +053)Q%(a") — k(€) if @y < @' < aps
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(see [19]). Both functions are decreasing in a’, thus

e -1+ Q(a) - k(&) if @ < ay,
K(E,ﬂ ;’.'0) = {_1 +(1 +v§§ 52(a)—k(€) ;224 ;2; < azs,

and K(&;a',10) > v§s — k(€) for a < ags if vgs is given by (5).
Suppose that Player II applying 7 against £ does not fire. In this case

K(&) =02 v
if v§; is given by (5), since
~1+Q(a) <0,
—14(1433)Q%(a) < -1+ (1 +v33)Q(a) £ =1+ (1 + v33)Q(az) = 0
(see [19], (7))

On the other hand, if Player I does not fire at (a) then
: 2, . a "
K(&n) < —P(a) + Q(a)viy + k(€) = v35 + k(€)

after taking into account the formulas for %;q [19].
If Player I also fires at (a) we obtain

K(&n) < Q*(a)ofy + k(&) = —Q*(a) + Q*(a) + k(&)
if a < a13, Q(a12) = 0.853553. The first of the two cases considered in (5)
requires the inequality

-Q*(a) +Q*(a) < -1+ Q(a),
or, after dividing by @ — 1,
Q*(a)+Q*(a)-120,
which always holds for @ < a;2. In the second case we need the inequality
Q%(a) - (2+v3)Q%(a) +1 <0
satisfied for @ < ags by (6). The assertion is proved.
Case 2. We define £ and 7.

STRATEGY OF PLAYER I: Fire at (a)-and play optimally the duel (1,5),
(1,a A c,a) or (1,4), (a1).

STRATEGY OF PLAYER II: Fire at (a) and play optimally the duel (2,4),
(2,a,aAc) or (1,4), (a1).

Now we prove that
(7) v3s = Q*(a)viy = Q*(a) - Q*(a)
for azs <a< a4, Q(ﬁ.u) = (0.871757 (see [19]).
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If Player II does not fire at {(a) then

K (&) 2 P(a) + Q(a)bg — k()
= 1-2Q(a) + Q*(a) — k(¢) > Q*(a) - Q*(a) - k(¢)
if a < dy4.
On the other hand, if Player I does not fire at (a) then
K(&n) < —P(a) + Q(a)o3, + k()
_ {—1+(1+v§s)Q’(a) if age < @ < g,
T 1 -1+2Q(a)-2Q%a)+ Q*(a) if d24 < a<ay,
Q(dz4) = 0.933827 (see [19]).
In the first case we need
Q@) - (2+v33)Q% (@) +12 0
satisfied for @ > as5, by (6).
In the second case we need
—1+2Q(a) - 2Q*(a) + Q*(a) £ Q*(a) - Q*(a),
which always holds. Thus the assertion is proved.

7. Duel (2,5), (1,a A c,a)

STRATEGY OF PLAYER I: Escape if Player I has not fired. If he fired
(say at a'), play optimally the resulting duel (2,4), (2,a},a} A c1).

STRATEGY OF PLAYER II: Fire before (a) + ¢ and play optimally the
duel (2, 4), (2, ai, a1 A Cl>.

We recall that a; = }{a) + ¢{, a] = max(a',a,).

The limit value of the game is

i -1+ Q(a) if a < ayq4,
(8) 1.?;5 = -1+ (1 + v;'g)Qz(a) if a4 <a 5 &34,
—-1+42Q(a) — 2Q*(a) + Q*(a) if a4 < a < aja.

The proof is omitted.

8. Duel (2,5), (2,a,aA ¢c)
Case 1. We define £ and 7.

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired
(say at a'), play optimally the duel (2,4), (2,d’,a' A ¢;).

STRATEGY OF PLAYER II: If Player I has not fired before, fire at {(a) + ¢
and play optimally the resulting duel. If he fired (say at a'), play optimally
the duel (1,5), (1,a] A ¢1,a}).
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We now prove that

3, _ --1+Q(a) if a < ayq,
BT =14 (1+v53)Q%a) if azq < a < éys,

where the constant dps is determined from the equation

(9) Q"(&g;) - (I + 'U;é )Qz(&gs) e 20(625) + 2= 0, Q(ﬁgs) = (0.949181.

The proof that Player I assures in limit the value 12)5‘5 given above is the
same as for the duel (2,5), (a). The same holds for Player II with the only

exception when Player I fires before {(a) + ¢ ( call such a strategy £). Then

K(&n) < P(a) + Q(a)os + k(€) = 1 - 2Q(a) + Q*(a) + K(¢).-
Consider two cases:
(i) 1-2Q(a)+Q*(a) £ -1+Q(a) if a<ay.
This inequality can be presented in the form

(Q%(a) + Q*(a) + Q(a) = 2)(Q(a) - 1) < 0
and is satisfied for a < ayq4.
(i) 1-2Q(a)+Q*a)< -1+ (1+v81)Q%a) if a <a<ips.
The polynomial
5(Q(a)) = Q*(a) — (1 + v33)Q*(a) — 2Q(a) + 2

is a decreasing function of Q and S(Q(é25)) = 0 (see (9)). Thus the inequal-
ity holds for a < @js.

Case 2. We define £ and 7.

STRATEGY OF PLAYER I: Fire before (a) + ¢ and play optimally the duel
(1,5), (1,a1 A ¢1,a), where a; = ){a) + ¢(.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at (a) + ¢
and play optimally the duel (2,4), (2,a1,a1 A c1) or (1,4), {(a2), where a; is
the point where Player I is at time (a) + ¢ + €.

The above strategies are optimal in limit and
(10) 95 = P(a)+Q(a)ofs = P(a)+Q(a)(-1+Q%(a)) = 1-2Q(a) +Q*(a)
for @5 < a < d14.

Player I applying £ assures in limit this value for the above a.
On the other hand, if Player I fires before {(a) + ¢ then

K(&1) < P(a) + Q(a)vfs + k(€) = 35 + k(&)
if %;5 is given by (10).
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If Player I fires at (a) + ¢ we have

K(&n) < Q*(a)vfy + k() = —Q*(a) + Q*(a) + k(¢)
= 1-2Q(a) + Q*(a) + k(¢)
for a < a;3.
Finally, if Player I does not fire before or at (a) 4 ¢ we obtain

K(€n) < - P(a) + Q(a)b3, + k()
= { =1+ (1+v33)Q%(a) + k(¢) if a4 < a < a4,
-1 + 2Q(d) i 2Q2(G) + Q‘(ﬂ) + k(é) if &34 S a S aisz.
The inequality

-1+ 2Q(a) — 2Q%*(a) + Q*(a) < 1-2Q(a) + Q*(a)

always holds.
Consider

-1+ (1+233)Q%(a) < 1-2Q(a) + Q*(a).

From (9) one finds that this inequality holds for @ > d;5, which ends the
proof of the assertion.

9. Results for the duels (2,5)

( -1+ Q(a) if Q(a) > Q(az4) 2 0.986429,

=1+ (1+v33)Q%(a)

g5 = < if Q(az4) > Q(a) > Q(da4) = 0.933827,
-1+2Q(a) - 2Q*(a) + Q*(a)

L if Q(a24) > Q(a) > Q(a12) = 0.853553,

(=14 Q(a) if Q(a) > Q(az4),

=1+ (14 v33)Q%(a)

vds = ¢ if Q(a24) > Q(a) > Q(azs) = 0.943073,
-Q%a) +Q*(a)

L if Q(aszs) > Q(a) > Q(a14) = 0.871757,

(=14 Q(a) if Q(a) > Q(a24),

; -1+ (14 v33)Q%a)

3e = 4 if Q(aze) > Q(a) > Q(azs) = 0.949181,
1-2Q(a) + Q*(a)

L if Q(a2s) 2> Q(a) > Q(a14).
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10. Duel (3,5), (a)

Case 1. Let af,, denote a random moment, (@mn) < a5, < (amn) +
a(e), with an absolutely continuous distribution in the above interval, where
a(e) — 0 as ¢ — 0. We define the strategies £ and 7 of Players I and IIL.

STRATEGY OF PLAYER I: Reach the point ay4 and if Player II has not
fired before, fire a shot at a§, and play optimally the duel (2,5), (1,)a5,(Ac,
)a$,(). If Player II fired (say at a'), play optimally the duel (3,4), (2,4d’,
a' A c). :

STRATEGY OF PLAYER II: If Player I has not fired before, fire a shot
at (a3s) and play optimally the resulting duel (3,4). If he fired (say at a'),
play optimally the duel (2,5), (1,a' A ¢,a’). If Player I has not reached the
Point azs, do not fire.

We have Q(az4) = 0.986429 (see [19]). The number a3s is determined
from the equations

2!135 ﬂ' ay
vgs = P(a2s) + Q(az4)052* = —P(ass) + Q(ass)v3i® = v3d .
Since
P(az) + Q(ﬂu)‘}?;s“ = P*(ay),
12}33-" = v3} 2 0.020530 for a3s < as4,
we have
2
(11) Q(ass) = lil%(f,ﬁl = (.980064
34
and Q(ass) > Q(aa4) = 0.903576, as was assumed. Moreover,
(12) v3s = P*(az4) = 0.000184.

To prove that the strategies £ and 7 are optimal in limit and v§; is given
by (12) for a < ayq4, assume that Player II fires at a’ < az4 and then plays
according to fjo. Denote this strategy by (a’,7jo); then

K(&;a',70) 2 —P(a’) + Q(a)v3] — k(€) 2 —P(az4) + Q(a24)v3] — k()
> —P(ass) + Q(ass)vs] — k(€) = vgg — k(é).
If Player II does not fire before (a34) + a(e) we obtain
K(& ) 2 Plasa) + Q(aaa) 352 - k(&) = 053 — k(&)
Then
K(&1) 2 vg3 — k(§)  for any 7
if the function k(€) is chosen properly.
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On the other hand, if a’ < azs then
K(a', €o;m) < P(a") + Q(a')v3s + k(&)

{ 1-2Q(a') + Q’(a') + kg if a’ < ay,
1-2Q(a") + (14 v33)Q%(a") + k(¢) if agq < @’ < ags.

The first function is increasing and the second is decreasing in a’. Therefore
K(a',€0;m) < 1 - 2Q(a24) + Q*(az4) + k(&) = v3} + k(é).
If Player I fires at (a3s) then
K (&) < Q*(ass)vig® + k(&)
= Q%(ags)(~1 + (1+ v33)Q(ass)) + k(&) < k(&) < o3 +K(?).
If Player I does not fire before or at {a3s) but reaches the point azs then
K(&1n) < —P(a3s) + Q(ass)v3] + k(&) = v§d + k(é).
If Player I neither fires nor reaches a3s then
K(&n)=0<0g.
Thus the strategies £ and 7 are optimal in limit and v3} is the limit value

of the game.
Case 2. We define £ and 7.

STRATEGY OF PLAYER I: If Player II has not fired before, escape, fire
at a§, and play optimally the resulting duel (2,5), (1,)a§,(Ac, )a54(). If he
fired (say at a’), play optimally the duel (3,4), (2,a',a' A ¢).

STRATEGY OF PLAYER II: If Player I has not fired before and reached
the point ass, fire at (a3s) and play optimally the resulting duel (3,4). If he
fired (say at a'), play optimally the duel (2,5), (1,a' A ¢,a’). If Player I has
not reached ass, do not fire.

Now also

vis = P?(a2) = v3} .
We prove that the above stra.tegies are optimal in limit for a4 < a < a3s.
Suppose that Player II fires at a’, }{az4) + a(e){< @’ < a < azs. We

have
K (f;a »70) 2 —P(a') + Q(a")vs} — k(¢)
> —P(a) + Q(a)v3} — k(¢) 2 P*(ag4) — k(é)
provided

1 + P (a24)

Q( ) = Q(ﬂ35) ’

which is satisfied.
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If Player II intends to fire at a’ > a4 or does not fire at all we obtain
K(&7) > P(azs) + Q(aze )33 — k(&)
=1 - Q(az) + Q(az4)(—1 + (1 + v33)Q*(a24)) — k(&)
=1-2Q(az4) + (1 + v33)Q%(a24) — k(&) = vgt — k(&)

by the equations obtained in the proof of the previous case.
If Player I fires at a’ < ags then

K(a',0;m) < P(a') + Q(a')035 + k(€) -

— { 1-2Q(a") + Q*(a") + kgf) if o' < ay,
T 1-2Q(a") + (1 + v33)Q3%(a") + k(€) if azq < a < ags.

Both functions are not greater than P?(az4) + k(é).
If Player I did not fire before or at (a3s) but did reach this point we have

K(&n) < —P(a3s) + Q(aas)v3} + k() = P*(a24) + k(£).
If Player I fires at (a3s) then
K(&1) < Q*(ass)vi® + k(€) < k(&) < P*(azq) + k(¢),

as shown in the previous case.
If Player I neither reaches ass nor fires then

K(é?'?) =0< Pz(au)-
Thus this case is also solved.
Case 3. We define £ and 7.

STRATEGY OF PLAYER I: If Player II has not fired before, escape, fire
at a3, and play optimally the duel (2,5), (1, )a5,(Ac, )a5 (). If he fired (say
at a'), play optimally the duel (3,4).

STRATEGY OF PLAYER II: Fire at (a) and play optimally the duel (3,4)
or (2’ 4): (01).

Let @35 be the number satisfying the equation
(13) (1+ v33)Q°(@ss) — Q*(ass) — (1 + v3])Q(dss) + 1 = 0,

Q(ass) = 0.935980.
We now prove that the value of the game is
(14) v3s = —P(a) + Q(a)v3]

if ags < a < ags.
To prove this assume that Player II fires at @', ){asq) + a(e){<a'<a <
a3s. Then

K(&d', o) > —P(a') + Q(a')od] — k(§) > —P(a) + Q(a)v] — k(¢).



54 S. Trybula

If Player I intends to fire at @’ > a4 or not to fire at all then

K(&7) > P(az4) + Q(a24)932* — k(¢)
= P?(az4) — k(€) > =1+ (1 4+ v3})Q(a) — k(&)
provided
14 P2 (az4)

1+ v3}

Q(a) < = Q(ass),

which is satisfied.
On the other hand, if Player I also fires at (a) then
K(&n) < Q*(a)v3y + k(€)
= —-Q%(a) + (1 + v33)Q%(a) + k() < =1+ (1 + v5})Q(a) + k(¢)
provided
(1+v33)Q%(a) - @*(a) - (1 +v3})Q(a) +1 L 0.
Since the function on the left hand side is increasing for a3s < a < @35 and

the number ags is its root, the inequality holds for azs < a < é@zs. This ends
the proof of the assertion.

Case 4. We define £ and 1.
STRATEGY OF PLAYER I: Fire at (@) and play optimally afterwards.
STRATEGY OF PLAYER II: Fire at (a) and play optimally afterwards.

Now
a __ (. "Q2 +1+ 01Q3 'fA S S& ]
(15)  v§5 = Q*(a)vy = { _Q‘!EZ; 4 595(;)’23) & ;f gﬁ < : < 0:2;:,

Q(@24) = 0.918836, Q(a3z4) = 0.903576 (see [19]).
When Player II does not fire at (a) we have

K(&#) > P(a) + Q(a)vgy — k(é)

1-2Q(a)+ (14 v53)Q%(a) — k(&) if az4 < a < daq,
={ 1-2Q(a) + 2Q*(a) — 2Q%(a) + Q°(a) — k(¢)

if 34 < a < ay,

Q(Gg.() = 0-986429, Q(&g.g) = 0.93382?, Q(du) =~ (.853553.
When a35 < a < @34 we need
1-2Q(a) + (1+ v33)@%(a) > —Q*(a) + (1 + v33)Q°(a),
which always holds.
When @34 < a < @34 we need

1-2Q(a) +2Q%(a) — 2Q%(a) + Q*(a) > —Q*(a) + (1 + v33)Q°(a)
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or

5(Q(a)) = Q%(a) — (3+ v33)Q%(a) +3Q*(a) — 2Q(a) + 12 0.
The function S is decreasing in Q for Q(d24) > Q > Q(é24) and S(Q(é@34)) =
0.004379 > 0. Thus the inequality holds for dz4 < a < dz4.
Finally, when ds4 < @ < a34 we need

1-2Q(a) +2Q%(a) - 2Q%(a) + Q%(a) 2 -Q*(a) + Q%(a),
which is satisfied for any a.
Therefore Player I applying £ assures in limit the value v§; given in (15).

To prove that so does Player II applying 7, assume that Player I does
not fire at (a). In this case

K(&m) < —P(a) + Q(a)834 + K(&)
for a < azq. Then if @35 < a < G4 we need
=1+ (1+93})Q(a) £ —Q*(a) + (14 v33)Q%(a),
which is satisfied for a > @35 by (13).
If 424 < a < azq4 we need
5(Q(a)) = Q°(a) — Q*(a) + (1 + v5])Q(a) + 1 2 0.
S is decreasing in @ and S(Q(d24)) = 0.004449 > 0. Thus the inequality

holds.
This ends the analysis of Case 4.

11. Duel (3,5), (1,a A c,a)

Case 1: a < az4.
Case 2: ay4 < a < azs.

For these two cases the strategies optimal in limit are the same as for
the duel (3,5), (a) (and the limit values of the game are the same).

Case 3: a3gs < a < azq. In this case the strategies optimal in limit are
the same as for the duel (3,5), (a) but the set of values of a for which these
strategies are optimal in limit is different: there we have a3s < a < das, and
here azs < a < azy.

12. Duel (3,5), (2,a,aA ¢c)

Case 1: a < ay4.
Case 2: agq < a < azs.

Also here the strategies optimal in limit are the same as for the duel
(3,5), (a) (and the limit values of the game are the same).

Case 3. We define £ and 7.
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STRATEGY OF PLAYER I: If Player I has not fired before, escape, fire at
a3, and play optimally the duel (2,5), (1, )a§,(Ac, )a§,(). If he fired (say at
a'), play optimally the duel (3,4).

STRATEGY OF PLAYER II: If Player I has not fired before, fire at (a) + ¢
and play the duel (3,4) or the duel (2,4), (a;), where a; = )(a) + (. If he
has fired, play optimally the duel (2,5), (1,a1 A ¢1,a1).

Moreover,

(16) 8 = —P(a) + Q(a)v3}
for ags < a < d@3s5, where the number d35 satisfies the equation
(17) (14 v53)Q%(@as) — (3 +v3})Q(das) +2 =10, Q(ass)= 0.948807.
It is easy to see, comparing with the duel (3, 5), (a), that Player I always
assures in limit the value %},‘5 given by (16) if azs < a < ass.
On the other hand, comparing with the same duel, we find that Player

II assures in limit the value %5'5 for ags < a < ags if Player I fires at (a) + ¢
or later or does not fire. Therefore assume that Player I fires before (a) + ¢

(call this strategy (a',&)). Then

K(a',€;m) < P(a) + Q(a)uss + k(é)
=1-2Q(a) + (1 + v33)Q%(a) + k()
if age < @ < @4, Q(az4) = 0.986429, Q(ding) = 0.933827.
Comparing with (16) shows that we need the inequality
5(Q(a)) = (1+v33)Q°(a) — (3 +v31)Q(a) + 2 0.

The above function is increasing in @ in the interval azs < a < @35 and
5(Q(ass)) = 0. Thus the inequality holds.

Case 4. We define £ and 7.

STRATEGY OF PLAYER I: Fire before (a) 4+ ¢ and play optimally the
resulting duel (2,5), (1,1 A ¢1,a1), where a; =)(a) + ¢(.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at {a) + ¢
and play optimally the obtained duel. If he has fired, play optimally the
duel (2,5), (1,a1 A e1,01).

Now
1 a
12::‘;5 = P(a) + Q(a)v3s

— {1“2Q(“)+(1+”§5 Q%(a) if d3s < a < ag4,
T 1 1-2Q(a) +2Q%*(a) — 2Q%*(a) + Q%(a) if Gz < a < az4.

It is easy to see that Player I always assures in limit the above values.
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Suppose then that Player I fires before {(a) + c. We have

K(Em) < P(a) +Q(a)o5s + k(&) = 05 + K@),
as desired.
If Player I fires at (@) + ¢ we obtain

K(&;n) < Q*(a)vg, + k(&)

{—Q’(a) + (1 + v33)Q%(a) + k(¢)
= if a4 < a < @24, Q(@24) = 0.918836,
-—Q‘ (G) + Qs(ﬂ) + k(é'-) if &34 S a S aia, Q(au) = (.853553.

Then for @35 < a < @34 we need
-Q%(a) + (14 v33)Q%(a) <1 -2Q(a) + (1 + v33)Q%(a)
which always holds.
For a4 < a < @34 we need
~Q*(a) + (1 +v33)Q%(a) < 1 - 2Q(a) + 2Q*(a) - 2Q°(a) + Q*(a),
i.e. .
5(Q(a)) = Q%(a) - (3+ v33)Q°(a) + 3Q*(a) - 2Q(a) +1 20,
which is the same as in the duel (3,5), (a), Case 4.
For @24 < a < a2 we need
1-2Q(a) +2Q%(a) - 2Q%(a) + Q°(a) 2 ~Q*(a) + Q%(a),
which always holds.

Suppose then, finally, that Player I fires neither before nor at {a) +e¢. In
this case we have

K(&;n) < P(a) + Q(a)v3] + k(¢)
for a < a3q, Q(as4) = 0.903576. Then for a5 < a < dz4 we obtain
—1+(1+93})Q(a) < 1-2Q(a) + (1 + v33)Q%(a).
This inequality is opposite to that at the end of Case 3 and the function

5(Q(a)) defined there is monotonic for ags < a < az4. Thus the inequality
holds.

If g4 < a < azqy we need
~1+ (14 v51)Q(a) < 1-2Q(a) + 2Q*(a) - 2Q°(a) + Q°(a)
or
5(Q(a)) = Q°(a) - 2Q°(a) + 2Q*(a) — (3 + v3{)Q(a) + 2 2 0.

This function is increasing (in @) in the given interval and S(Q(a24)) =
—0.7152 < 0. Thus the inequality holds also in this case.
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13. Results for the duels (3,5)

‘ P?(az) if Q(a) > Q(ass) = 0.980064,
o35 = { =1+ (1+ v3})Q(a)

if Q(aas) > Q(a) > Q(azs) = 0.903576,
( P?(az4) 2 0.000184 if Q(a) > Q(ass),
-1+ (1+v3))Q(a) if Q(ass) > Q(a) > Q(ass) = 0.935980,
v = { —Q*(a)+ (1 + v3)@%(a)
if Q(ass) > Q(a) > Q(&4) = 0.918836,
\ —Q%(a) + Q%(a) if Q(az4) 2 Q(a) > Q(aa4),

( P?(az4) if Q(a) > Q(ass),
=1+ (14 v5})Q(a)
J if Q(ass) > Q(a) > Q(dss) = 0.948807,
V35 = { 1-2Q(a)+ (1+ v33)Q°%(a)

if Q(ass) > Q(a) > Q(dz4) = 0.933827,
1-2Q(a) +2Q%(a) — 2Q°(a) + Q°(a)
L if Q(a24) > Q(a) > Q(ass).

14. Duel (4,5). Consider the duel (4,5), (a). We define £ and 7.

STRATEGY OF PLAYER I: If Player II has not fired before, reach the
point ays, fire at af; and play optimally the duel (3,5), (1, )a§s(Ac, )ags()-
If he has fired, play optimally the duel (4,4).

STRATEGY OF PLAYER IL: If Player I has not fired before, fire at (ays)
and play optimally the duel (4 4) or (3,4). If he fired (say at a'), play
optimally the duel (3,5), (1 a’ Ac,a’). If Player I has not reached the point
a45, do not fire.

Assume that the numbers v{s; and a4s are related as follows:

(18)  vfs = P(ags) + Q(a-is)”a“ = —P(as) + Q(G-is)‘vu = v45 ;
If 0.980064 > Q(a45) > 0.903576 we obtain
P(ags) + Q(a.;s)v;‘:g’ =1-2Q(ass) + (1 + v5})Q*(ass),
which leads to the equation
(19) (1+ v31)@%(ass) — (3+ v44)Q(ass) +2=10, Q(ays) = 0.919295.

We prove that for a < ay5, ass being the root of equation (19), the

strategies £ and 7 are optimal in limit and
(20) vgd = =1+ (1 + v44)Q(a4s) = 0.023863
is the limit value of the game.
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Suppose that Player II fires at a’ < a45. We have
K(&;d',70) 2 —P(a") + Q(a")vas — k()
2 -—P((hs) + 0(045)044 — k(f) = t}:g - k(é) .

Suppose that Player II fires after (a4s) + a(e) or does not fire at all.

Then

K (&) > Pass) + Q(aus )58 — k(&) = it — k(é).

On the other hand, if Player I fires before he reaches ays, a’ < ay4s, then

K(a', i) < P(a') + Q)05 + k(&)
_ 1= (1= P*(a))Q(a’) + k(¢) if o’ < ag;s,
T 11-2Q(a") + (1 +v31)Q%(a’) + k(é) ifaszs <a' <azy
(see Section 13).
The first function on the right hand side is increasing in a’. The second
has its minimum at

L _ o 0.979883.

Q(a‘f) = ay —
1+ v3§

Moreover,
1— (1 — P?(az4))Q(aas) = 0.020117 < v},
1—-2Q(ass) + (14 v31)Q%(ass) = =1+ (1 + v44)Q(ass) = v§?
by (19) and (20). Thus
K(d', ;1) < v§d + k(&) .

The rest of the proof is simple. If Player I does not fire before or at {ays)
then

K(&n) < —P(ass) + Q(ass)vas + k(€) = vt + k(é).
If Player I fires at (a4s5) then
K(€;n) < Q*(ass)v3} + k(¢) = 0.017350 + k(£) < v3 + k(é).
If Player I neither reaches a4s nor fires then
K(&n)=0<vg.
Finally, notice that if @ < a45 then the same strategies are optimal in
limit in the duels (4,5), (1,a A ¢,a) and (4,5), (2,a,a A c) as well.

15. Duel (5,5). We define £ and 7.

STRATEGY OF PLAYER I: If Player I has not fired before, reach the
point ass, fire at afg and play optimally the duel (4,5). If he has fired, play
optimally the duel (5,4).
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STRATEGY OF PLAYER II: If Player I has not fired before, fire at {(ass)
and play optimally the duel (5,4) or (4,4). If he has fired, play optimally
the obtained duel (4,5). If he has not reached the point ass, do not fire.

The number ass is determined from the equations

vss = P(ass) + Q(ass )03 = —P(ass) + Q(ass)vs4 -
Since vsq4 = 0.194191 (see [21]) we obtain

2
21 = — (92152
(21) Qass) = gopo—ar  0.921520,
which gives
(22) Vs = -1 + (l + ﬂa;)Q(daa) >~ 0.100470.

The proof that the strategies £ and 7 are optimal in limit for a < ass is
omitted.

This ends the analysis of the duel (m,5), m < 5.

The duels (m,5),5 < m < 25 (and some others) are solved by the author
in [21].

Noisy duels with retreat after the shots are considered by the author in
[14]-[16].

For other noisy duels see [4], [8], [12], [24].
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