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MULTIVARIATE TAIL EQUIVALENCE OF DISTRIBUTIONS
IN EXTREME VALUE THEORY

We consider some relations between multivariate tail equivalence of dis-
Fl'ibution functions and the weak convergence of extremes for independent
Identically distributed random vectors. S. I. Resnick in [5] has considered
the same problem for the case of random variables. :

1. Introduction. Let F and G be m-dimensional continuous distribu-
tion functions. Introduce the following notation:
Zp = (Ehsesdl)s
Where for i = 1,...,m
z} =sup{z €R: Fi(z) < 1}
and F; is the ¢th marginal of F.

DEFINITION 1. Two distribution functions F and G are tail equivalent if

0
Zp =22 =20 and

Lim I—F(zl,...,mm)_

T1 =2 — T =70, — 1- G(zl, ces -:zm)

for some constant 0 < v < 00. We denote this property by F A G.

Let Xy, Xs,... be a sequence of independent identically distributed m-
dimensional random vectors with continuous distribution function F. Then

i < ‘:.= e — ¥ .. m)
P{Iglf'sxﬂ(xk)_ml 4 17 }m} F (zls » T )

whe‘.e A’n = (X}n- B ,X:'n)

---‘-‘—-_—
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DEFINITION 2. A distribution function F belongs to the domain of at-
traction of a distribution function H (F € D(H)) if for some m-dimensional
sequences of constants a, > 0, b,,

(1) lim F"(a,z +b,) = H(z),

n—oo
where
e,z +b, = (alz, +0b},...,a"z,, +b™).
The convergence is understood to occur at continuity points of H. A distri-
bution function H for which (1) holds is called eztremal.
We assume in the paper that the extremal distribution H has nondegen-

erate marginals H; for i = 1,...,m. It is easy to notice that (1) holds if and
only if

: ‘ LT R _
Jim P{lrsnf.sxn(xk) <a;z;+b :i=1,...,m} = H(2)
for a sequence of independent identically distributed random vectors with
distribution F.
It is shown in [2] that every extremal distribution function is continuous
and its marginals are of extremal types:
&, (z) = exp(—2~%), 20,050,
Wﬂ(x) = exp(—(—z)“) y 2L20,a>0,
A(z) = exp(—e™7), —0<z< ™.
An important role in multivariate extreme value theory is played by the
notion of depending function.

DeriINITION 3. For a distribution function F, a function Dg for which
F(21,...,2m) = Dp(Fi(21), Fa(22), - - ., Fn(2m))

is called a depending function for F'. Some properties of depending functions
are given in [2].

2. Main results. Now we obtain some relations between tail equiv-
alence of F and G and the asymptotic properties of F™(a,z + b,)
and G™(a,z + b,). Before presenting the main theorems, we give a use-
ful lemma whose proof is the same as in the one-dimensional case and is
therefore omitted.

LEMMA 1. For a distribution F' and an extremal distribution H we have
lim F™(a,z +b,) = H(z)

n—oco

if and only if
lim n[l — F(g,z +b,)] = —log H(z)

n—+00
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Jor all z € R™ such that H(z) > 0.
Using this lemma we prove the following theorem:

_ THEOREM 1. Let F and G be distributions and let H be an eztremal
distribution. If

Jim F*(g,z+b,)=H(X) and FRG
then
Jim G"(aqz +b,)= H(Az + B)
for some A >0, BeR™
Proof. From Lemma 1 we have
Jim n[1 - F(g,z +b,)] = —log H(z),

for z € R™ such that H(z) > 0. Notice that this convergence implies
2,2z + b, — z°. Hence

Am a1 - G(a,z +b,)] = lim n[l - Fe,z + -Q")]: - ggfﬂi I Eng

= —log H" '(z).
Applying Lemma 1 once again we have

lim G™(a,z+b,)=H" (z).

Nn=—co

If we show that H'f"i(g) = H(Az + B) the proof will be complete.
Define
I(A)={1<i<m:H;=90,},
II(H)={1<i<m:H; =¥},
INI(H)={1<i<m: H;=A}.
It may occur that some of these sets (not all) are empty. Without loss
of generality we may assume that there exist 1 < 4; < i3 < m such that
I(H)={1,...,5}, I(H) = {i1 + 1,...,53} and TI(H) = {iz + 1,...,m}.
Since H is extremal we have (see [2])
H(z1ye . Zm) = DL(HY (21),- .0, HY (2m)
that is,
(2) H" ' (21,..0,2m) = Da(HY (21),..., B (2m))-
For i € I(H) there exist A; > 0 such that
y=A% and B (z:) = Bo,(Aizi).
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For i € II(H) we may find A} such that
1= AP and VY (i) = ¥p,(Alzi),
and similarly for ¢ € III( H) we have
y1=eBi and A" '(2;)= A(zi+b;) for some B;.

Now if

A = (Aiye s By sAligayssos Al lysvay 1)y
B=(0,...,0, Bi415:+-Bm)s
then from (2) we obtain H“'_l(g:,) = H(Az + B).

As an easy consequence of Theorem 1 we have the following corollary.

COROLLARY 1. Let limy,_,o F™(a,z + b,) = H(z) and F R G, where
H;=L fori=1,...,m. Then

(i) if L = &, then limgp—oo G™(a,z +b,) = H(y'/*-1-2),
(ii) if L = ¥, then limy,_o G™(a,z +b,) = H(y~V/*-1-2),
(iii) if L = A then lim, o, G™(a,z + b,) = H(z +logy - 1),

where 1 = (1,...,1) € R™.

Now we prove two technical lemmas needed in the sequel. For this pur-
pose we introduce the following notations for a given distribution function G:

m
An=X[ﬂfi$ﬂg‘-1]! n22,
i=1

wherefori=1,...,m
WS = GN(1=1/n), GF'(y)=inf{z €R:G(z) > v}

It can be shown (see [5]) that uG¢ < uSi, ~ 2%, as n — oo.
Let B(t) = (B1(2),---,Bm(t)), t €R, be a continuous curve for which

(3) Bi(t) /=g, ast—oofori=1,...,m,
(4) JigeRVE>1tgdn 2 2: B(t) € Ay
Now we can formulate the above-mentioned lemmas:
LEMMA 2. If
lm F*a,z+b,)= H(z), lim G*(a,z+b,)=H(Az+B)

n—+oco

where H; =V, fori=1,...,m,and A= A-1 for some A > 0, then B = 0,
z% = 2% and

1—-Fop(t)
et 1-Gop(t)
for any curve B such that (3) and (4) hold.

A—CI'



Multivariate tail equivalence 147
Proof. From the assumptions we havefori = 1,...,m
nll.néo FP(aiz; + b)) = ¥a(z:),
(5) lim GP(ahai + b)) = Va(Azi + B).

We can take (see [3]) af, = 2. — pii and bl = 2%, where 2. < co. Hence
and from (5) we obtain

nl-l-on:olo G:l((z?"'. = Pfi )A_‘ zi + z%‘.- o (z%._ = pfi )A-l B") = w"‘(mi) ¥
that is, G; € D(¥,), and therefore, as above, z‘c’;‘ < 0o and
lim G7((z&, - pI )z + 2%,) = Yal(zs) .

From Khinchin’s theorem (see [5], p. 138)

0 _ . ,F
(6) fﬁ__p%_rq,ti and
g, — b’
0 _ (29 — (2% — uF)A-1B:
T, (35‘.- o(zF.- G.ﬂ'n) ‘)—»0 a5 7 — 00
zGi_auﬂ'
Hence we obtain
0 _ .0
(7) %—-—%4—3,——»0 as n — 00.
ZG'_—pn'

$im:e usi / z%;, we see from (7) that 23, = 2%, (= z?, say) and B; = 0 for
t= Loy m.

Now we prove the second part of the lemma. Let 8 be a curve for which
(3) and (4) hold. Let &€ > 0 be given. For sufficiently large ¢ there exists
7 = n(t) such that B(t) € A, and by (6) we have

20 — (A +€)(a? — ) < uS* < 20 = (A7 = e)(a? — )
fori=1,...,m. Hence

1-Fof(t) . 1-Fg7) _ _nfl - Fau(~(A"" +¢)) +b,)]

T=Gof(t) ~ T=Gu2,,) ~ nll — Clanpt(—(AT =€)+ byr)]

We have n = n(t) — 0o as t — 00, and therefore, by Lemma 1,
1-Fof(t) logH(—(A™!+¢)1)
6? . -~
(6 h‘f’_f;'ip 1—-Gop(t) s log H(—A(A-1 —¢)1)
It is easy to see that for sufficiently small € > 0
0< H(-(A'+e)1)<1, 0<H(-A(AT'-9)1)<1,
and hence

—log H(—A(A™! =¢)1) > 0:
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Notice that 0 < H(-1) < 1, that is, log H(—1) makes sense. We also have
H(-A"!'.1) = HA™%(~-1). From (6') and the above it follows that

1-Fop(t)
1 i e AT
]-ll‘]}j)l;p 1-Gof(t) ~ A
if we let € \, 0. Similarly it may be shown that

oo I=Pofle), . .
e = Gopy 24

Thus the proof is complete.
LEMMA 3. If
Jlim F"(a,z+b,) = H(z), lm G"(anz+b,)=H(Az+B),

where H; = A fori=1,...,m and B = B -1 for some B €R, then A =1,

z% =z and

. 1=Fof(t) _ B
T Gep(t)
Jor any curve B such that (3) and (4) hold.

Proof. From the assumptions and Lemma 2.5 of [5] we have A; = 1
and z%, = 2z, (= 2, say) fori=1,...,m. Hence

(8) lim GH(aha: +b) = Axi + B),
“1Lngo FMaiz; + b)) = A(z;), i=1,...,m.

Similarly to Lemma 2 we may set (see [3])

bn=pns ap=F (1 (ne)™") - py .
From (8) we have

Jim GP(apzi +py' — apB) = A(z:),
that is, G; € D(A) and as above we have
Jim GG (1= (ne)™!) — piles + pgt) = A(=i).

By Khinchin’s theorem '

(ui — B —pi)/a;, -0 asn— o0,
and this means that

(uFe — uG)jai > B as n—o00,i=1,...,m.

Let € > 0 be given. For sufficiently large » and fori =1,...,m
(9) pli — (B +€)ah, < p§t < pki — (B - €)aj,.
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If 8 is a curve for which both (3) and (4) hold then for sufficiently large ¢

there exists n = n(t) such B(t) € A, and (9) holds. Hence

(10) 1— Fop(t) < 1- F(Ef) [l — F(~(B +¢)a, + Ef)]
1-Gof(t) = 1-G(S,,) ~ n[l — G(—(B —€)any, + E

Since (see [4])

80 =~ f g (e 506},

IA

Where H = {u € [0,00]™ \ {0} : ||u]| = 1} and S is some finite measure on
H such that J3ui S(du) = 1 for i = 1,...,m, we obtain

—log H(0) >0, -logH(-B-1)=eB(~logH(0)).
Since n = n(t) — 0o as t — oo, applying Lemma 1 to (10) we have
1-Fof(t)
i ———="C < B,
s T Go () < °©
In a similar way it may be shown that
1-Fof(t) g

limin &7,

P T ga g0 2
This completes the proof.
Applying Lemma 2 we show the following theorem:
THEOREM 2. Let lim, oo F™(a,z + b,) = H(z), where H; = ¥, and
3(}:;. #0 fori=1,...,m. Then
lim G"(a,z+b,)=H(A-1-2+B), A>0,

n=—00

if and only if B =0 and F “<" G.

Proof. If B=0and F “~" G the proof is an immediate consequence
of Corollary 1, so let us consider the converse implication. From Lemma 2

we have 2%, = 20, = z° and

1— Fof(t)
m —m—m—m =

t—oo 1 — G o f(t)
Where 3 is a continuous curve for which both (3) and (4) hold. Let z, =
(33.,...,3,'1‘), n > 1, be any sequence for which zi, / a:? as n — oo, for
t=1,...,m. Let z, = (2,...,2™),n > 1, be defined by 2}, = fi(t,), where
tn /" 00 asn — oo. Since F; € D(¥,) we have 2? < oo fori = 1,...,m (see

[3]). Hence

AT,

TN O B . i
n]i'ngoz;,/z:, =zifzi =1, i=1,...,m.
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Since F and G are continuous (as in the Introduction) we have

1 m
- F(-’il%z;,...,i&z,'p)
lim 1= Flz,) _ lim “n Zn
n—roo l — G(;c ) - n—+00 31 zm
Zn 1-G(ﬁ;“"¢ggq
n n
1- Fof(tn
= lim °Bltn) _ 4o

n—o0 1—Gof(tn)
Since z,, is arbitrary, the proof is complete.

If Lemma 3 is used in an analogous way the following theorem may be
shown:

THEOREM 3. Let lim,,_,, F*(a,z + b,) = H(z), where H; = A and
0#2% <oofori=1,...,m. Then

Jim (a2 +8,) = H(Az+ B-1)
ifand only if A=1, 2% = 2% and F % G.

3. Asymptotic independence. The problem of asymptotic indepen-
dence of the random vector

1 2 -
(max (X&), max (Xi),..., max (Xi)) asn— oo

for a sequence Xi,Xj,... of independent identically distributed random
vectors was considered in (1], [4]. In [1] the following theorem was proved:

THEOREM 4 (S. M. Berman). For independent identically distributed ran-
dom vectors X1, X2, . .. with distribution function F, suppose that F € D(H)
and
(11) 1 - Fi(z) - F(25) + Fis(2i,25) _

i /2,75 /7Y, 1 - Fij(zi, ;)

for 1 <i# 3 <m. Then

H(z) = [[ Hi(z:).
i=1

As a consequence, we can prove the following result.
THEOREM 5. Suppose that F € D(HM), G € D(H®) and

(i) F;j 2 Gij for1<i#j<m,
(ii) (11) holds for at least one of F and G.
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Then
HV(z) = HH“’(: ), HO(z)= Hﬂ‘z’(z.),

i=1

Hm(_) = H(zl(_A_g:_+ﬁ) for some A >0, B €R™.

Proof Assume that (11) holds for F. Then, by Theorem 4, H()(z) =
1 HW(z;). Define
1- Fi(z:) +1 - F(z;)
1 - Fij(2i,z;)

uf'_;-(x.-,z,-) =

and uf similarly.
From (i) we have 2%, = 2%, (= 2?, say) for i = 1,...,m. It is easy to
notice that (11) is equivalent to

. F _
(12) ,,../,I?’n;,./,g u,-j(z.', :EJ) =1

Since Fi; < G;; we also have F; A G;. Hence for any € > 0 we have

i, 1=GiE)

Ny _l L = B
- I—F(x‘)_ +E’ i 1? ’m’

v

and

1 - Fij(z;,z;) wr
<_._-# y+¢ 1< <m,
Lo i

for z;, z; sufficiently close to z} ,:c?. Hence
(7' = e)(7 - e)ufi(2i,2;) < ufi(zi, ;)
< (7 +e)(y + e)uli(ziyz;)
and since (12) holds we obtain

l_e)(y—e)< liminf uf(zi,z;
(v e)y—¢)< x‘/;;l'g:/_zg u (i, 75)
< limsup ug-(zi,-'ﬂj) ST +e)y+e).
3i/3?nzi/'z}?
Since ¢ is arbitrary we have

. N
”‘/*]f:’l.rgj/‘xg u5(2i,25) = 1

and so, by Theorem 4, H?(z) = [[™, H®(z;). Hence and from (i) it is
easy to see that H(?)(z) = H(V(Az + B) for some A > 0 and B € R™.
Thus the theorem is proved.
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