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A NOISY DUEL UNDER ARBITRARY MOVING. VI

1. Introduction. In the papers [19]-[23] of the author and in this paper
an m-versus-n-bullets noisy duel is considered in which duelists can move
at will. The cases m < 25, n < 6, and n = 1 for any m are solved. Also an
idea is given how to solve the duel for any (m,n) using the computer.

In this paper we consider the cases n = 6, m =4, 5,6 and n < m < 25,
n=1,...,6.

Let us define a game which will be called the game (m,n). Two Players
I and II fight a duel. They can move as they want. The maximal speed of
Player I is v;, the maximal speed of Player II is v; and it is supposed that
v; > v > 0. Player I has m bullets (or rockets), Player II has n bullets
(rockets).

Assume that at time ¢ = 0 the players are at distance 1 and that
n+vw=1

Denote by P(s) the probability (the same for both players) that a player
succeeds (destroys his opponent) if he fires at distance 1 — s. It is assumed
that P(s) is increasing and continuous in [0, 1], has a continuous second
derivative in (0,1), P(s) = 0 for s < 0 and P(1) = 1.

Player I gains 1 if only he succeeds, gains —1 if only Player II succeeds,
and gains 0 in the remaining cases. The duel is a zero-sum game,

The duel is noisy — the player hears the shot of his opponent.

Without loss of generality we can assume that Player II is motionless.
Then vy =1, v = 0.

We suppose that between successive shots of the same player there has
to pass a time &€ > 0.

We also assume that the reader knows the papers [19]-[23] and remem-
bers the notations, assumptions and results given there.
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For definitions and notions in the theory of games of timing see [1], [5],
[24]. For results see [2], [3], [6], [8], [9], [11)-[13], [15], [25]-

2. Duel (4,6), (a). In this section we solve the duel in which Player I
has 4 bullets, Player II has 6 bullets and at the beginning the players are at
distance 1 — a from each other. It is assumed that a is not too big.

Let the number (@) denote the earliest moment when Player I reaches
the point a.

For a given moment ¢ let )¢( denote the point where Player I is at
time ¢.

For a given @ denote by @° a random variable with an absolutely con-

tinuous distribution in [(a) (a) + a(e)], where a(e) —» 0 as ¢ — 0 (and as
& — 0, see [20]).

Case 1. We define the strategies £ and 7 of Players I and II. We prove
that for some a these strategies are optimal in limit (i.e. optimal as € — 0,
see [20] for the precise definition).

STRATEGY OF PLAYER I: If Player Il has not fired before, reach the
point ags, fire at a§; and play optimally the resulting duel (3, 6), (1, )a§s(Ac,
Ya$s(). If he has fired, play optimally the duel (4,5).

STRATEGY OF PLAYER II: If Player I has not fired before, fire at {a4¢)
and play optimally the resulting duel (4,5) or (3,5), (2, ass,a4¢ A c). If he
fired (say at a’), play optimally the duel (3,6), (1,a’ A ¢,a’). If he has not
reached the point a4, do not fire.

We have Q(a3s) = 0.980064 (see [22]). The number ayq is determined
from the equations

(1) % = Plass) + Q(ass )03 = — P(ass) + Q(ass)vi2 £ o2,

where v2,,., v lmﬂ, 12)“ are the limit values of the game (as £ — 0, see [20]) for
the duels (m, n), (a) (m,n), (1,aAc,a) and (m,n), (2,a,aAc), respectively,
and Q(s) =1 - P(s).

The duels (m,n), (1,a A ¢,a) and (m,n), (2,a,a A c) are defined and
discussed in [20], Section 5; see also Section 3 in this paper.

“Play optimally” means: apply a strategy optimal in limit (i.e. as € — 0).

Taking into account that
058 = =1+ (14 P*(a24))Q(ass),
where P(az4) = 0.013571, we get

(2) é =1- 2Q(035) + (1 + Pz(azg))Qz(aas) = 0.000574.
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Then from (1)

14 052
3 - 46 o (.
(3) Q(a4e) THof & 0.977254 ,

since vy} = 0.023863 (see [22]). -

We now prove that if a < a3s then the strategies £ and n are optimal in
limit.

Suppose that Player I fighting against 7 fires at a’ < a4 and then applies
a strategy £o. Call this strategy (a’,&); we have

2 14 .
K(a',&;n) < P(a') + Q(a')vss + k(€)
1-Q(a’) + k(€) if a' < asg,
={ 1-2Q(a’) + (1 + P*(a24))Q%*(a') + k(¢) if azs < @' < ags,
1-2Q(a") + (14 v5})Q°(a’) + k(¢) if ags < a’ < ays,
where K(-;-) denotes the payoff function (expected gain of Player I),
Q(ase) = 0.999816, k() - 0 as € — 0.
The first two functions on the right hand side are increasing in a’, the
third one is decreasing. Therefore

K(d',foin) < 1-2Q(ass) + (1 + P*(a24))Q(ass) + k(€) = vfi + k(&).

Suppose now that Player I fighting against 7 does not fire before or at
(ase). For such a strategy, say £, we obtain

K(£;n) < —P(ass) + Q(as6)038® + k(€) = vii + k(é),

since 4246 = v3 & 0.023863 (see [22]).
Suppose that PlayerI fighting against 7 fires at (asg). For such a strategy
¢ we have

K(&n) < Q*(ass)vss® + k(€) = —0.002563 + k(€) < vfd + k(é).

Thus Player I applying 7 assures that he does not loose (on the average)
more than v{d + k(&) for properly chosen k(¢) — 0 as £ — 0. We then say
that Player II assures in limit the value vgd.

It is now sufficient to prove that Player I applying £ does not gain (on
the average) in limit less than vgg.

Suppose that Player II fires before azs (a' < ass). For such a strategy
(call it (a’, o)) we obtain

K(&d',i) 2 —P(a") + Q(a')vgd — k(€) > —1 + Q(a3s)(1 + vg3) — k()
>-14 Q(G«;)(l + 1):'51) - k(é) = U:é - k(é) :
If Player II applying 4] fires after (ass) + a(c) then

K (&) > P(ass) + Q(ass)v3® — k(€) = v — k(é).
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Thus

K(& 1) > v — k(é)
for any 7 under properly chosen k(£), which ends the proof of the assertion.
It is easy to see that is the above proof it is sufficient to consider only
nonrandom strategies £, 7 (and (a', &), (@', fo))-

Case 2. We define £ and 7.

STRATEGY OF PLAYER I: If Player II has not fired before, escape, fire
at a§; and play optimally the resulting duel (3,6), (1, )a§s(Ac, )a5s(). If he
has fired, play optimally the duel (4, 5).

STRATEGY OF PLAYER II: If Player I escapes and has not fired, do not
fire either. If he fired (say at a’), play optimally the resulting duel (3,6),
(1,a' A ¢,a'). If he comes nearer to you, fire at {as) and play optimally
afterwards.

These strategies are optimal in limit and
(4) ags = vig
for azs < a < ag.

To prove this assume that Player II fires before (a3s) at the point a’. We
have

K(&d',ij) > —P(a") + Q(a")vgd — k(é)
> —P(a46) + Q(ase)vsl — k(€) 2 vig — k(£).

Assume that Player II fighting against a strategy £ has no intention to
fire before (ags) + a(e). We then have

K (&) > P(ass) + Q(ass)033* — k(€) = vi3 — k(&).

On the other hand, sui)pose that Player I fighting against 7 fires at
@' < asg. We obtain

K(a',&oim) < P(a') + Q(a')3s + K(¢)
< 1-2Q(ag6) + (1 + P?(24))Q%(ass) + k(&) < v + k(é)
by the corresponding inequality in Case 1.

When Player I has no intention to fire before or at a4 if Player II does
not fire we obtain

K(€;1) < —P(ass) + Q(ass)34 + K(€) = vj3 + k().
When Player I fires at a4 we get
K(&m) < Q*(as6)vss® + k(&) < k(€) < vi§ + k()
(see [22]).
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When Player I never reaches the point a4¢ and never fires we obtain
K(&n)=0<vjg.

The assertion is proved.

Case 3. We define £ and 7.

STRATEGY OF PLAYER I: If Player II has not fired before, escape, fire
at a§; and play optimally the resulting duel (3,6), (1,)as(Ac, )a5s{). If he
has fired, play optimally the duel (4,5).

STRATEGY OF PLAYER II: Fire at (a) and play optimally the resulting
duel (4,5) or (3,5), (a1), a1 =)(a) + &(.
Now
) vjs = —P(a) + Q(a)ofs = —1+ (1 + v}})Q(a)
for a4 < a < d46. The number @46 satisfies the equation
(6) (1 + v31)Q%(d46) — Q*(ds6) — (1 + v§1)Q(a4s) + 1 =0,
Q(age) = 0.948815, v3} = 0.020530, v5} = 0.023863.

Proof of optimality of £ and 7. Suppose that Player II fires
at @', azs < a' < a < d46, and fires before he reaches the point azs for the
first time. We have

K(&ad',0) 2 —P(a’) + Q(a')vgd — k(€) > — P(a) + Q(a)vgd — k(¢).
If Player II fires after {(ass) + a(¢) we have

K (&) > Plass) + Q(ass)o® — k(#)
=1-2Q(ass)+ (1 + P2(624))Q2(ﬂ35) — k(€)
= vgg — k(€) 2 -1+ (14 v33)Q(a) - k(£)

provided
14+ vgd
14 v}

Q(a) < = Q(ass)

(see (3)).
On the other hand, to prove that Player II assures in limit the value
=14 (14 v§2)Q(a) for a4e < a < d46 assume that Player I also fires at (a).

We obtain for these a
K(&n) < Q*(a)v3s + k(é)
= —Q%(a) + (1+ v53)Q°(a) + k(€) < -1+ (1 + v§})Q(a) + k(€)
provided S(Q(a)) < 0, where S(Q(d4¢)) is the left hand side of (6). This

function is increasing in the considered interval and S(Q(éd4)) = 0. Thus
the inequality holds.
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If Player I does not fire at {a) the proof is simple. We just have

: B .
K(§n) < —P(a) + Q(a)vgs + k(€)
for any £, since Player II fires at (a).
Case 4. We define £ and 7.
STRATEGY OF PLAYER I: Fire at (a) and play optimally the resulting
duel (3,6), (1,a A ¢,a) or (3,5), (a1), a1 = ){a) + &(.
STRATEGY OF PLAYER II: Fire at (a) and play optimally the resulting
duel (4,5), (2,a,aA c) or (3,5), (a1).
Now
—Q(a) + (1+v51)Q%(a) if ays < a < g5,
(1) vl =Q%a)vgs = { —Q*(a) + (1 +v33)Q%(a) if 4ss < @ <,
—Qs(ﬂ.) + Q'r(u) if g <a< asy4,
Q(azs) = 0.935980 (see [22]), Q(a24) = 0.918836, Q(azs) = 0.903576 (see
[21]).

Proof. Suppose that Player II does not fire at (a); call his strategy 7.
We have

K(& ) > P(a) + Q(a)vls — k(é)
1- 2Q(a) + (1 -I- v;‘;})Qs(a) if &43 S a S é35,
1-2Q(a) + 2Q*(a) - 2Q3(a) + (1+ v53)Q%(a)

= if a3s < a < ayq,

1-2Q(a) + 2Q*(a) — 2Q°(a) + 2Q*(a) - 2Q°(a) + Q"(a)

if @z4 < a < azq,
Q(iiss) = 0.948807 (see [22]), Q(d24) = 0.933827 (see [21]).
(i) Let @46 < a < azs. We need the inequality
1-2Q(a) + (14 v3})Q%(a) 2 -Q*(a) + (1+v3})Q*(a),
which is always satisfied.
(ii) Let d35 < a < G35. We need

1-2Q(a) +2Q%(a) — 2Q°(a) + (1 +v33)Q°(a) 2 —Q*(a) + (1 + 25)Q°(a)
or

5(Q(a)) = (1+v33)Q°(a) — (3 + v51)Q°(a) + 3Q*(a) - 2Q(a) + 1 2 0.
This function is increasing in the considered interval and S§(Q(dss))

5(0.948867) = 0.002621. Thus the inequality holds.
(iii) Let @35 < a < @24. We need

1-2Q(a) +2Q*(a) - 2Q%(a) + (1 + v33)Q%(a) > —Q*(a) + (1 + v33)Q°(a) .
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This inequality is satisfied for any a.

(iv) Let @24 < a < d24. We require

1-2Q(a) +2Q%(a) — 2Q°(a) + 2Q*(a) - 2Q°(a) + Q"(a)

> ~Q4(a) + (1+ v2)Q%(a).

The difference of the left and right hand sides is increasing in a and for
a = @y it is equal approximately 0.016845. Thus the inequality holds for
24 < a < 4.

(v) Finally, let @24 < a < az4. We need in this case
1-2Q(a) +2Q%(a) - 2Q°(a) +2Q*(a) - 2Q°(2) +Q"(a) > ~Q°(a) +Q"(a),
which holds for any a.

Suppose that Player I does not fire at (a). We have

K(&m) < —P(a) + Q(a)os + k(&) = —1+ (1 +v51)Q(a) + k(&)
for 46 < a < azq.
(i) Assume that a4¢ < @ < d@35. For these a we need. the inequality
—1+ (14 v5)Q*(a) < ~Q*(a) + (1 + v31)Q"(a)
or
5(Q(a)) = (1+v3))Q%(a) — (2 + v3})Q*(a) + 12 0.
This function is decreasing in the considered interval and S(Q(dss)) =
5(0.935980) = 0.066705 > 0. Thus the inequality is satisfied.
(ii) Assume that a3s < @ < @g4. For these a we need
—1+ (1+v5})Q%(a) < -Q*(a) + (1 + v33)Q°(a)
or
5(Q(a)) = (1 + v33)Q%(a) — Q*(a) — (1 + v3})Q*(a) + 1 2 0.
This function is increasing in the considered interval and $(Q(ass)) > 0.
Thus the inequality holds.
(iii) Assume that ag4 < a < agq. We need
=1+ (1+v5})Q*(a) < —Q%(a) + Q"(a)
or
5(Q(a)) = Q"(a) - Q%(a) - (1 + v5})Q(a) + 1 2 0.
This function is also increasing. Therefore from the previous case it follows
that the inequality holds.

From the above it follows that the strategies £ and % are optimal in limit
and v given by (7) is the limit value of the game.
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3. Duel (4,6), (1,a A c,a). Consider the duel (4,6) in which Player I
can fire from time (a) + c on and his opponent can fire from (a) on (but
sometimes not at (a), see [20]).

Case 1: a < ass.
Case 2: a35 < a < ay.

For these cases the strategies optimal in limit are the same as in the duel
(4,6), (a) and the limit values of the game are the same.

Case 3: [/ 7T S a S a45, Q(d45) = (.919295,

STRATEGY OF PLAYER I: If Player II has not fired before, escape, fire
at a§g and play optimally the resulting duel (3,6), (1, )a5;(Ac, )a5s(). If he
has fired, play optimally the duel (4, 5).

STRATEGY OF PLAYER II: Fire before (a) + ¢ and play optimally the
duel (4, 5).

We have
(8) vie = —1+ (1 + v43)Q(a),

where vg} ¢ 0.023863.
The proof of the limit optimality of the strategies for these a is omitted.

4. Duel (4,6), (2,a,aAc)

Case 1: a < a3;.
Case 2: a35 < a < ag6.

Also here the strategies optimal in limit are the same as in the duel (4, 6),
(a) and the limit values of the game are the same.

Case J: a4 <a < a%). The number aﬁ? satisfies the equation

©®  (1+02)Q%ER) - B+vi)Q(aR) +2=0, Q(a$d) = 0.959955.

STRATEGY OF PLAYER I: If Player II has not fired before, escape, fire
at a§s; and play optimally the resulting duel (3,6), (1,)a5s(Ac, )a5s(). If he
has fired, play optimally the duel (4,5).

STRATEGY OF PLAYER II: If Player I has not fired before, fire at (a) + ¢
and play optimally the duel (4,5) or (3,5), (a2}, a2 = )(a) + ¢+ &(.

In the considered case
20. a
(8 vie = —1+ (1+ v43)Q(a).
Here also the proof of the optimality of the strategies is omitted.

Case 4: aﬂ? < a < ay45. The strategies optimal in limit are:
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STRATEGY OF PLAYER I: Fire before (a) + ¢ and play optimally the
resulting duel (3,6), (1,a1 A ¢1,a1), a; = ){a) + ¢(.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at (a) + ¢

and play optimally the resulting duel (4,5) or (3,5), (as2), a2 =){(a) + c +
é.

Now

(10) % = P(a) + Q(a)vs
1-2Q(a) + (14 v8})Q%(a) if ay < a < dss,
1-2Q(a) + Q*(a) — 2Q%(a) + (1 + v33)Q%(a)
= if ags < a < dyq,
1 —-2Q(a) + 2Q*(a) - 2Q%(a) + 2Q*(a) — 2Q%(a) + Q"(a)
if 434 < a < ays,
Q(a3s) = 0.948807 (see [22]), Q(d24) = 0.933827 (see [21]).
The proof is omitted.

5. Results for the duels (4,6)

l' { U:s’ =1- 2Q(ﬂa5) + (1 + P2(024))Q2(a35) = (0.000574
Vg = if Q(a) > Q(aye) = 0.977254,
-1+ (1 + U:;)Q(a) if Q(a4s) > Q(a) > Q(a45) 2 (.919295,

P(az4) = 0.013571 (see [21]), Q(ass) = 0.980064 (see [22]),

[ vgd if Q(a) 2 Q(ase),
=1+ (1+v43)Q(a) if Q(ass) > Q(a) > Q(ass) = 0.948815,
-Q*(a) + (1 + v51)Q%(a)
3 = ¢ if Q(a4s) > Q(a) > Q(ass) = 0.935980,

: ~Q%(a) + (14 v33)Q%(a) _

if Q(ass) 2 Q(a) > Q(az4) = 0.918836,
| —Q%a)+Q7(a)  if Q(az4) > Q(a) > Q(a3s) = 0.903576,
(V5 if Q(a) > Q(ass),
~14 (14 vi2)Q(a) if Q(ass) 2 Q(e) 2 Q(afy)) = 0.959955,
1-2Q(a) + (1+ v51)Q%(a)
20 _ | if Q(al})) > Q(a) > Q(ass) = 0.948807,
1-2Q(a) +2Q*(a) - 2Q%(a) + (1 +v33)Q°(a)

if Q(ass) > Q(a) > Q(azg) ™ 0.933827,
1 -2Q(a) + 2Q*(a) — 2Q3(a) + 2Q*(a) — 2Q%(a) + Q"(a)
' - if Q(a24) 2 Q(a) 2 Q(ass).
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6. Duel (5,6). Consider the duel (5,6), (a). We define the strategies £
and n of Players I and II.

STRATEGY OF PLAYER I: If Player II has not fired before, reach the point
ase, fire at agg and play optimally the resulting duel (4, 6), (1, )ags(Ac, )ase()-
If he has fired, play optimally the duel (5,5).

STRATEGY OF PLAYER II: If Player I has not fired before, fire at (asg)
and play optimally the resulting duel (5,5) or (4,5). If he fired (say at a'),
play optimally the duel (4,6), (1,a’ Ac,a’). If he has not reached the point
asg, do not fire.

The numbers asg and v are determined from the equations

(11) % = P(ass) + Q(ase)93* = —P(ass) + Q(ass)vss = v&3 .

If 0.919295 = Q(a4s) < Q(ase) < Q(asq) = 0.977254 we have

P(ass) + Q(ase )03 = 1 — 2Q(ass) + (1 + v32)Q*(ass)

Then from (11)

(12) (1+v53)Q%(ase) — (3 + vs5)Q(ass) + 2= 0.

Since vg} = 0.023863 (see [22]) and vz = 0.100470 (see Section 7) we have
(13)  Q(ass) X 0.931760, % = —1+ (1 + v55)Q(ase) = 0.025374.

To prove that the strategies £ and 7 are optimal in limit for a < ase
assume that Player II fires at @’ < as¢ and then plays according to a strategy
7o. We have

K(&;4d',70) 2 —P(a) + Q(a")vss — k(€)
2 —P(ase) + Q(ase)vss — k(€) = vgd — k(€).

If Player II fighting against £ fires after {(as¢) + a(c) or does not fire at
all we obtain

K (&) 2 Plass) + Q(ass)vge® - k() = vi3 — k(é).
On the other hand, if Player I fires at a’ < asg then
K(d', i) < P(a') + Q(a")0is + k(€)
_ I 1-(1-v53)Q(a’) + k(¢) if a < aye,
T 1-2Q(a") + (1 + vg2)Q%*(a') + k(€) if ass < a < ase.

Denote the first function by $1(Q(a’)) and the second by S3(Q(a')).
The first function is increasing and the second has one minimum in the
considered interval. We have

max(S51(Q(ass)), S2(Q(ass)), 52(Q(ass)))
= max(0.023307, 0.023307, v&) = v% .
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Therefore
K(a',é0;m) < 033 + k(é).
If Player I fires at (as¢) we obtain
K(&;n) < Q*(ase)vil + k(€) = 0.020717 + k(&) < vi} + k(€).

If Player I does not fire before or at {(asg) but reaches this point we

get '
K(&;n) < —P(ass) + Q(ase)vss + k(€) = vgd + k(£).
If, finally, Player I neither reaches asg nor fires then
K(én)=0<vg.

The assertion is proved.
The same strategies are optimal in limit for the duels (5,6), (1,a A ¢, a)
and (5,6), (2,a,aAc) if a < ase.

7. Duel (6,6). Consider the duel (6,6), (a). We define £ and 7.

STRATEGY OF PLAYER I: If Player II has not fired before, reach the
point agg, fire at afg and play optimally the resulting duel. If he has fired,
play optimally the duel (6,6).

STRATEGY OF PLAYER II: If Player I has not fired before, fire at (ags)
and play optimally the resulting duel (6,5) or (5,5). If he has fired, play
optimally the duel (5,6). If he has not reached the point agg, do not fire.

The value of the game is
ves = P(aes) + Q(ass)v58* = —P(ass) + Q(ase)ves -

Since vgs & 0.168089 and vig® = vfl = 0.025374, from these equations we

obtain
2

14 e i
( ) Q(aﬁs) 2 + Vg5 + 05a€s
(15) vee = —1 + (1 + ve5)Q(age) = 0.090289.

The proof of the limit optimality of the above strategies for a < agg is
omitted.
Let us compare the values v2

= 0.933395,

™ and v,,,, for small a:

v, =0, vy3 2 0.013757,

v3] 2 0.020530, vy =0.023863, wvg = 0.025374,
v = 0.171573, gy = 0.148461, w33 = 0.129435,
vgq = 0.113748, 55 = 0.100470, vge = 0.090289
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(see [19]-[23]). From the above it follows that probably

lim »2 = lim v, =£0.035.
m—oo M—Lim m=soo T

Notice also that v} is positive though Player IT has 3 bullets and Player I
only 2!

8. Duel (m,n) for m > n > 1. Consider the duel (m,n), (a).
Case A. We define the strategies £ and 5 of Players I and II.

STRATEGY OF PLAYER I: If Player II has not fired before, reach the
point @y, fire at af,,, and play optimally the duel (m — 1,n). If he has
fired, play optimally the duel (m,n — 1).

STRATEGY OF PLAYER II: If Player I has not fired before, fire at (am;,,)
and play optimally the duel (m,n—1) or (m—~1,n—1). If he has fired, play
optimally the duel (m — 1,n). If Player I has neither reached the point @,
nor fired, do not fire either.

The numbers a,,, are determined from the equations

(16) Umn = =14 (1 + Um,n—l)Q(amn) =1~ (1 - Um—l,n)Q(amn)-
Solving this system we obtain
2

(17) Q(amn) - 24 Ummn-1 — Un-1n

where the numbers v,,,, satisfy the recurrence equation

]

v -1+ V%m-1,n
18 v = == :
( ) m 24 Ummn-1 — Um-1n
Vi1, Vi, M < m, it < n, being given.
We prove that if

1

(19) n < 6, m>n>1,
(20) Qz(amﬂ)vm-—l,n—-l < Vmn,
(21) Qamsn) > Q(am,n-1), Qams) > Qam-1,4)

for all m > 2 > 1, m < m, # < n, then the strategies £ and 7 are optimal
in limit and v,,, given in (18) is the limit value of the game.

Proof. Suppose that Player II fires at @’ < a,,,. We have
K(E; aly ﬁﬂ) Z _P(a') + Q(a')vm,n—l - k(f)
> _P(amn) + Q(amn)”m,n—l — k(é) = VUmn — k(f)

if amn < am’ﬂ—l .
Suppose that Player II fires after (amn) + a(c). We obtain

K(‘f; ﬁ) 2 P(amﬂ) + Q(amﬂ)vm—l,n - k(é) = VUmn — k(é) .
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Then
K(&1) 2 vmn — k(€)

for any 4 if k(€) is chosen properly.

On the other hand, if Player I fires at a’ < a,,, We obtain

K(a',&;n) < P(a') + Q(a")vm-1,0 + k(&)
S P(umﬂ) + Q(“mn)”m-l,n + L‘(E) = Umn + k(é)

if Apn < Om—-1,n-

If Player I does not fire at (a,,5) or before we have

K(E-.T 1) £ —P(amn) + Q(amn)vmn-1 + k(&) = vma + k(é)

if amn < AGmmn=-1-

If Player I fires at (@, ) then
K(&1) £ Q*(amn)vm-1,0-1 + ¥() £ vmn + k(é)
by assumptions (20) and (21), since also
Q(amn) > Q(amm-1) > Q(am-1,n-1)-

Finally, suppose that Player I neither reaches the point a,,, nor fires.
For such a strategy, say £, we obtain

K(é‘;’ﬂ =0< vun
since from (16)

Upn =1 — (1 - ”m—-l,n)Q(amn) >0
for m > n, n < 6, as can be proved using vp, > 0 for < 6 and v5,—1»n > 0

by an inductive argument with respect to m.

Moreover, the values v,,,; can be determined for any m (see [19]) and
if Vpm is determined for m < 6 (see [20], [21], [22]), then v,,, can be
determined for all natural m,n satisfying conditions (19).

Thus the strategies £ and 7 are optimal in limit.
Case B.

STRATEGY OF PLAYER I: If Player II has not fired before, fire at (am,n)
and play optimally the resulting duel (m—1,7) or (m—1,n~1). If he fired,
play optimally the duel (m,n — 1).

STRATEGY OF PLAYER IL If Player I has not fired before, fire at (af,,)
and play optimally the duel (m,n — 1). If he has fired, play optimally the
duel (m — 1,n). If Player I has neither reached the point a,,, nor fired, do
not fire either.
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These strategies are optimal if, besides (19) and (21), the condifion

(22) Qz(“mn)"m—l,n—l 2 Unn
holds, and for those (m,n) the formulae (17) and (18) hold as well. The
proof is omitted.

It is easy to see that the same strategies are optimal in limit for the duels
(m,n), (1,a A ¢,a) and (m,n), (2,a,a A c).

Now we present tables of the values v, and Q(amys), m > n, m < 25,
n < 6, computed on the basis of the paper [23], the obtained values vpm,
m < 6, and formulae (17) and (18). By asterisks we denote those (m,n) for
which the inequality (20) holds.

9. Final remarks. The analysis presented in the paper is much more
complicated than that in the corresponding classical duels when a player
goes forward with constant speed even after firing all his shots. The strate-
gies optimal in limit are completely different from those in the classical duels
and their form is compound. However, the duels considered here can be an-
alyzed and the strategies optimal in limit can be determined for any (m,n)
using a computer. As is seen in the duels solved here and in [19]-[23],

Table 1

m ¥m1 Q(am1) Um2 Q(am2) Ym3 Q(am3)

2 0.41421 0.70711

3 0.54692 0.77346 *0.28993 0.83387

4 0.63060 0.81530 0.39328 0.85445 *0.23090 0.88345

5 0.68819 0.84410 0.47124 0.87149 0.31341 0.89272

6 0.73025 0.86512 0.53187 0.88535 0.38102 0.90153

T 0.76231 0.88115 0.58023 0.89668 0.43709 0.90942

8 0.78755 0.89378 0.61966 0.90608 0.48418 0.91635

9 0.80795 0.90398 0.65239 0.91395 0.52419 0.92242
10 0.82478 0.91239 0.67997 0.92064 0.55858 0.92774
11 0.83889 0.91945 0.70353 0.92638 0.58841 0.93242
12 0.85090 0.92545 0.72388 0.93137 0.61452 0.93656
13 0.86125 0.93062 0.74162 0.93573 0.63755 0.94024
14 0.87025 0.93512 0.75724 0.93957 0.65802 0.94354

15 0.87815 0.93908 0.77108 0.94299 0.67631 0.94649
16 0.88515 0.94258 0.78343 0.94604 0.69277 0.94917
17 0.89139 0.94569 0.79452 0.94879 0.70764 0.95159

18 0.89698 0.94849 0.80453 0.95127 0.72115 0.95379
19 0.50203 0.95101 0.81362 0.95352 0.73347 0.95581
20 0.90660 0.95330 0.82190 0.95557 0.74476 0.95766
21 0.91077 0.95539 0.82948 0.95746 0.75513 0.95936
22 0.91458 0.95729 0.83644 0.95918 0.76470 0.96094
23 0.91808 0.95904 0.84285 0.96078 0.77355 0.96239

24 0.92130 0.96065 0.84878 0.96225 0.78176 0.96375
25 0.92428 0.96214 0.85428 0.96362 0.78939 0.96501



A noisy duel under arbitrary moving. VI 97

to determine the optimal strategies for given (m,n) we only need the corre-
sponding values v3,.,./, }J:,.,,,, 12:,‘,‘4.,,. form'=m,n'=n—-1landm' =m-1,
n' = n. We can determine these strategies (if they exist) recursively and

having the above values we need

(i) for Player I: to determine the direction in which this player
should move and the place where he should fire if Player II has not fired
before,

(ii) for Player II: to determine the places where Player I should
fire (going back and forth).

It should also be established whether these shots are fired at fixed mo-
ments or at random in a short time interval. All these parameters can be
tried by a computer and the proof of the limit optimality can be conducted
along the lines developed in the papers of the author. For this purpose
it may be convenient to present the limit values of subsequent duels (as
functions of the variable a) numerically—in this case we need not consider
different formulae for different a.

Noisy duels with retreat after firing all shots are considered by the author
in [16]-[18].
For other noisy duels see [4], [10], [14], [26].

Table 2

m Ym4 Q(ﬂmll ) Ym5 Q(“ms) Ymé Q(ame)

5 *0.19419 0.90923

6 *0.26303 0.91457 *0.16809 0.92483

7 0.32204 0.91994 *0.22755 0.92853 *0.14871 0.93578
8

9

0.37288 - 0.92501 0.27987 0.93226 *0.20110 0.93845

0.41699 0.92966 0.32608 0.93584 *0.24809 0.94119
10 0.45553 0.93389 0.36705 0.93921 0.29030 0.94386
11 0.48945 0.93770 0.40355 0.94233 0.32833 0.94640
12 0.51950 0.94115 0.43623 0.94520 0.36271 0.94881
13 0.54628 0.94426 0.46564 0.94785 0.39390 0.95106
14 0.57029 0.94709 0.49221 0.95028 0.42230 0.95315
15 0.59192 0.94966 0.51632 0.95251 0.44824 0.95510
16 0.61151 0.95200 0.53830 0.95457 0.47201 0.95691
17 0.62933 0.95414 0.55840 0.95647 0.49387 0.95860
18 0.64560 0.95610 0.57684 0.95822 0.51403 0.96017
19 0.66051 0.95791 0.59384 0.95985 0.53268 0.96163

20 0.67424 0.95958 0.60953 0.96135 0.54997 0.96300
21 0.68690 0.96112 0.62407 0.96276 0.56605 0.96427
22 0.69862 0.96256 0.63758 0.96407 0.58104 0.96547
23 0.70950 0.96389 0.65016 0.96529 0.59503 0.96659
24 0.71963 0.96513 0.66191 0.96643 0.60814 0.96764
25 0.72908 0.96630 0.67289 0.96750 0.62043 0.96864
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