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SYSTEMATIC ESTIMATION AND PREDICTION
FOR PROCESSES WITH BOUNDED SUM

A minimax n-estimator (see Section 1) of the parameter m = (my,...,
m,), m; = E(X;), is determined for the loss function (2) in the case when
the random variables Xj, ... , X satisfy the conditions

X]ZO,...,X,»ZU, X1+...+X,-S8.

The problem of minimax n-prediction for such a process is also solved.

1. Let X = (X3,...,X,) be a random variable satisfying the conditions
1) X;>0,...,X,20, X1+...+X,=3, s>0,7€{23,..}).

Let X .. xM x0) = (x@,...,x9), j = 1,...,n, be indepen-

dent random variables having the same distribution as X. Let X® =

(X(l),_“,)((k))’ k=1,...,n, my = E(X;), i = 1,...,7. We consider

the situation when the statistician estimates systematically the parameter

M = (my,...,m,) in steps 1,...,n on the basis of X(1),..., X(®) respec-

tively, and when the loss function is the sum of the losses at particular steps.
he sequence

d(X) = (dDXW),...,d"(X™)}, X =X™,
where
dB(RW) = (@I(XW),...,dB X ")),
is called an n-estimator.
Let the loss function be

n T
@ Lm,d)= Y ex Y eii(@dIXD) - p)(d(XP) - py),
k=1 i,j=1
l.--"-"‘—-—-_
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where ¢ > 0, k = 1,...,n, at least one ¢; > 0, and the matrix C = ||e;;||]
is symmetric and nonnegative definite.

The problem is to determine a minimax n-estimator for the above loss
function.

Let

k
y® = ZX?)’ k=1,...,n, Y8 = (Yl(k)" ..,YJ*)).

Consider the n-estimator d(X) for which

()
Mgy = Yi thie . -
(3) d{P (X *)) e o Loaoy ¥ Bmidyaaoyiiy

where 8; > 0,Y°7_, B; = 8, a > 0. For this n-estimator the risk function is
R(m,d) = E[L(m, d(X))]

Y + 8 Y/ + B;
Z%Z% [( k:f _m*)(J_kw-_ai!'"mj

i,j=1

x Y i BIYSP — m)(VY — m;)] + o(B; — mi)(B; — m;)}

i,j=1

=) (_k_:_tﬁ Y cilRE(XiX;) - kmim; + o (8; — mi)(8; — m;)].
=1 i,j=1
But

(4) E ¢ii XiX; —szc,,
i,j=1
_Zc,,xx—-z:c,,xx Ec,,xx

5,5=1 i,j=1 i,j=1

= - Z(c,, + ¢jj — 2¢i;)XiX; <0,
t.J—I

since the matrix C is nonnegative definite and X; > 0. Hence

n ck
(5) R(m,d)< ; T ap
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r

X { Z c;j[-km,-m,- 4 az(ﬁ,- - mi)(ﬂj - m_,)] + ks Z c,-.-m,-} "
$,j=1 i=1
Suppose that

(6) E(_kch.)z( -k)=0

For the parameter o determined in this way we have from (5)

(1) R(m,d) < Z T + — [ E ¢ii(BiBj—~2B;m:)a +k E iy

lJ_ ,J_l
= Z (kc_’;_a&)g [ Z ljﬁlﬂj + z (C“ 2C‘J)ﬂjm'] .
i,j=1
Let
8 P(X = &) = mi/s < pi,

Where ¢; = (s,0,...,0), ..., e, = (0,0,...,s). Then
E(X,) = m;, E(X,'Xj) =0 fori -',é 7 E(X?) = 8m;
and
9  R(m,d)= z N +a)2{ E i + 3 (e = 2¢i5)Bjmi }
ji= i,7=1

Suppose that there exist a set A CR={1,...,7},]|A| > 2, and constants
15-..,Br,v such that

(10) S (ei—2ci)Bi=v  ifi€ A,
JEA

(11) Y (cii—2ei)8;<v  ifi€ R-A4,
i€a

Bi>0foric A, B;i=0forie R— A, e ﬂ,-:.s. From [5] it follows that
either such a set A and constants i, ..., ﬂ,. exist, or ¢;j = const.
We prove that for By,..., 08, chosen in this way and a determined from

(6) the n-estimator (3) is minimax.
Let By,...,Br,v be chosen according to (10) and (11). For a being the
solution of (6) we find from (7) and (9) that

R(m,d) = ; (kciaa)z ( ‘Z_I ¢ijBiB; + vs) L

if X is distributed according to (8) and
R(m,d)<c



164 S. Trybula

for any distribution of X.

One can view the problem of determining a minimax n-estimator of the
parameter m = (my,...,m,) as the problem of finding a minimax strategy
in a game against nature: the nature chooses a distribution of the random
variable X, the statistician chooses an n-estimator of m = E(X) and the
payoff is a risk function R(m,d). Choose a mixed strategy 7 for the nature
in the following way:

First choose the parameter p = (p1,...,p,) according to the density

I'( E}=l a"j) Xy -1 pt.:!." -1
I(ai)...M(a;)" " 770
(12)  g(p1y.--rpr) = “ e :
PrzeesBs if pi;, >0, EL:Ps‘.‘—‘l,
0 otherwise,
{i1,...,4q} = A, a; = Bia/s (a and f; determined in (6), (10) and (11)),
and later choose the distribution P of the random variable X according
to (8).
It can be verified that the n-estimator d defined by (3), (6), (10) and

(11) is Bayes with respect to such a mixed strategy of nature and thus it is
minimax.

2. Let the random variable X = (Xj,..., X,) satisfy the conditions
X120,...,X,20, Xj3+...+X,<s8, 8>0,7€{1,2,...},

and let the loss function be given by (2). Define X,y =s— Y I_; X; and
Cig41 =0fori=1,...,74 1. Then we are in the situation considered in
the previous section and a minimax n-estimator may be determined using
the formulae (3), (6), (10) and (11) for R = {1,...,7 + 1}.

3. Let X = (Xy,...,X,) be a random variable satisfying the conditions
(1) and let X, ..., X(n4+1) X&) = (xD, X9 j=1,...,n+1,be
independent random variables having the same distribution as X. Define

)?("‘1=(X(‘),...,X(")), k=1,...,n,

k n+1
=X vr= ) X i=l..r,
t=1 t=k+1

Yk = (YF,..., Y5, P=0...,Y"), X=X,
At the kth step we predict the random variable Y? using X(¥). Since the

random variables X (‘)jn Y? are known for ¢ < k it is sufficient to predict
at this step Y* using X(¥). Then let

d(X) = {dV(XDM),...,d"(X™)}, where
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dB(X®) = (dN(XB),...,d(XE)),
be an n-predictor of Y. Let the loss function be
n T
L(Y,d) =) ea Y eii(dP(X®) - vF)d(XB) -1},
k=1 i,7=1

Where ¢, and ci; satisfy the same conditions as in Section 1. For this loss
function the risk function can be represented in the form

=Y o 3 ei{E[(dP(XP) - (n — k + 1)m;)
k=1 i,j=1
X (X D) - (n— k + 1)m;)
+ E[(Y} - (n = k+ 1)ma)(Yf = (n = k+ 1)m;)]} .
Notice that the second term does not depend on the n-predictor d.
Let us study the n-predictor for which
Y® + pia
k+a

For this n-predictor the risk function is
(14)  R(m,d)

. zﬂ:c,‘{ » c.,{[("’ k"'l) k+n—k+1]E(Xin)

hi=

[( k+1) k)—(n—k+l)]m.-m,-

+ (B'%_f—.H‘) *(BiB; - 2miﬂ:‘)}}

ch{ e [(%’T)z(a=—k)—(n—k+l)]m.-mj

i,j=1

vt (22 41) (g, - amiy

Sl rseo)

(13) dPER®) = (n - k+ 1) , i=l..,nk=1,...,n

i,j=

by (4).
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Let @ > 0 be a solution of the equation

(15) ¢(a)=§ck[(“ "‘“) ( 3—k)—(n—k+1)]:~0.

This solution always exists except for the case when
(16) €} =...=Cp-1, ©Cun>0.
Under the condition given in (15) the inequality (14) takes the form

r 2
R(m, d) < E Ckaz (%‘1") [ Z ct;ﬁ:ﬂ: + Z (C-u 2ct_?)mlﬁj]
k=1

i,j=1 i,Jj=1
Notice that the expression in square brackets is the same as that in (7).
Moreover, the predictor d given by (13) is Bayes with respect to the strategy
of nature 7 defined in (12) (with a obtained from (15)). Then in the same
way as in Section 1 one can prove that the n-predictor defined by (10), (11),
(13) and (15) is minimaz.

When conditions (16) hold there does not exist a solution @ > 0 of the
equation ¢(a) = 0 but still p(a) — 0 as @ — oco. In this case one can prove
that the n-predictor d for which dﬁ“’(}?(")) = f;, P; determined by (10) and
(11), is a Bayes predictor of ¥ with respect to the strategy o for which the
condition (8) holds and

P(m;=p;foric A,m;=0fori¢g A)=1.

Then this n-predictor is minimaz.

4. Similarly to Section 3 one can solve the problem of minimax n-
prediction when

X120,...,X, 20, Xi+...4+X,<8, re{l,2,..},8>0.
For related problems see [1]-[5].
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