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S. TRYBULA (Wroclaw)

A SILENT DUEL UNDER ARBITRARY MOVING

In the paper a silent duel is considered in which the players have one
bullet each, the accuracy functions are arbitrary and the players can move
as they like.

1. Introduction. Consider a game which will be called the game
(1,1). Two Players I and II fight a duel. They can move as they want.
The maximal speed of Player I is v;, the maximal speed of Player II is v,
and it is assumed that v; > v > 0. The players have one bullet each and
this fact is known to both of them. It is also known that the duel is silent:
at a given moment neither player knows whether or not his opponent has
fired.

At the beginning of the duel the players are at distance 1 from each other.
Let P;(s) (P2(s)) be the probability of succeeding (destroying the opponent)
by Player I (IT) when the distance between the playersis 1 —s. The functions
Py(8), Py(s) will be called the accuracy functions. It is assumed that they
are increasing and continuous in [0, 1], have continuous second derivatives
in (0,1) and that Pi(s)=0fors <0, Pi(1)=1,i=1,2.

Player I gains 1 if only he succeeds, gains —1 if only Player II succeeds,
and gains 0 in the remaining cases. The duel is a zero-sum game.

As will be seen from the sequel, without loss of generality we can suppose
that v; = 1 and that Player II is motionless. It is also assumed that at the
beginning of the duel Player I is at the point 0 and Player II is at the
point 1.

For definitions and results in the theory of games of timing see [3]-[5],

(7], [9}, [10], [14], [16].
2. Auxiliary duel. To solve the game (1,1) presented in the pre-
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vious section, it will be necessary to determine equalizer strategies in the
following auxiliary game (1,1)*. Consider a one-bullet silent duel with ac-
curacy functions Pj(s), P2(s) in which Player I approaches Player II with
constant velocity v = 1 all the time, even after firing his bullet. Player I
gains 1 if only he succeeds etc., similarly to the duel defined in the previous
section.

Denote by Ko(s;t) the expected gain of Player I if he fires at time s €
[0,1] and if Player II fires at time ¢ € [0,1]. It is assumed that -

Py(s) ifs<t,
Ko(s;t) = { Py(8) — Py(s) ifs=t,
-—Pg(t) + (1 - Pz(t))Pl(s) if s>t

As is easy to see Ko(s;t) is the expected payoff in the duel in which
Player II is not allowed to fire after the shot of Player I.

Denote by £§ the strategy of Player I in the game (1,1)* in which he
fires at a random moment s distributed according to a density pf;(s) in the
interval [a,1], 0 < @ < 1, and according to probability 1 —p, 0 < p < 1,
at the point 1. This distribution is chosen in such a way that if ¢ € [a,1)
then

(1) Ko(&:t)=p| [ Pi(s)fa(s)ds

1
+ [P+ - BO)P(s)fi(s) ds]

+ (1 = p)(1 — 2P,(t)) = const.

In the above formula Ko(£§;t) is the expected gain of Player I if he
applies the strategy £§ and Player II fires at time ¢.
We obtain

(@) 2D _ ol 4 @R

1
~ Pi() [ (1+ Pi(s))fa(s) ds] - 2(1 - p) Pi(t) = 0,
t

@ LD _ o lpyn) + PR + POPOAQ)

1
+(1+ PO)P(OF(R) - (@) [ (1+ Pi(s))fi(s)ds
t

+(1+ PO)BOAW)] - 201 - p)P(5) = 0.
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Eliminating the integral from (2) and (3) we obtain
(1+ A@)P(0) (1) + [2(1 + A@®)P;(2) + P(t)P{(1))/1(2)

-%;:((:))(1 + Pi()Py(t) =0,
which gives
_ Pj(t)
@ 1= + By
where the constant C satisfies
' Pj(t)at
) ¢ moa+Ray ="

Moreover, from (1) and (4) we obtain
(6)  Ko(&55)

o} _P@Pie)ds
=2[C | Fe Ry OO~ D] + (1)1 -270)

' ¢ Pi(s)Py(s)ds _
“pc[!Pg(s)(1+P1(s))_l]+1—P—ccmst

if
(7) pC =2(1-p).
Let 5§ be the strategy of Player Il in the game (1,1)* in which he chooses

at random a moment ¢ for his shot according to the density f5(t) in [a,1] to
obtain '

Ko(s;n5) = f(—Pz(t) +(1 - (1) Pi(s)) f2(2) dt

1
+ [ Pi(s)fa(t) dt = const

if s € [a,1], where Ko(s;n8) is the expected gain of Player I if Player II
applies the strategy 5§ and Player I fires at time s.
In the same way as before we obtain

_p_ B
e 50 = DEayT+ RGP

P{(s)ds
©) 2 | mea+ ROP

1

=1,
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(10) D =1+ P(a),
(11) Ko(si16) = Dpipers = Pi(a).

Assuming that Ko(£§;t) = Ko(s;n§) = const for s,t € [a,1) from (6)
and (11) we obtain the additional equation

: I(s)ds
(2) " [f Ry~ ¥l =B

From (5), (7), (9), (10), (12) we determine the unknown parameters
C, D, a, p. Notice that we have five equations but only four unknown
quantities.

Eliminating from these equations the parameters C and D, we obtain
the system of equations

b Pt)d
. 20-9) | 76004 Ay =™
- !(t) dt
(14) (1+ Pl(a))! Pz(t)(1(+)P,(t))’ =1,

1 !
(15) (-n2f e ;‘21‘3)) -1| = (),

with unknown quantities p and a.
From (13) and (15) we obtain

1 5
21-p) [ P;,g,‘()t‘;‘ =1+ Pi(a)

or, on computing the integral,
Py(a)(1+ Pi(a))

On the other hand, integration by parts leads to
1
Pi(t)dt
17
SN ¥ 90y
" 1 _ f‘ Pj(t) dt
2 P(a)(1+ Pi(a)) [ RO+ P(D))?]
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f Py(t)Pi(t) dt
J Pi(H)(1+ Pi(1))

_ 1 Py(a) ¢ Pl(t)dt
=2t R@a+h@) " f XOETAOh

Then from (13) and (15) we obtain

g i PI(t) dt
(18) 2(1—p)[-§+ Pz(g)(l-f-P](a))_!Pz(t)(l"]‘Pl(t))z] "

Py(a) Pi()dt 1 _
(19) 21-p)[-1+ st J s (‘))2] = 5.

Assume that equations (14) and (16) have a solution. Substituting the
values p and f: a2 ‘P;_:_P‘:‘l obtained from (14) and (16) into (18) and
(19) we obtain identities. Thus the considered system of five equations has
a solution C, D, p,a,C > 0,D > 0,0< p< 1,0 < a < 1, provided
equations (14) and (16) have a solution p,a,0<p<1,0<a< 1.

Consider the function

1

Pi(t)dt
o@ =+ A@) [ ot P
We obtain
- Pyat 1 ”
““"[!ﬂmu+ﬁmﬁ AR A
an [ ¢ Pl@)dt
_"L[¥WU+PM) ]“@<°
It follows that there exists at most one solution a, 0 < a < 1, of the equation
¢(a) = 1.

We prove that if there exists a solution a, 0 < @ < 1, of (14) then there
exists a solution p, 0 < p < 1, of (16). Since the integral on the left side of
(17) is positive, a being a solution of (14) implies

1 1 1
= - >0
2 " R@1+A@) 11 A@

Py(a)(1+ Pi(a))
1- Pg(a)

Lo
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Thus a solution C, D, p, a of the five equations exists, C > 0, D > 0,
0<p<1,0<ac<l,provided there exists a solution a, 0 < a < 1, of (14).
To see an example, let Py(t) = t, P3(t) = t*, a > 0. We obtain

L Pty 1itke) p o N@
(1+P1(G))! Pz(t)(i-l—P](t))z =(1+G) l}{ (I—:l:) dz
1/(14a)
<(1+a) dz 1 a <1

g 0-oF w202 2

Thus (14) has no solution for these Py(t), P;(t) when a is small.

LEMMA. If there ezists a solution a, 0 < a < 1, of (14), then for this
a the strategy £§ is mazimin and the strategy £§ is minimaz in the game
(1,1)*. The value of the game is v{; = Pi(a).

Proof. We have proved that Ko(£§;t) = Pi(a) fora < t < 1. Moreover,

1
Ko(&8;:1)=p [ Pi(s)fi(s)ds

>p [ Pi(s)fi(s)ds+ (1= p)(1-2Py(1))

= lim Ko(&3it) = Pi(a)

since Ko(£§;t) = const = Py(a) fora <t < 1.
Finally, if ¢ < a we have

Ko(&03 t)

1
=p [ (=P:(t) + (1 - P(8))Pi(s)) fa(s) ds + (1 — p)(1 — 2Pa(2))

1
>p [ (-Pa(a) + (1 - Py(a)) Pr(s)) fa(s) ds + (1 = p)(1 — 2P2(a))

= Ko(£5; @) = Pi(a).
Thus Ko(£§;7) > Pi(a) for any strategy n of Player I
On the other hand, Ko(s;n§) = Pi(a) fora < s < 1, and if s < a then
Ko(s;m8) = P1(8) < Py(a). Therefore Ko(€;15) < Pi(a) for any strategy £
of Player I. The lemma is proved.

3. Main result. Let us return to the duel (1, 1) defined at the beginning
of the paper. Assume that there exists a solution a, 0 < a < 1, of (14).
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For a given natural n, let constants a; be defined as follows:

Gk 1
a=a, p f f;(s)ds-':;, k=1,...,n9, Gpo41 =1,

Gk—1
where ng is defined from the inequalities

Gung

p>p [ fn(s)dszp—ﬁ-

Define the strategy £° of Player I in the game (1,1) as follows: If there
exists a solution a of the equation (14) (case 1) Player I moves back and
forth with maximal speed in the following manner: at first between 0 and
a;, then between 0 and a3, ..., finally between 0 and ay 4. At the kth step,
k=1,...,n0 4+ 1, he can fire his shot at random only if he is between the
points ax—1 and ax and goes forward, and he fires it with probability density
pfi(s). If he has fired at the kth step, he reaches the point aj, escapes to 0
and never approaches Player II. If Player I has not fired between the points
0 and 1 and survives, he fires when he is at 1, as soon as possible.

If no solution a, 0 < a < 1, of (14) exists (case 2), Player I, following £¢,
does not approach Player II.

The strategy 7° of Player II is defined in case 1 as follows: If Player I
reaches the point ¢ the first time and his velocity is v1(7), 7 the time, fire
at random with density v;(7)f2(i(7)). Otherwise do not fire.

It is assumed that the function v;(7) is piecewise continuous.

In case 2, when equation (14) has no solution a, 0 < a < 1, the strategy
7° is defined similarly but the firing has probability density v,(7)f3(¢(7))
where the function f7(t) is defined in (8), for @ = 0 and D satisfying (9).

THEOREM. The strategy £° is e-mazimin and the strategy 1° is minimaz
in the game (1,1). The value of the game is vy = Py(a) if there is a solution
a,0< a <1, of (14), and vy; = 0 otherwise.

Proof. Assume that Player I applies the strategy £ and that (14) has
a solution a, 0 < a < 1. We say that Player II fires at (k,a’) if he fires
when Player I is at the point a’ and if this happens during the first player’s
approach to ai or his escape from ay_1.

Denote also by (k,a') the strategy of Player II similarly defined. We
obtain

K(&°5k,a')

Gk—1

, |
>p[ [ P()fils)ds+ [ (=Paa’)+ (1~ Py(a))Pi(s))fa(s) ds|
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+(1-p)(1-2P(a)) -

1
>p[ [ A@AE) s+ [ (~Pa(ar)+ (1= Pa(ar) Pi(s)a(s) s
+ (1= p)(1 - 2Py(ax)) - +

> p[ }* Py(s)fi(s)ds + f (=Pz(ax) + (1 = Py(ax))Pi(s)) fl(.g)d,g]

+(1-p)(1-2Py(ax)) - ¢
= P1 (a) -
wheree =2/n, k=1,...,n9+ 1.
If Player II fires only when Player I reaches 1, the best for him is to fire
as soon as possible. For such a strategy (call it 7)

1
K(€55n) > p [ Pi(s)fi(s)ds

1
>p [ Pi(s)fi(s)ds+ (1 - p)(1 - 2Py(1)) = Py(a).

From the above it follows that K(£%;9) > Pi(a) — ¢ for any strategy n
of Player II.

On the other hand, suppose that Player I has fired from the point a’
and later escaped. Assume that he reached this point for the first time. For
such a strategy (denote it by a') we have,ifa < a' < 1,

al

(20) K(d;n°) = [(-P(®)+ (1- Pa(t)Pi(a')) fa(t) dt

1
+ [ Pi(@)fa(t)dt = Py(a).

Suppose that the farthest point reached by Player I is a’ but that he fires
later from a” < a'. For such a strategy, say £, we have,ifa<a’' <1,

al

K&n°) = [(=P(t)+ (1= Pa(8) Pi(a") fa(t) dt

1
+ [ Pa)fa(t)dt < Pi(a)
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by (20), and, if 0 < @’ < a,
K(&n°) = Pi(a") < Py(a).

Since approaching Player II after having fired is for Player I no better
than escape when Player II applies 7°, we have K(§;7°) < Pi(a) for any
strategy £ of Player I.

Suppose now that (14) has no solution @, 0 < a < 1. In this case Player I
ensures himself gain 0 simply by escape.

As we remember, in this case Player II applies the distribution f(¢),
defined similarly to (8), for a = 0 and D satisfying (9),i.e. D > 1+P;(a) = 1.

Suppose that Player I fires from the point @' and escapes (assume that
he reaches this point for the first time). We obtain, for 0 < a' <1,

K(ain") = [(-P(t)+(1- R@)Pi(a) @) dt+ [ Pi(a’)f3(2)dt

0
= P(a')(1-D)<0.

Suppose that the farthest point reached by Player I is a’ but he fires
later from a" < a'. For such a strategy, say £, we obtain

a’ 1
KEn) = [(-P@)+0- R@))P(a") S dt+ [ Pi(a")f2(t)dt
0 a'

a' 1
< [R®+0-PREPE)ROE+ [ P@)RE)d<0.
0 a'

Since also here approaching Player II after having fired is for Player I no
better than escape when Player II applies °, we have K(¢;7°) < 0 for any
strategy £ of Player I. This ends the proof of the theorem.

When P;(s) = Ps(s) o P(s) we obtain from (14)
1+ P(a) , 1| _
(14 P(a)) [log 3P(a) + 2] =2,
This equation has a solution a for which P(a) 2 0.177655 and we obtain
from (16), (7) and (10)
p=0.872793, C =0.291494, D =1.177655.

Duels under arbitrary moving, as far as the author knows, were never

considered before, except in the papers of the author (see [13]).

For other results in the theory of games of timing see [1], [2], [6], [8],
(11], [12], [15].
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