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ROBUSTNESS OF TESTS BASED ON SPACINGS
IN THE EXPONENTIAL MODEL

1. Abstract. We consider the problem of testing a scale parameter of
the exponential distribution function. In the class of unbiased tests based
on spacings we find the most robust test under the violations generated by
the convex, starshaped and dispersive ordering, respectively.

2. Introduction and preliminaries. Throughout the paper we iden-
tify a probability distribution with its distribution function and assume that
all considered distributions F' are absolutely continuous (with respect to
Lebesgue measure) and F(0) = 0. The fatlure rate function of F is defined as

rr(t) = f(t)/F(t),
where f denotes the density function of F and F = 1 — F. We use the
notations:

Fi(t) = F(t/X),
F~Y(z) = inf{t : F(t) > z},
rp(00) = tlLrlgo rr(t)
if the limit exists.

Let a random variable X have the distribution F, and let Xo., = 0,
Xi:ny--+y Xn:n be order statistics of a sample from the dlstnbutlon F. Then
the random variable

gn—(n_“i'l)(Xgn"‘X{,_])n) for‘i:l,-..,n

is called the i-th normalized spacing.
Denote by F, the distribution of } i, a;D;.,, where g = (al, ylin )y
and by K the unit mean exponential d:strlbution Let X = (Xy,.. ,,) be
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a sample of size n > 2 from a population with the exponential distribution
K whose scale parameter A is unknown. For a given significance level
a € (0,1) consider the problem of testing the hypothesis Hy : A < Ao
(Ao > 0) versus H4 : A > Ag in the class of the following unbiased tests:

=11 if¥h aiDin>c
1 a X’ — 1=1 "+~ un = “a,ay
1) ¢e(X, ) {{l otherwise.
(2) sup Ex,ps(X,a)=a, wherea>0, a#0.
A<

Note that for each @ € (0,1) the test @y(X,a), where b; = 1/n for i =
1,...,n,is based on the sample mean X and is uniformly most powerful for
testing the above hypotheses.

Assume that due to measurement errors the observations are slightly dis-
turbed and the deviation from the distribution K is described by a specified
set of distributions 7( K') such that K € r(K). The natural question to ask
about the robustness of a test concerns the behaviour of the power function.
Let

ﬂgﬁ"a(") = EFA ‘P&(Xa a)a Fe N(K) \ {K}s

denote the “violated” power function of the test 4 (X, @) at the point A > 0,
i.e. when a sample comes from the distribution F). Hence, to each test
®a(X,a) there corresponds the set of functions M(g,a) = {BF°(:): F €
7(K)}.

Let (M(a,a),d) be a metric space for each a € (0,1) and all ¢ > 0,
@ # 0. Then the robustness of the test ¢,(X, a) under the violation 7(K)
is described in the metric d by the quantity

3) Rae = sup{d(B3®,6%7) : F, S € n(K)}.

DEFINITION 1. We say that the test ¢,(X, a) is more robust than the
test (X, @) if Rajq < Rpo-

DEFINITION 2. We call ,(X,a) most robust in a specified class V, of
level-a tests if (X, @) is more robust than any other test in V.

The above concept of robustness is connected with the general approach
presented in [8] and [9].

3. Violations of the exponential model. Let F and G be two
distributions with density functions f and g. Recall the definitions of three
well-known partial orderings and of two classes of monotone failure rate
distributions.

DerFINITION 1. (i) F <. G if G™! o F is convex (convez ordering),
(ii) F <.« G if G o F is starshaped (starshaped ordering),
(iii) F <4 G if G~ — F~! is nondecreasing (dispersive ordering).
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" DEFINITION 2. (i) F is an increasing failure rate distribution (F is IFR)
F<.K.
(ii) F is an decreasing failure rate distribution (F is DFR) if K <, F.

LEMMA 1. (i) If F <. G and f(0) > g(0) > 0 then F <; G.
(ii) If rp(t) < ro(t) for everyt > 0 and F or G is DFR then G <4 F.

For the proof see [3] and [6].

5 LEMMA 2. If F <. G and limy_1 rG(G~1(v))/rr(F~1(u)) > 1 then
<q F.

Proof. f F <. G then G~! o F is convex. Hence for every v € (0,1)
oG )/ F(F1(0)) > lim (G W)/ S(F~1(w) 2 1.
Thus the lemma follows from Definition 1(iii).

) Let H and G be two fixed absolutely continuous distributions with den-
8ity functions h and g such that

1) H(0) = G(0) = 0,

2) rg(t) < 1 < ry(t) for every t > 0 and rg(t)/ru(t) # const,
and either

3) H is DFR and G is IFR, or

3') H is IFR and G is DFR.

If H and G satisfy the conditions 1), 2), 3) then let n(K) € IT
{7"1,1!'2,1!'3}, where

m={F:H<4F<4G},
T ={F:G <. F <. H, rg(00) < rr(00) < rg(o0)},
3 = {F:1< rp(t) < ru(t) for every t > 0}.
By Lemma 1(ii) and Lemma 2 we obtain
(4) T Cm and w3 C mq.
If H and G satisfy the conditions 1), 2), 3') then let #(K) € IT =
{’rl-;i:g,'fg,-ﬂ-".i}, where
my={F: H <. F <. G, ¢(0) < f(0) < h(0)},
T3 ={F: H <. F <. G, g(0) < f(0) < h(0)},
7y = {F : rg(t) < rp(t) < 1 for every t > 0}.
Then from Lemma 1 it follows that

(5) ig CmCm and 74 Cmy.

Violations generated by the ordering relations were considered in [4].
Now we give some parametric examples.
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a)Let H=Tp,for0<p<1,G =TI, for g > 1, where Il 5,5 > 0,
denotes the gamma distribution with density function z*~! exp(—z)/I'(s):
z > 0. From the well-known property of gamma distributions which says
that I, <. I, for t < s, and the fact that rp(o0) = 1 for F = I ,4, W€
obtain

{hs:p<s<qiCm.
b)Let H=1Iy,for1<p<216and G=Iy,for0<¢g< 1, where
If,,s > 0, denotes the exponential power distribution with density function
exp(—2°)/T(1+1/s),z > 0. Then H is IFR, G is DFR and IT, <q IT, for
0 < s <t < 2.16. Consequently,
{If,:9<s<p}Cm.

c) Let G = S, for 0 < ¢ < p, where S ,(z) = 1— (14 z/p)~? is the
Pareto type distribution. Then G is DFR. Denote by 7, the failure rate
function of S, . Using the relations r,4(0) = s/t, rg(z) < r5(z), 2 2 0,
and S, <. Sq,p for s > g and ¢/p < s/t < 1, we conclude that

{Sst:q/p<s/t<1, ¢< 8} CTNT,.

4. Results. Let the assumptions of Sections 2, 3 be satisfied and
EgX < 0o. Consider the metric defined in some “suitably restricted” class
of functions &,n: Ry — R as follows:

(6) d&,n) = [ 272|(z) = n(z)| dz.
0

We prove the following

THEOREM 1. Let o € (0,1) and let a = (a1,...,a,) > 0 be a vector such
that a; # a; for some i and j. Denote by ai., < ... < @i the ordered
coordinates of a and by P, the permutation group on {1,...,n}. Then the
Jollowing tests are most robust in the class Vo = {P(a,y,aniny)(Xs @)
T € P}

(i) (P(u'im:a?:n !'"lalrll)(x’ Q’) if I(K) € H’.-...

(ii) So(‘:‘um}E‘u—l:un---wa".l:ll)(X’ a) if"‘ll'n(‘!() E H'

Proof. Fix a € (0,1). From (1), (2) we find that ¢go = Ao Kg ' (1 —a),
whence S5%(A) = Fo(MoK;'(1 - )/A), A > 0. Then from (6)

d(pg®,2%) = [ A72BE*(N) - BE* (V)| dA
0
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= (MoK '(1—-a))™ [|Fy(t) - Sa(t)] dt.
0

Since H <4 F <4 G implies G,(t) < Fy(t) < Hy(t) for every t > 0 (see [7))
and by (3)—(5) we have

(7 Ry = sup{d(Bg*,85%): F,S € n(K)}

= (MoK (1~ a)™ j?(ﬁ'g(t) — Ga(?)) dt

n
= (MoK;'(1-a))™ Y ai(EgDin — EnDizn).
i=1
From the well-known properties of the normalized spacings (see [1], [2]) it
follows that if F is an absolutely continuous not exponential life distribution
and F is IFR (DFR) then EgD;., is strictly decreasing (increasing) in i =
1,...,n. Consequently, for 7(K) € I (II) we obtain

(8) EgD;.n, — EgD;.,, is strictly decreasing (increasing) in i = 1,...,n.

Moreover, Ka(T) = K(a,1yymariny) (), T 2 0, for every 7 € Py.
To complete the proof it suffices to show that for any numbers z; >

o> 2, and (@r(1)s- -5 8r(n)) # (G1iny - -+, @n:n) We have

n n
Z Aj:nTi < z Ar(i)Ti-

i=1 i=1
I}\deed, if we take z,41 =0, yj = z; — zj41 for j = 1,...,7n then y; > 0 for
J# n and

n i

n n n
Z QiznTi = Z Qi:n (Z yj) = Z Yj (Z a:’:n)
i=1 i=1 j=i i=1 i=1
n i n
< Z Yj (z a"r(i')) = Ar(i)Ti -
i=1 i=1 i=1

THEOREM 2. Let ¢; = exp(—3/2) and ¢, = exp(—(n + 1)) for n > 2.
Then there ezists c € (cn, 1] such that for a € (0,c) the following tests are
Most robust in the class V, = {¢q(X,a):a = (a1,...,a,) 2 0, a # 0}:

(i) ¥,0,...01)(X,a) if 7(K) € II,

(i) ¢(1,0,0,...0)(X, ) if 7(K) € II.

Proof. It is easy to note that ¢,(X,a) = ¢3(X,a), where b =
(E“ 18i)"'a, whence we conclude that V, = {cp;(_)_(_, a) : a > 0,
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Y ", a; =1}. K x(K) € I (IT) then by (8) we obtain

(9) Zai(EGDi:u - EHD:‘:n) > EgDp.p — EgDy:n,
= (resp. > EGDI:n e EHDlm)

for every a > 0, 30, @ = 1, a # (0,0,...,0,1) (resp. # (1,0,0,...,0))
It is well-known that normalized spacings of a sample from the exponenti
distribution are i.i.d. with the same exponential distribution. In view of the
results given in [5] we have the Schur-concavity of K,(t), a > 0, for every
fixed t > (—Inc,) Y i, @;. Consequently, if a > 0 and } 7., a; = 1 one
can deduce that K(t) < K4(t) for t > —Inc,. Hence y < K (K~(y)) for
y2>1-c, and

Kg"l(y) =inf{z : Ka(z) 2y} < K7 '(y) fory>1-cy,
i.e.
K'(1-a)<K1-a) forac<ec,.
The above inequ_a.lity and (9) applied to (7) complete the proof.
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