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FULL-INFORMATION BEST CHOICE PROBLEMS
WITH IMPERFECT OBSERVATION
AND A RANDOM NUMBER OF OBSERVATIONS

1. Introduction. The following full-information best choice problem
Was studied by Gilbert and Mosteller [3]. A known number, K, of iid r.v.’s
X1,...,Xk from a known continuous distribution F are observed sequen-
tially with the object of choosing the largest. After X, is observed it must
be chosen (and the observation is terminated) or rejected (and the observa-
tion is continued). Neither recall nor uncertainty of selection is allowed and
one choice must be made.

For a finite number of observations this problem was solved basing on
a heuristic argument by Gilbert and Mosteller [3]. The so-called monotone
case was obtained. The optimal strategy is to accept (if possible) the first
Observation X, which is largest so far and exceeds z,, where the sequence
of the optimal decision labels z;,...,zk is non-increasing.

The full-information best choice problem when the number of observa-
tions K is random was first posed by Sakaguchi [6] and Bojdecki [1] in some
continuous time version. Porosiiiski [4] has characterized a class of distribu-
tions of K for which the monotone case occurs and has given the solution
for this case. The special examples when K is geometric or uniform were
considered in detail.

The problem with imperfect observation was first considered by Enns
[2]. In his model the number of observations is known and the only available
information is whether the observed r.v. is greater than, or less than some
level specified by the observer (the exact value is not known). This model
could describe e.g. the situation in destructive testing where each item is
tested on whether it breaks or survives at some level of strength. This
Corresponds to the single level case of Gilbert and Mosteller [3]. Sakaguchi
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[6] generalized Enns’ model to five natural kinds of objectives and two types
of strategies.

In this paper the full-information best choice problem with imperfect
observation is considered when the number K of observations is allowed to
be a r.v. with known distribution. Since K is unknown the observer faces
an additional risk. If he rejects any observation, he may then discover it
was the last one, in which case he receives nothing at all.

We shall consider the following five cases where the objective is to choose:

(A) the largest r.v. by accepting one r.v.;

(B)  the largest or the second largest by accepting exactly once;
(C) the largest by accepting twice;

(D) both the largest and the second largest by accepting twice;
(E) the largest or the second largest by accepting twice.

The optimal strategy for each of these problems when K is geometric or
uniform is obtained. In the uniform cases (A)-(E) and in case (E) when K
is concentrated at N (this case was not considered by Sakaguchi [6]) simple
asymptotically optimal strategies are found and the asymptotic probabilities
of winning are obtained.

2. Preliminaries. Assume that X;, X,,... is a sequence of iid r.v.’s
with a continuous distribution function F, defined on a probability space
(2, F, P), and the number of observations K is a r.v. independent of the
sequence (X,)32, with a known distribution

(e 0]
P(K:n):pm n=012,..., ZPn=1-

n=0

Consider the five cases (A)—(E) of the full-information best choice prob-
lem defined in the introduction. The observer specifies a decision level L and
is only informed whether the observed r.v. is either greater or less than L.
As long as the observation is less than or equal to L it is rejected and as soon
as it is greater it is accepted. If the r.v. K is bounded, i.e. P(K < N)=1
and py > 0, then the observer slightly modifies his strategy. If no r.v. is
accepted until N — 1 for Cases (A) and (B) then the last observation Xy is
accepted (if it occurs) with respect to its value (i.e. the decision level for N
is 0). Analogously for (C), (D) and (E), if no r.v. is accepted until N — 2
or one r.v. is accepted until N — 1 then the last two r.v.’s are accepted or
the last r.v. is accepted, respectively.

In each problem an event in which the objective is achieved is called a
win and its probability is called the probability of winning. A strategy which
maximizes the probability of winning is called optimal.
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Since the distribution F is known and continuous, without loss of gen-
erality it is assumed in the next sections that the observations have the
Uniform distribution on [0, 1].

3. Probabilities of winning. Let N = sup{n : p, > 0} (N = +o0 if
is an unbounded r.v.).

Case(A).IfeitherZSn.(NandlgsSn,orn=Nandlgs<N,
en
P(stop at s& win | K = n)
= P(Xl < La-'-':Xa-l < Ls X, > L, Xa+l < Xn-“$Xn < Xa)
1
=L [&}"*de, = (L' - L")/(n— s +1).
L
MUl'eover,
P(stop at N & win | K = N)
= P(Xl <L,...,.Xya<LXn> max(X,,...,XN_l))
=LN-1(1-L)+ LN/N.
Thus

n

N
P(win) = EP“L“ Z(L"' —1)/r+pnLV/N.
n=1 r=1
The second term on the right side of the above equality is the additional
Probability which results from the modification of the strategy at the last
Step when the number of observations is a bounded r.v.
" Case(B).Ifeither1<n<Nand1<s<n,orn=Nand1<s< N,
en

P(stop at s & win | K = n)
= P(Xl < L,----:Xa—l < L9 X, > L, max(X,H,...,Xn) <X,

or exactly one of X,41,..., X, is greater than X,)
1
=L [ (a2 4 (n—9)2l ™7 (1 - 2,)) da,s
L

=LY 1-L"° = (n—-s~-1)(1-L"**)/(n-s+1)).
MOl‘eover,
P(stopat N & win | K=N)=P(X; <L,...,XN-1< L,
X is greater than the second largest of X1,...,Xn-1)



182 Z. Porosiiski

L y
= [dy [(N-1)(N-2)2"3(1-2)dz=LN-'(1- L)+ 2LN/N.

Thus

N n
P(win) =) pa LY (AL =1)/r— L7}(1 - L)) + 2pNLV /N .
n=1 r=1
Case (C). In this case the observer can win if he stops once or twice
up to moment K. Ifeither 1 <n< Nand1<s<t<mn,orn=N and
1<s<t< N, then

P(stop at s &t & win | K = n)
= P(xl S L,”'!XS-I S Ls Xl > L: X.H-l S L!'”:Xt—l S L?
Xg > L, XH-] < max(X,,Xg),...,X,, < ma.x(X,, Xg))

1 1
=2L*? [ dz, [ 2}~tdz
L

=2L"%(1-1L —'(1 ~ L")/ (n-t+2))/(n—-t+1).

Ifeitherl1<n<N-landl<s<norn=N-1land1<s< N -2
then

P(stop at s & win | K = n)
=P(X1<L,....;. X1 <L, X,>L, Xg41 L L,..., X, < L)
=L (1-1L).
For1<s< N-2,
P(stop at s &no stopat N —1 & win | K = N) = LN-?(1 - L).
Moreover,
P(no stop in {1,...,N—-2} & win | K =N - 1)
= P(max(Xy,...,XN=2) < L, Xn-1 > max(Xy,...,XN-2))

= [ (= )V = 2 dy = LY - 1y 4 2L - 1),
0

P(no stop in {1,...,N -2} & win | K = N)
= P(ma'x(xls”';XN-2) < L$
max(Xn—_1, Xn) > max(Xy,.., Xn-2))

L
= [(-9*) N -2y 2dy=LN*(1- L*)+2LV/N .
0
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Thus

N n N
P(win) = Y 2p L") (L= 1)/r =) pu(n—2)L"'(1 - L)
n=1

n=2 r=2

+ N1 LV7V(N = 1)+ 2pN LN /N .

Case (D). If either 1 <n < Nand1<s<t<mnorn=N and
1<s<t<N-1,then

P(stop at s&t& win | K = n)
- P(Xl S Lv---sXs—l S Ls Xa > L, Xs+1 S L"'-sX!—l _<. L;
X > L, XH.] Smin(X,,Xg),...,Xn Smin(X,,Xg))

1 1
=20 [ dz, [ 22 tdz,
L

=2L"%(1 - (n—t 4 2)L" !
+(n=t+1)L" ")/ (n-t+1)(n-t+2).
Fori<s<nN-2

P(stop at s&no stop at N — 1& win | K = N)
L
=(1-L) [(1-y)(N -2y 2dy
0

=(1-L)(IN"?(1-L)+2LN V(N -1)).
Moreover,

P(no stop in {1,...,N —2} & win | K = N)
= P(maX(Xl,...,XN_z) < Ls min(XN-—laxN) > max(Xl)°-'1XN—2))

L
= f (1-9)%N-2)y"3dy
= (N -2)LN-?(1/(N - 2) —2L/(N — 1) + L*/N).
Thus
N n
P(win) = Z 2p, L™ Z(n —r+ 1)(L7"=1)/r= (L7 =1))/(r-1)
n=2 r=2

+on((1+1/(N = 1)LN"1 = (1-1/(N - 1) + 2/N)LY).

Case (E). If either 1<n< N and 1<s<t<n, or n=N and
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1<s<t< N, then

P(stop at s &t & win | K = n)
=P(X1 £L,...,;Xe1 S L, X,>L, Xe1 L L,..., X1 L L,
Xt > L, the second largest of X;41,..., Xy is < max(X,, X¢))

1 1
=202 [ dz, [ (n-t)1-2)2p~" + 277" da
L T,

=2L2(2(1- L) - (1 - L™
+(n—t=1)(1 =L /(n—t+2)/(n—t+1).

Ifeither1<n< N-landl1<s<n,orn=N-landl1<s<N-2
then

P(stop at s & win | K = n)
= P(Xl <L,..,Xs-1<L, X;> L, Xa+1 <L,...,Xn < L)

=L*1(1-1).
For1<s< N -2,
P(stop at s &no stopat N —1& win | K = N) = LN-%(1 - L).
Moreover,

P(no stop in {1,...,N=2} & win | K =N -1)
= P(max(X1,...,Xn-2)< L,
XnN-1 > second largest of Xy,...,Xn-2)

1 z
= [dz [(1-y)(N-2)(N-3)y"*dy

= LN-¥(1-L)+ 2LV /(N -1),
P(no stopin {1,...,N =2} & win | K = N)

L z
= [dz [(1-y*)(N-2)(N-3)y"*dy
=IN-2_(N-3)(N-2)LN/(N-1)N.
Thus

N
P(win) = Zp,;nL"'l(l - L)+ 2pn1 LN Y/(N -1)

n=1

+pN(4N = 6)LN /(N = 1)N
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n

N
+ ) 2pa L™y (n—r+1)((2r - 3)L7"/r

n=2 r=2

2L 4 L7 — (r = 3)/7)/(r - 1).

It is impossible to check open forms of optimal strategies when the dis-
tribution of the number of observations is not specified. In the next sections
Optimal strategies and probabilities of winning are given when K has geo-
metric or uniform distribution.

4. Optimal strategies for K geometric. Let K be a geometrically
distributed r.v., i.e. p, = pg" forn =0,1,2,...,0<p<1l,p+g=1.1In
this case our results are summarized in the following theorem.

THEOREM. Under the assumptions of Section 2 for K geometric the
solutions are:

Case (A):

Case (B):

Case (C):
Case (D):

Case (E):

If p < €71 then the optimal decision level is L* = (1 — ep)/q
and the probability of winning is P(win) = e~ = 0.36789. If
p> e ! then L* = 0 and P(win) = —pln p.

If p < a, where a = 0.30171 is a root of the equation 2z —
2lnz — 3 = 0 in (0,1) (or equivalently if 2p — 2Inp — 3 > 0)
then L* = (1 — a~'p)/q and P(win) = a(2 — a) = 0.51239. If
p > a then L* = 0 and P(win) = p(p— 1 —21np).

The solution is identical with Case (B).

If p < a, where a =2 0.28466 is a root of the equation 2z Inz —
z+1=0 in (0,1) (or equivalently if 2plnp — p+ 1 > 0) then
L* = (1-a~'p)/q and P(win) = a(1-a) 22 0.20363. Ifp > a
then L* = 0 and P(win) = 2p(plnp—p + 1).

If p < a, where a = 0.23978 is a root of the equation 8z —
4(z + 1)lnz — 9 = 0 in (0,1) (or equivalently if 8p —
4(p+1)Ilnp—9 > 0) then L* = (1 — a~'p)/q and P(win) =
a(ba—5—2(a+2)Ina) 2 0.62244. If p > a then L* = 0 and
P(win) = p(5p — 2(p + 2)Inp — 5).

Proof. In Case (B) we obtain

P(win)

> pg" L™y (2L - 1)/r— L7'(1- L))
=1 r=1

f:p(z(rf 1)fr— L1 - 1) 3 (gL

n=r

»(2 zqu — 23 (aLy /- L1 - 1)y (ab")(1 - oL)

r=1 r=1
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= (p/(1 - ¢1))(p/(1 - ¢L) - 2In(p/(1 - L)) - 1).

Let p/(1 —gL) = z. Since 0 < L < 1 we have p < z < 1. The function
f(z) = z(z —2Inz — 1) in (0,1), connected with P(win), has a unique
local extremum (maximum) in (0, 1) at the point a for which the derivative
f'(z) = 2z — 2In z - 3 is equal to zero. So, since z € [p, 1] the function f(z)
attains its maximum at a if p < a (or equivalently if f’(p) > 0), and at p if
p> a. Thus L* = (1 — a'p)/q and P(win) = f(e) =a(2-a)if p < a,
and L* = 0 and P(win) = f(p) if p > a. The Theorem is thus proved for
problem (B). The proof for the remaining cases is analogous. We obtain the
functions connected with P(win):

zlnz for (A),
_Jz(z-1-2hz) for (C),
fl@) = 2z(1-z+zhhz) for (D),

z(52 —5—2(z 4+ 2)Inz) for (E),

where z = p/(1 — ¢L), and find their maxima in [p, 1] as previously. This is
easy, hence full particulars are omitted.

5. Optimal strategies for K uniform. Let K be uniformly dis-
tributed on {1,...,n},i.e. pr = 1/nfor k = 1,...,n. In this case denote
the probability of winning at level L by P(L,n), the optimal decision level
by L(n) and set P(L(n),n) = P(n). From the formulae for P(win) it is
easy to get, by changing the order of sums and after some simplifications,
the following;:

Case (A):

P(L,n) = (n(1 = L))~ iu — L)1 = L™ ) [r 4 L™ [n?,

r=1

Case (B):

P(L,n) = (n(1-L))7 (L*-1+2 :EI(I—L‘")(l—L“""“)/r)+(1+2/n2)L”‘,
Case (C):

P(L,n) = (n(1 - L))~ (Ln-2 —L?+2 2(1 — L7)(1 - L*-mH )/r)

+(1-L-(n-2)L"Y/(n-1)-L*? 4+ (n—2+2/n)L")/n,
Case (D):

P(L,n)=2n"1(1 - L)? i(u = L)+ L (1= L7))/r(r = 1)

r=2
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+2(n(1 - L))~1L"H i(n —r+ 1)1 =L")/r(r-1)

r=2

=2(n(1- L))" ) (L™ = L* = (n— r+ 1)L™(1 = L))/(r - 1)
r=3

+((1+1/(n = 1)L = (1= 1/(n - 1)+ 2/n)L")/n,
Case (E):
P(L,n)=2(L"" + (2n - 3)L"/n)/n(n - 1) - L™

+2(n(1 - L))" ) (201 = L™ (L7 - L)/(r - 1)
r=2

—6n71(1-L)2 i(l — L)1 = L* ™Y /r(r-1)

r=2

—2n71L" i(n —r+ 1)L +1)/(r-1)

r=2
- 6(n(1 — L))~1L"H Z(n —r4+ 1)L =1)/r(r-1).

Numerical results on optimal declsmn levels L(n) for which the probabil-

ities of winning attain their maxima P(n) and the values of P(n) are given
in Table 1.

In each case as n grows large L(n) tends to 1 but in such a manner that
it is approximately linear in 1 /n:

L(n)=1-a/n+0o(1/n),
Or in other words,
n(l—L(n)) > a or L"—e @,

USlng the above property in the formulae for P(L,n) we find by passing to
the limit that P(n) — P(a), where
Case (A):

P(e) = (-hi(-a) - e™*L(a))/e,
Cases (B) and (C):

Pla) =™ ~ (1 -e™%)/a+2(-N(~a) - e™*L1(a))/a,
Case (D):

P(a) = —2e7%(1+ Ix(a))

+2(e*(h(e) - I(a)) - (i(-a) - [(-a)))/a,
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TABLE 1

The optimal decision levels L(n) and the optimal probabilities
of winning P(n) for K uniformly distributed on {1,...,n}

Case (A): largest when accepting once

n L(n) P(n) n L(n) P(n)
2 0 0.75 11 0.7544 0.4791
3 0.2403 0.6346 13 0.7904 0.4708
4 0.3934 0.5791 15 0.8173 0.4647
5 0.4970 0.5463 20 0.8617 0.4549
6 0.5711 0.5257 30 0.9069 0.4453
7 0.6265 0.5108 50 0.9438 0.4376
8 0.6694 0.4998 70 0.9597 0.4344
9 0.7035 0.4913 100 0.9717 0.4319

10 0.7313 0.4846 00 0.4263

L(n) = 1—2.8397/n+1.516/n%, P(n) = 0.42632+0.561/n+
0.22/n? with error less than 0.0001 for n > 10

Case (B): largest or second largest when accepting once

n L(n) P(n) n L(n) P(n)
2 0 1 11 0.6728 0.6694
3 0 0.8889 13 0.7207 0.6577
4 0.1914 0.8098 15 0.7565 0.6492
5 0.3295 0.7642 20 0.8156 0.6355
6 0.4285 0.7346 30 0.8759 0.6219
7 0.5024 0.7138 50 0.9250 0.6112
8 0.5595 0.6984 70 0.9463 0.6066
9 0.6050 0.6865 100 0.9623 0.6032

10 0.6420 0.6771 oo 0.5953

L(n) = 1-3.7900/n+2.091/n%, P(n) = 0.59531+0.789/n+
0.29/n2 with error less than 0.0001 for n > 10

Case (C): largest when accepting twice

n L(n) P(n) n L(n) P(n)
3 0 0.8889 13 0.7211 0.6578
4 0.1994 0.8105 14 0.7401 0.6532
5 0.3345 0.7648 15 0.7567 0.6493
6 0.4316 0.7351 20 0.8157 0.6355
7 0.5044 0.7142 30 0.8759 0.6220
8 0.5609 0.6987 50 0.9250 0.6112
9 0.6060 0.6867 70 0.9463 0.6066

10 0.6428 0.6773 100 0.9623 0.6032

11 0.6733 0.6696 oo 0.5953

12 0.6991 0.6632

L(n) =1 - 3.7900/n + 2.10/n? for n > 15 and
P(n) = 0.59531 + 0.789/n + 0.31/n? for n > 10
with error less than 0.0001
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Case (D): largest or second largest when accepting twice

n Ln) P(n) " L(n) P(n)

3 0 0.4444 13 0.6984 0.2961

4 0.1689 0.3911 14 0.7188 0.2935

5 0.2979 0.3613 15 0.7367 0.2912

6 0.3951- 0.3425 20 0.8001 0.2834

T 0.4699 0.3295 30 0.8653 0.2759

8 0.5287 0.3201 50 0.9185 0.2700
-9 0.5761 0.3130 70 0.9416 0.2675
10 0.6150 0.3074 100 0.9590 0.2657
11 0.6474 0.3029 o0 0.2614

12 0.6749 0.2992

L(n) =1 — 4.1255/n + 2.60/n for n > 15 and
P(n) = 0.26140 + 0.422/n + 0.38/n? for n > 10
with error less than 0.0001

Case (E): largest or second largest when accepting twice

n L(n) P(n) n L(n) P(n)
3 0 1 13 0.6202 0.7868
4 0 0.9583 14 0.6462 0.7815
5 0.0855 0.9096 15 0.6689 0.7770
6 0.2206 0.8755 20 0.7493 0.7611
i 0.3220 0.8515 30 0.8313 0.7453
8 0.4002 0.8337 50 0.8980 0.7327
9 0.4624 0.8201 70 0.9269 0.7276

10 0.5130 0.8092 100 0.9487 0.7238

11 0.5549 0.8003 o0 0.7143

12 0.5901  0.7930
L(n) =1 — 5.15283/n + 2.79/n?,
P(n) = 0.71427 + 0.930/n — 0.14/n?
with error less than 0.0001 for n > 15

Case (E):
Pla)=5(1-e"*)/a+ e *(1+ 6I(a) - 4L ()
+ 2(e"*(3Lx(a) — 5I1(a)) — 3Ix(—a) + L(-a))/a,

where

L(a)= [o7'(e* —1)dz, h(e)= [a7*(e*—2z—1)dz.
0 0
For example in Case (C) as n tends to infinity we have

1
P(a)=a"! (e_“ -142 f z"l(l — €e79%)(1 = e~ata) d:c) +e°
0
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0 o
=e—(1-e)/a+2( [ a7 (" ~1)dz—e [27I(e" = 1)dz)/a.
0

-

From the necessary condition that the derivative of P(a) is zero we find the
unique point a at which the maximum of P(a) is attained. E.g. in Case
(C), @ is a solution of the equation

l1—e ¥ +a+1)+2a+1)e*h(a)+ h(—a)+4(e*-1) = 0.

Numerical approximations of a and the asymptotic probabilities of winning
P(a) are presented in Table 1.

6. Optimal strategy for fixed K in problem (E). Now suppose
P(K = n) = 1 for some n > 2. Then the probability of winning at level L
is

P(win) = nL™ (1= L) 4 (4n — 6)L™/(n— 1)n

n

+2L"Y (n—r+1)

r=2

X(2r=3)L7"/r=2L""Y 4+ L7 —(r-3)/7)/(r - 1).

Numerical results on the optimal decision levels L(n) for which P(win) at-
tains its maximum P(n) and the values of P(n) are given in Table 2.

TABLE 2

Case (E): largest or second largest when accepting twice

n L(n) P(n) n L(n) P(n)
3 0 1 13 0.8123 0.9035
4 0.5 0.9792 14 0.8245 0.9006
5 0.5773 0.9614 15 0.8353 0.8979
6 0.6342 0.9475 20 0.8739 0.8886
7 0.6777 0.9368 30 0.9142 0.8790
8 0.7121 0.9283 50 0.9476 0.8712
9 0.7398 0.9214 70 0.9623 0.9678

10 0.7627 0.9157 100 0.9735 0.8652

11 0.7819 0.9110 oo 0.8591

12 0.7982 0.9070

L(r) =1—2.6861/n + 3.25/n% for n > 15 and

P(n) = 0.85912 + 0.612/n — 0.45/n2 for n > 10
with error less than 0.0001

The dependence of L(n) on 1/n is approximately linear:
L(n)=1-a/n+0o(1/n).
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Using the relations #(1 — L(n)) — a and L™ — e~ following from this
Property we find that if n tends to infinity P(n) tends to P(a) where

Pla)=(4-a)e™™ — 4 — 6ae™*Iz(a) + 2¢7%(2a + 3) [1(a),

and [ (a), I;(a) are defined in Section 5. o = 2.68614 is a numerical value
of & at which P(a) attains its maximum approximately equal to 0.85912.

7. Remarks

1. The full-information best choice problems when the observation is
Perfect have been solved, as far as the author knows, in Case (A) (Saka-
Buchi [5] and Bojdecki [1]) and (C) (Tamaki [7]) when the number K of
observations is known, and only in Case (A) (Porositski [4]) when K is
Tandom.

2. In Cases (C)~(E) for K geometric, when two choices are allowed, one
might suppose that the optimal strategy ought to depend on two decision
levels, but consideration of the probability of winning as a function of two
levels 0 < L1 < L; <€ 1 shows that its maximum is attained for L; = L,.
The probabilities of winning are connected with the following functions of
two variables:

z2(-1-2+2y)—(z+y)Iny - for (C),
f(z,y)=¢ 2(2-2y—-lnz+Iny+ y(lnz + Iny)) for (D),
-4z -2’ +52y—y+9y* -2(z+zy+y)lny for (E),

Where p < z = p/(1 — qL;) < y = p/(1 — qL2) < 1. These functions have no
local extrema in the interior of the triangle p < z < y < 1 and the maxima
are attained on the interval z = y. This is the reason why in this paper in
all cases only the single level strategy is considered.

3. In the geometric case it is interesting and quite unexpected that the
Probabilities of winning in all natural situations (i.e. when p is small) are
Constants independent of p (see the Theorem). It is also interesting that
in this case the more complex models have solutions which turn out to be
simpler. (Compare these with solutions of (A)—(D) when K is nonrandom
and known in Sakaguchi [6].)

4. In Case (A) for K geometric the optimal decision level does not depend
on the number of preceding observations even if the class of admissible
Strategies is not bounded (Porosiriski [4]). This interesting property of the
Optimal strategy is presumably a consequence of the memoryless property
of the geometric distribution. It seems that optimal strategies for (B)-(E)
When K is geometric ought to obey this principle. Then our results for
(B)—-(E) would also be optimal when the observation is perfect.
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5. In Case (A) for K uniform and perfect observation the probability
of winning is estimated by Porosiiski [4] as 0.4352. It is surprising that
the optimal strategy when the observation is imperfect has the probability
of winning and its asymptotic value (0.4263) only a little less, in spite of
its very simple structure (cf. Table 2 in [4]). It seems that also in Cases
(B)-(E) when K is uniform our single level strategy may be only a little
worse than the optimal strategy for perfect observation.

References

[1] T. Bojdecki, On optimal stopping of independent random variables— Probability
mazimizing approach, Stochastic Process. Appl. 6 (1978), 153-163.

[2] E. G. Enns, Selecting the mazimum of a sequence with imperfect information, J.
Amer, Statist. Assoc. 70 (1975), 640-643.

[3) J.P.Gilbert and F. Mosteller, Recognizing the mazimum of a sequence, ibid. 61
(1966), 35-T3.

[4] Z. Porosifski, The full-information best choice problem with a random number of
observations, Stochastic Process. Appl. 24 (1987), 293-307.

[8] M. Sakaguchi, A note on the dowry problem, Rep. Statist. Appl. Res. Un. Japan.
Sci. Engrs. 20 (1973), 11-17.

[6] —, Best choice problems with full information and imperfect observation, Math.
Japon. 29 (1984), 241-250.

[71 M. Tamaki, Optimal selection with two choices—full information case, ibid. 25
(1980), 359-368.

ZDZISLAW POROSINSKI

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCLAW
WYBRZEZE WYSPIANSKIEGO 27

50-370 WROCLAW, POLAND

Received on 21.11.1990



	0189.tif
	0190.tif
	0191.tif
	0192.tif
	0193.tif
	0194.tif
	0195.tif
	0196.tif
	0197.tif
	0198.tif
	0199.tif
	0200.tif
	0201.tif
	0202.tif

