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THE EXTREME GAP IN THE MULTIVARIATE
POISSON PROCESS

Abstract. Let N be a Poisson process and let G be a bounded set in R%.
Define D to be the radius of the largest sphere in R? with centre in G which
contains no signals of N. We study the limiting distribution of the suitably
standardized random variable D when the norm in R? is |z| = maxi<;j<q |2;],
T = (zy,...,74) € R%, and G is a straight line segment.

1. Problem. Consider a Poisson process N in Euclidean space R?. Let
|| be any arbitrary norm in R? and let G C R? be a bounded set. Suppose
that the signals of the process N are arranged in a sequence X;, X3,... (for
example in the order of increasing distances from the origin). Define the
random variable

D = sup min |X;-Y]|,
YeG 1<5i<o0
Which is the radius of the largest sphere with centre in G which contains
no signals of the process. The problem is to study the limiting distribution
of the suitably standardized random variable D as the parameter A of the
Process N tends to infinity.

This problem arises in the analysis of morbidity in a population localized
in some region and in testing the importance of regions without illnesses.

Note that Deheuvels [1] defined the maximal spacing for points uniformly
distributed in the d-cube [0, 1]% as the size of the largest cubical gap parallel
to the unit cube. As an extension Janson [4] considered the volume of the
maximal gap of the shape and orientation of a convex set. In those papers
the condition that the centre of the gap lies in a given set G' was not assumed.
Dette and Henze [2] introduced the largest nearest-neighbour link

D = max min | X; - X;|
1<i<n j#i
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where X;, ¢ = 1,...,n, is a sequence of independent random points each
uniformly distributed within the unit d-cube. Our problem was to find
strong bounds or limiting distribution for D.

2. Main result. Consider the norm |z| = max;<;<q|2j, z = (21,...,
z4) € R%, so wa(€) = (2£)? is the volume of the d-sphere § = {z : |z| < £},
andlet G={z:0< 2, <t, 23 =...=24 =0}, > 0, be a straight line
segment in R?. Then D = D(t) is the radius of the largest ball with centre
in G which contains no signal of the process N.

In what follows, the symbol % means convergence in distribution, A is
the extreme-value distribution: A(z) = exp(—e~*), z € R. The main result
concerns the limiting behaviour of D(t) as t — oo. It is worthwhile to notice
the dimensional effect with standardizing functions when n > 2. A similar
effect was observed by Dette and Henze [2] in their version of the problem
when d > 3.

THEOREM. Ast — oo, £ € R, we have
(1) P(A(2D(2))* - log ¢ — log((Alog*~" 1)1/%) < £)5 A(£).

LEMMA. The function R(t,€) = P(D(t) > £) satisfies the recursion
relation

(2)  R(,€) = exp(—Iwa(£))
min(2¢,t)
+ [ R(t-u,8&) exp(=Iwa_1(£)u)wa_(€) du
0

whose solution 1s
o0

(3) R = Y (-2waa(6) exp(-Dwa())*

k=0 "

X [exp(—Awa(£))(t — 2kE)f — (Lxs0)(t — 2(k — 1)6)]],
where ay = max(0,a).

Proof of Lemma. The equation (2) may be obtained from the total
probability formula under the condition of occurrence of the signals of the
process N in the ball S. The equation is of renewal type and it may be
solved using the Laplace transform:

R(s,6)= [ e R,E b= Sex(-Hwd(6)

Awg-1(€)

() e ®

(1 — exp(—Awq(£) - 2£5))-
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It follows that

o o 8+ waa(ON exp(~Awa(£)
S vy 3 P g v 1 g 7
_s+ Awd 1(6) Z (-~wa-1 (6))
xexp( _Mk+ () exp(~2kEs),
and hence
RO = Y (- Awaa(©)F exp(-Mwa(€)k + D)t - 2K}
k=0 """

- Z '(,ﬁl:"{)i(—*wd—l(f))"“
X exp( Awg(€)(k + 1))(t — 2k€)5H,
Which implies (3).
Proof of Theorem. Define
a(t) = (Alogd=1 1)1/4,
1/(1 1/d
€)= 3 (;(H logt +log u(t))) -
Then

exp(~Awa(€(1))) = exp(~€)/(ta(2)),
€0/t~ 0, Moaa(E®)/alt)>1, t-oo.

An easy computation shows that

P(A(2D(®))" - log ~ loga(?) > £) = R(t,€(1)
3 A (€ ()

1
" ta(t)
[t e (= 2K} - (- 200 1)5(:))5;]

- _ S LD o) = 1- 4@ 4 o1), o oo,

k=1

3. Two related cases. For one dimension two related problems were
formulated for the largest nearest link among random points which may be
recognized as modifications of our problem. Now, in both cases we prove the
limiting theorems on the base of the exact probability distribution function.
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3.1. The eztreme space in a uniformly distributed sample. Let X;,
., Xy be independent random variables each uniformly distributed on [0, ],
let X1, <...< Xpn be the order statistics and let Xo,, = 0, Xp41n = 1.
Write
Dn(t) = ot (Xt+l|n Xin)-

It is easy to show that
P(%Dn(t) —logn < .f) LA®E), n— oo

Note that the function R,(1,£) = P(Dy(t) > £) satisfies the recursion
relation.

Ra(t,€) = ( - %): & m‘}u'ﬂn,._,(t—- ﬂ,E)(l = ;)ﬂ_lnd‘u

0
whose solution is (see Feller [3], I, (9.9))

Ralt,6) = l—f( ("t (1-%) -

n
n* (1 - 2(5 +log n)) —e ¢tk n oo,

Since

we deduce that
P(%Dn(t) —logn > .f) =R, (t, %(E + log n))—dd — A(8).

3.2. The eztreme gap in a univariate Poisson process. Consider the Pois-
son process on R generated by independent random variables ...,U_q, Uy,
Us,,... each exponentially distributed with parameter A. Set first S; =
‘-U—1! 51 = Uls Sﬂ+1 Sn + Uﬂ+l! n=12,. a'nd

N(t) = z Is, <t

n=1
Tl(t) =i- SN(:); 72(‘) = SN(:).|.1 - t.
Then .
D(t)= sup min(71(u),72(x))
0<ux<t

defines the extreme gap in the Poisson process. The distribution function
of D(t) is given by the Lemma and the Theorem for d = 1.

Now let S, = 0, Sn+1 Sn+Uns1,2=0,1,...,and
7(t) =t — Sny-
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Then
D(t) = sup 7(v)
0<ust
defines the extreme gap in Feller’s sense. We prove that D(t) and D(t)

are asymptotically equidistributed and the relation (1) holds for d = 1. To
Prove

P(AD(t) - log At < £)S A(¢)
recall from [5] (also [3], XIV, (2.6) after a suitable transformation) that
k(t,6) = P(D(2) > £)
— 1 A
=Y A R (1+3¢-%04).

Now, some algebra gives

P(AD(t) - logt > £) = R (t, %({ +log :)) 41— A).
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