S. TRYBULA (Wrocław)

MINIMAX PREDICTION OF THE DIFFERENCE OF SAMPLE DISTRIBUTION FUNCTIONS

In the paper a minimax predictor of the difference of sample distribution functions is determined for the loss function (1).

Suppose that the random variables X and U are distributed according to the unknown distribution F, and the random variables Y and V are distributed according to the unknown distribution G. Let $\overline{X} = (X_1, \ldots, X_m)$, $\overline{U} = (U_1, \ldots, U_n)$ and $\overline{Y} = (Y_1, \ldots, Y_m)$, $\overline{V} = (V_1, \ldots, V_n)$ be independent random samples from F and G, respectively. Set

$$\check{F}(t) = \frac{1}{n} \sum_{i=1}^{n} \delta_{U_i}(t), \quad \check{G}(t) = \frac{1}{n} \sum_{i=1}^{n} \delta_{V_i}(t),$$

where, for a random variable Z,

$$\delta_Z(t) = \begin{cases} 1 & \text{if } Z \le t, \\ 0 & \text{if } Z > t. \end{cases}$$

Let $\varphi(t) = \varphi(t; \overline{X}, \overline{Y})$ be a predictor of $\check{F}(t) - \check{G}(t)$. We suppose that the loss function associated with the predictor $\varphi(t)$ is

(1)
$$L(\check{F}, \check{G}, \varphi) = \int_{-\infty}^{\infty} (\varphi(t) - \check{F}(t) + \check{G}(t))^2 w(dt),$$

where w is a non-zero finite measure on $(\mathbf{R}, \mathcal{B})$, \mathcal{B} being the σ -field of Borel subsets of $\mathbf{R} = (-\infty, \infty)$.

We solve the problem of determining a minimax predictor of $\dot{F}(t) - \dot{G}(t)$ for this loss function.

Let us study a predictor of the form

$$\varphi(t) = a(\widehat{F}(t) - \widehat{G}(t)),$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 62F15.

Key words and phrases: minimax prediction, cumulative distribution function, sample distribution function.

where

$$\widehat{F}(t) = \frac{1}{m} \sum_{i=1}^{m} \delta_{X_i}(t), \quad \widehat{G}(t) = \frac{1}{m} \sum_{i=1}^{m} \delta_{Y_i}(t).$$

The risk function for this predictor is

$$\begin{split} R(F,G,\varphi) &= E[L(\check{F},\check{G},\varphi(t;\overline{X},\overline{Y}))] \\ &= \int\limits_{-\infty}^{\infty} E[(a(\widehat{F}(t)-\widehat{G}(t))-(\check{F}(t)-\check{G}(t)))^2] \, w(dt) \\ &= \int\limits_{-\infty}^{\infty} \left\{ \left(\frac{a^2}{m}+\frac{1}{n}\right) [F(t)(1-F(t))+G(t)(1-G(t))] \right. \\ &+ (1-a)^2 [F(t)-G(t)]^2 \right\} w(dt) \, . \end{split}$$

Let

$$\frac{a^2}{m} + \frac{1}{n} = 2(1-a)^2$$

which is satisfied if

(2)
$$a = \frac{2 - \frac{1}{n}}{2 + \sqrt{\frac{2}{m} + \frac{2}{n} - \frac{1}{mn}}}.$$

For this a the risk is

$$R(F,G,\varphi) = (1-a)^2 \int_{-\infty}^{\infty} \left[2(F(t) + G(t)) - (F(t) + G(t))^2 \right] w(dt).$$

For fixed t the expression in square brackets attains its maximum when F(t) + G(t) = 1. Then for

(3)
$$\varphi_0(t) = \frac{\left(2 - \frac{1}{n}\right)(\widehat{F}(t) - \widehat{G}(t))}{2 + \sqrt{\frac{2}{m} + \frac{2}{n} - \frac{1}{mn}}}$$

we obtain

(4)
$$R(F,G,\varphi_0) \leq (1-a)^2 \int_{-\infty}^{\infty} w(dt) \stackrel{\text{df}}{=} c.$$

We shall prove that the predictor $\varphi_0(t)$ is minimax.

The considered problem of determining a minimax predictor of $\check{F}(t)$ – $\check{G}(t)$ can be viewed as a problem of finding the optimal strategy in a game against nature. The nature chooses cumulative distribution functions F(t)

and G(t), the statistician chooses a predictor $\varphi(t)$ and the payoff function is given by (1). Let us define a sequence τ_k of mixed strategies of nature which will be used in the proof of the optimality of the strategy $\varphi_0(t)$.

Choose the parameter p according to the density

(5)
$$g(p) = \begin{cases} \frac{1}{B(\alpha, \alpha)} [p(1-p)]^{\alpha-1} & \text{if } 0$$

and then, for given p, choose the distributions F(t) and G(t) of the form

(6)
$$F(t) = \begin{cases} 0 & \text{if } t < -k, \\ p & \text{if } -k \le t < k, \\ 1 & \text{if } t \ge k, \end{cases} \quad G(t) = \begin{cases} 0 & \text{if } t < -k, \\ 1 - p & \text{if } -k \le t < k, \\ 1 & \text{if } t \ge k. \end{cases}$$

For any predictor $\varphi(t)$ we have

$$\begin{split} R(F,G,\varphi) &= \int\limits_{-\infty}^{\infty} \left[E(\varphi(t) - F(t) + G(t))^2 \right. \\ &+ \left. \frac{F(t)(1-G(t))}{n} + \frac{G(t)(1-G(t))}{n} \right] w(dt) \,. \end{split}$$

Notice that the second and the third terms in square brackets do not depend on $\varphi(t)$.

Let F(t) and G(t) be given by (6), where the parameter p has the distribution (5). For the strategy τ_k the expected risk is

$$r(\tau_k,\varphi) = \int_{-\infty}^{\infty} E_{\tau_k} [E(\varphi(t) - F(t) + G(t))^2] w(dt) + r_0(\tau_k),$$

where $r_0(\tau_k)$ does not depend on φ and $E_{\tau_k}(\cdot)$ is the expectation with respect to the density g(p) in the strategy τ_k . Thus, in order to minimize the expected risk $r(\tau_k, \varphi)$, it is sufficient to minimize $E_{\tau_k}[E(\varphi(t) - F(t) + G(t))^2]$ for any fixed t. This leads to the Bayes predictor with respect to τ_k

$$\varphi_{\tau_k}(t) = \begin{cases} 0 & \text{if } t < -k, \\ m \frac{\widehat{F}(t) - \widehat{G}(t)}{m + \alpha} & \text{if } -k \le t < k, \\ 0 & \text{if } t > k. \end{cases}$$

Assume

$$\alpha = \frac{2mn}{2n-1} \left(\frac{1}{n} + \sqrt{\frac{2}{m} + \frac{2}{n} - \frac{1}{mn}} \right).$$

In this case $\varphi_{\tau_k}(t) = \varphi_0(t)$ if $-k \le t < k$, and since under τ_k we have F(t) + G(t) = 1 for $-k \le t < k$, the Bayes risk $r(\tau_k, \varphi_{\tau_k})$ is

$$r(\tau_k, \varphi_{\tau_k}) = (1-a)^2 \int_{-\infty}^{\infty} I_{(-k,k)}(t) w(dt),$$

where $I_A(t)$ is the characteristic function of the set A and a is given by (2) (compare with (4)).

From the above it follows that

(7)
$$\lim_{R\to\infty} r(\tau_k,\varphi_{\tau_k}) = c.$$

From (4) and (7) it follows that $\varphi_0(t)$ given by (3) is a minimax predictor of $\check{F}(t) - \check{G}(t)$.

If the measure w is concentrated at one point, say t_0 , then the problem reduces to that of determining a minimax predictor of the random variable $\check{F}(t_0) - \check{G}(t_0)$, which is, after multiplication by n, a difference of binomial random variables.

For problems of estimation of a cumulative distribution function see [1], [2], [4], [5]. Minimax estimators of a cumulative distribution function for four loss functions of type (1) were found by Phadia in [3].

References

- O. P. Aggarwal, Some minimax invariant procedures for estimating a cumulative distribution function, Ann. Math. Statist. 26 (1955), 450-462.
- [2] A. Dvoretzky, J. Kiefer and J. Wolfowitz, Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator, ibid. 27 (1956), 642-669.
- [3] E. G. Phadia, Minimax estimation of a cumulative distributions function, Ann. Statist. 1 (1973), 1149-1157.
- [4] R. R. Read, The asymptotic inadmissibility of the sample distribution function, Ann. Math. Statist. 42 (1972), 89-95.
- [5] S. Trybuła, Estimation of the difference of cumulative distribution functions, Bull. Polish Acad. Sci. Math. 32 (1984), 243-246.

STANISŁAW TRYBUŁA INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY OF WROCŁAW WYBRZEŻE WYSPIAŃSKIEGO 27 50-370 WROCŁAW, POLAND

Received on 11.7.1990