W. WYSOCKI (Warszawa)

GEOMETRICAL ASPECTS OF MEASURES OF DEPENDENCE FOR RANDOM VECTORS

Introduction. The paper consists of two parts: geometrical and probabilistic.

In the first part we introduce the notion of an angle between linear subspaces and of its measure. Let $(\mathcal{X}, \mathcal{Y})$ be a pair of closed subspaces of a real separable Hilbert space $(H, \langle \cdot, \cdot \rangle)$ and let P'_1 , P'_2 be the orthogonal Projections of \mathcal{X} on \mathcal{Y} and of \mathcal{Y} on \mathcal{X} , respectively. The angle is defined for pairs $(\mathcal{X}, \mathcal{Y})$ such that $P'_2P'_1$ and $P'_1P'_2$ are compact. The set of all pairs $(\mathcal{X}, \mathcal{Y})$ with this property will be denoted by $\mathcal{K}(H)$; by a^2 we will denote the largest eigenvalue of $P'_2P'_1$ among eigenvalues smaller than 1, which is equal to the respective eigenvalue of $P'_1P'_2$. Then, for any $(\mathcal{X}, \mathcal{Y}) \in \mathcal{K}(H)$ we define the angle between \mathcal{X} and \mathcal{Y} as the angle between unit eigenvectors of $P'_2P'_1$ and $P'_1P'_2$ which correspond to a^2 , and arc cos a is said to be the measure of this angle.

If H is finite-dimensional then $\mathcal{K}(H)$ consists of all pairs of subspaces of H.

In the probabilistic part of the paper the cosine of the angle between subspaces \mathcal{X} and \mathcal{Y} of a real separable Hilbert space $(L^2(\Omega, \mathcal{A}, P; \mathbb{R}^k), \langle \cdot, \cdot \rangle_{\Lambda})$ is considered. This space consists of all k-dimensional centered random vectors with finite covariance matrix, and the scalar product is given by

$$\langle X, Y \rangle_{\Lambda} = E(X^T \Lambda^{-1} Y) = \operatorname{tr}(\Lambda^{-1} \Sigma_{12}),$$

where Λ is a positive definite symmetric $k \times k$ matrix, and Σ_{12} is the covari-

¹⁹⁹¹ Mathematics Subject Classification: 62H20, 62H99.

Key words and phrases: Hilbert space, compact operator, angle between linear subspaces and its measure, Sampson's measure of closed dependence, Jupp & Mardia's measure of dependence, Sampson's correlation ratio, maximal canonical correlation, coefficient of maximal correlation, conditional expectation.

ance matrix of X and Y. Thus, we define for $U \in \mathcal{X}, V \in \mathcal{Y}, (\mathcal{X}, \mathcal{Y}) \in \mathcal{K}(H)$,

$$\varrho_{A}(U,V) = \frac{\langle U,V\rangle}{\|U\|_{A}\|V\|_{A}}\,,$$

which may be interpreted as the cosine of the angle between U and V. Maximal values of this expression on suitably chosen sets of pairs of random vectors will serve as measures of dependence between X and Y. Let \mathcal{L}_X be the subspace spanned by X, let $\mathcal{H}_X = \{AX \mid A \in \mathcal{M}_k\}$ where \mathcal{M}_k is the set of all $k \times k$ matrices, and let \mathcal{L}_X^2 be the set of all square integrable random vectors of the form f(X) where f is a Borel measurable vector function; then for $i = 1, \ldots, 5$

$$\varrho_{\Lambda}^{(i)}(X,Y) = \sup\{\varrho_{\Lambda}(U,V) : U \in \mathcal{X}_{i}, V \in \mathcal{Y}_{i}\},$$

where $(\mathcal{X}_i, \mathcal{Y}_i)$ is respectively equal to $(\mathcal{H}_X, \mathcal{L}_Y)$, $(\mathcal{L}_X^2, \mathcal{L}_Y)$, $(\mathcal{H}_X, \mathcal{H}_Y)$, $(\mathcal{L}_X^2, \mathcal{H}_Y)$, $(\mathcal{L}_X^2, \mathcal{L}_Y^2)$. The supremum is attained if at least one of the subspaces \mathcal{X}_i and \mathcal{Y}_i is of finite dimension, i.e. for $i \leq 4$. Then there exist (X_i, Y_i) such that $\varrho_A^{(i)}(X, Y) = \varrho_A^{(i)}(X_i, Y_i)$. Moreover, for $i \leq 4$, $(\varrho_A^{(i)}(X, Y))^2$ is the maximal eigenvalue of $P_2' P_1'$ and $P_1' P_2'$.

Since the measures $\varrho_{\Lambda}^{(3)}(X,Y)$ are identical for any Λ , the subscript Λ may be omitted. The same concerns $\varrho_{\Lambda}^{(4)}$, and also $\varrho_{\Lambda}^{(5)}$ for any (X,Y) such that $\varrho_{\Lambda}^{(5)}(X,Y)$ is defined.

The family $(\varrho_{\Lambda}^{(1)}, \Lambda \in \mathcal{M}_k)$ is strictly related to the measures of dependence proposed by Höschel [1] and by Jupp and Mardia [3]. Höschel's measure is defined in a complicated manner and it is computationally inconvenient, while Jupp and Mardia gave no justification for their proposal. We show that for any (X,Y) Höschel's measure is equal to $\varrho_{\Lambda}^{(1)}$ for Λ equal to the covariance matrix of Y and that Höschel's measure is equal to the square of that proposed by Jupp and Mardia divided by the squared rank of the covariance matrix of Y.

The measures $\varrho_{\Lambda}^{(2)}$, $\Lambda \in \mathcal{M}_k$, introduced by Sampson [7], generalize the correlation ratio between a random variable and a random vector. The measure $\varrho^{(3)}$, known as maximal canonical correlation, was proposed by Johnson and Vehrly [2]. The measure $\varrho^{(4)}$ is closely related to another measure defined by Sampson [7]: Sampson's measure is of the same form but \mathcal{H}_Y is restricted to BY such that $cov(BY) = \Lambda$.

Sampson remarked in his paper that the procedure of maximizing $\varrho_{\Lambda}(U,V)$ on $\mathcal{L}_{X}^{2} \times \mathcal{H}_{Y}$ can be treated as a half way between maximal canonical correlation $\varrho^{(3)}(X,Y)$ and maximal correlation $\varrho^{(5)}(X,Y)$.

Maximization of $\varrho_{\Lambda}(f(X), g(Y))$ on $\mathcal{L}_{X}^{2} \times \mathcal{L}_{Y}^{2}$ which is performed for i = 5 requires the compactness of $P'_{2}P'_{1}$ and $P'_{1}P'_{2}$. It is shown that the operators are compact if $P_{(X,Y)}$ is absolutely continuous with respect to

 $P_X \otimes P_Y$ and the square of the density of $P_{(X,Y)}$ is integrable. Obviously, P_X , P_Y , $P_{(X,Y)}$ are the distributions generated by the random vectors X, Y and (X,Y), respectively. For (X,Y) satisfying these assumptions maximal correlation exists (Theorem 2) and is identical for any matrix Λ . Clearly, it generalizes the maximal correlation considered by Rényi [5] for a pair of random variables.

Generally, $\varrho_{\Lambda}^{(i)}(X,Y)$ is the cosine of the angle between the respective subspaces for any $i \leq 5$ and for any (X,Y) such that $\varrho_{\Lambda}^{(i)}(X,Y) < 1$.

1. Angle between linear subspaces. Let $(H, \langle \cdot, \cdot \rangle)$ be a separable real Hilbert space, and let \mathcal{X} , \mathcal{Y} be its closed subspaces.

Let \mathcal{Z} denote $\mathcal{X} \cap \mathcal{Y}$ and let \mathcal{X}_0 , \mathcal{Y}_0 be the orthogonal complements of \mathcal{Z} in \mathcal{X} and \mathcal{Y} , respectively. We assume that $\mathcal{X} \neq \mathcal{Z}$ and $\mathcal{Y} \neq \mathcal{Z}$. Continuity of the scalar product implies closedness of \mathcal{X}_0 and \mathcal{Y}_0 .

Let $(x_i, i \in I)$ and $(y_j, j \in J)$ be orthonormal bases of \mathcal{X}_0 and \mathcal{Y}_0 , where I and J are some sets of indices, and let

$$\begin{split} B_{\mathcal{X}_0} &= \left\{ x \in \mathcal{X}_0 : \|x\| = 1 \right\}, \quad B_{\mathcal{Y}_0} &= \left\{ y \in \mathcal{Y}_0 : \|y\| = 1 \right\}, \\ s &= s(\mathcal{X}, \mathcal{Y}) = \sup \left\{ \langle x, y \rangle : x \in B_{\mathcal{X}_0}, \ y \in B_{\mathcal{Y}_0} \right\}, \\ p_0 &= \operatorname{card} I, \quad q_0 = \operatorname{card} J. \end{split}$$

Furthermore, let $P_1: \mathcal{X}_0 \to \mathcal{Y}_0, P_2: \mathcal{Y}_0 \to \mathcal{X}_0$ be the linear transformations defined by

(1.1)
$$P_1 x = \sum_{j \in J} \langle x, y_j \rangle y_j, \quad x \in \mathcal{X}_0,$$

(1.2)
$$P_2 y = \sum_{i \in I} \langle y, x_i \rangle x_i, \quad y \in \mathcal{Y}_0,$$

Thus, P_1 (P_2) is the orthogonal projection of \mathcal{X}_0 on \mathcal{Y}_0 (of \mathcal{Y}_0 on \mathcal{X}_0). By the continuity of P_1 , P_2 the operators T_1 , T_2 , defined as

$$(1.3) T_1 := P_2 \circ P_1,$$

$$(1.4) T_2 := P_1 \circ P_2,$$

are also continuous.

THEOREM 1. If T_1 , T_2 are compact then there exist vectors $x_0 \in B_{\mathcal{X}_0}$ and $y_0 \in B_{\mathcal{Y}_0}$ such that

$$(1.5) s(\mathcal{X}, \mathcal{Y}) = \langle x_0, y_0 \rangle,$$

$$(1.6) T_1 x_0 = s^2 x_0,$$

$$(1.7) T_2 y_0 = s^2 y_0.$$

Moreover, s^2 is the largest eigenvalue of T_1 and T_2 .

Proof. First, we will show that P_1 and P_2 are adjoint to each other, i.e.

$$\langle P_1 u, z \rangle = \langle u, P_2 z \rangle$$

for any $u \in \mathcal{X}_0$, $z \in \mathcal{Y}_0$. The left-hand side of (1.8) can be rewritten as $\overline{u}^T \mathcal{L}_{12} \overline{z}$, where

$$\Sigma_{12} = [\langle x_i, y_j \rangle, \ i = 1, \ldots, p_0, \ j = 1, \ldots, q_0],$$

and the vectors \overline{u} , \overline{z} are the counterparts of u, z in the coordinate spaces \mathbf{R}^{p_0} and \mathbf{R}^{q_0} which obvoiusly can be identified (1) with \mathcal{X}_0 and \mathcal{Y}_0 .

The right-hand side of (1.8) has the same form, and therefore $P_1^* = P_2$, where P_1^* is adjoint to P_1 .

The operators T_1 and T_2 are self-adjoint, since

$$T_1^* = (P_2 \circ P_1)^* = P_1^* \circ P_2^* = P_2 \circ P_1 = T_1$$

and similarly $T_2^* = T_2$. They are also nonnegative definite: for any $x \in \mathcal{X}_0$

$$\langle T_1 x, x \rangle = \langle (P_2 P_1) x, x \rangle = \langle P_1 x, P_1 x \rangle = ||P_1 x||^2 \ge 0$$

and the same holds for T_2 .

Now we will prove that $||P_1|| = ||P_2|| = s$. Note first that the scalar product $\langle \cdot, \cdot \rangle$, restricted to $\mathcal{X}_0 \times \mathcal{Y}_0$, can be expressed as

$$\langle x, y \rangle = \langle x, P_2 y \rangle,$$

$$\langle x,y\rangle = \langle P_1x,y\rangle.$$

Applying the Schwarz inequality to (1.9) we get $\langle x,y\rangle \leq \|x\| \|y\| \|P_2\|$. So by comparing the suprema of both sides of this inequality over $B_{\mathcal{X}_0} \times B_{\mathcal{Y}_0}$, we have $s \leq \|P_2\|$. But by (1.9), $s \geq \langle x, P_2y \rangle$ for any $\|x\| = 1$, $\|y\| = 1$. Setting $x = P_2y/\|P_2y\|$ we get $s \geq \|P_2y\|$ for any $\|y\| = 1$. Thus $s \geq \|P_2\|$ and, consequently, $s = \|P_2\|$. The proof of $s = \|P_1\|$ is analogous.

The next step is to show that $||T_1|| = s^2$, where

$$||T_1|| = \sup\{\langle T_1x, x\rangle : x \in B_{\mathcal{X}_0}\}.$$

Indeed, for any $x \in \mathcal{X}_0$, $\langle T_1 x, x \rangle = ||P_1||^2$; comparing the suprema of both sides of this equality we get $||T_1|| = s^2$. The equality $||T_2|| = s^2$ is proved in a similar way.

Suppose now that the supremum

$$s = \sup\{\langle x, y \rangle : x \in B_{\mathcal{X}_0}, y \in B_{\mathcal{Y}_0}\}$$

is attained on some vectors x_0 and y_0 .

⁽¹⁾ If p_0 and q_0 are not finite then the elements of \mathbb{R}^{p_0} and \mathbb{R}^{q_0} are square summable sequences of real numbers.

By the Schwarz inequality applied to (1.9) and (1.10), $P_1x_0 = sy_0$ and $P_2y_0 = sx_0$, which implies $T_1x_0 = s^2x_0$, $T_2y_0 = s^2y_0$, i.e. x_0 and y_0 are eigenvectors of T_1 and T_2 , respectively.

Remark 1. Both T_1 and T_2 are compact if either p_0 or q_0 is finite. This follows from the compactness of the superposition of two continuous operators of which at least one is compact (and a finite-dimensional operator is compact).

If p_0 and q_0 are finite then x_0 , y_0 and $s(\mathcal{X}, \mathcal{Y})$ can be given explicitly. Let $(x_i, i \in I)$ and $(y_j, j \in J)$ be any bases of \mathcal{X}_0 and \mathcal{Y}_0 respectively. Let

(1.11)
$$\Sigma_{11} := [\langle x_i, x_j \rangle], \qquad i, j = 1, ..., p_0,$$

(1.12)
$$\Sigma_{22} := [\langle y_i, y_j \rangle], \qquad i, j = 1, ..., q_0,$$

(1.13)
$$\Sigma_{12} := [\langle x_i, y_j \rangle], \qquad i = 1, \ldots, p_0, \quad j = 1, \ldots, q_0,$$

$$(1.14) \Sigma := \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^{T},$$

$$(1.15) \widetilde{\Sigma} := \Sigma_{22}^{-1} \Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12}.$$

The matrices of P_1 and P_2 are equal to $\Sigma_{22}^{-1}\Sigma_{12}^T$ and $\Sigma_{11}^{-1}\Sigma_{12}$, and the matrices of T_1 and T_2 are given by (1.14) and (1.15), respectively, while $s(\mathcal{X},\mathcal{Y})$ is the square root of the largest eigenvalue of (1.14) and thus of (1.15). If \overline{x}_0 and \overline{y}_0 are vectors in the respective coordinate spaces corresponding to the vectors x_0 and y_0 , then to find \overline{x}_0 and \overline{y}_0 it is necessary to solve the system of equations:

$$(\Sigma - s^2 I_{p_0}) \overline{x}_0 = \overline{0} , \quad \overline{x}_0^T \Sigma_{11} \overline{x}_0 = 1 ,$$

$$(\widetilde{\Sigma} - s^2 I_{q_0}) \overline{y}_0 = \overline{0} , \quad \overline{y}_0^T \Sigma_{22} \overline{y}_0 = 1 ,$$

Where I_k is the $k \times k$ identity matrix.

Let $\mathcal{K}(H)$ be the set of all pairs of closed subspaces \mathcal{X} and \mathcal{Y} such that the corresponding operators T_1 and T_2 are compact.

DEFINITION 1. The angle between the unit eigenvectors x_0 and y_0 of T_1 , T_2 corresponding to the common largest eigenvalue $s(\mathcal{X}, \mathcal{Y})$ (cf. (1.6) and (1.7)) will be called the *angle between the subspaces* \mathcal{X} and \mathcal{Y} and denoted by $\mathcal{L}(\mathcal{X}, \mathcal{Y})$. Moreover, we shall treat $\arccos(s(\mathcal{X}, \mathcal{Y}))$ as the measure of this angle, denoted by $m(\mathcal{L}(\mathcal{X}, \mathcal{Y}))$.

This definition will be generalized so that it can be applied in the case when $\mathcal{Z} = \mathcal{X} \cap \mathcal{Y}$ is equal to \mathcal{X} or \mathcal{Y} . Then $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is defined as the angle between any two unit vectors $z_1, z_2 \in \mathcal{Z}$, and we put $m(\mathcal{L}(\mathcal{X}, \mathcal{Y})) = 0$.

We have

$$\cos(m(\angle(\mathcal{X},\mathcal{Y}))) = \langle x_0, y_0 \rangle.$$

Thus, $0 \le m(\angle(\mathcal{X}, \mathcal{Y})) \le \pi/2$.

Orthogonality of \mathcal{X} and \mathcal{Y} implies $m(\angle(\mathcal{X},\mathcal{Y})) = \pi/2$, but not conversely. It can easily be seen that \mathcal{X} and \mathcal{Y} are orthogonal iff $m(\angle(\mathcal{X},\mathcal{Y})) = \pi/2$ and

$$\mathcal{X} \cap \mathcal{Y} = \{0\}.$$

Remark 2. A simpler procedure of deriving the cosine of the angle between subspaces is the following. We choose orthonormal bases $(x_i', i \in I')$ and $(y_j', j \in J')$ of \mathcal{X} and \mathcal{Y} , respectively, where card I' = p, card J' = q and I', J' are some sets of indices.

Analogously to (1.1)-(1.4), we define $P_1': \mathcal{X} \to \mathcal{Y}$, $P_2': \mathcal{Y} \to \mathcal{X}$, T_1' and T_2' ; if T_1' and T_2' are both compact then we deal with the eigenvalue a^2 which is maximal among the eigenvalues smaller than 1. Then $\cos(m(\mathcal{L}(\mathcal{X},\mathcal{Y}))) = a$.

If p and q are finite then we choose any bases of \mathcal{X} and \mathcal{Y} and form matrices Σ'_{11} , Σ'_{22} , Σ'_{12} , Σ' , $\widetilde{\Sigma}'$ analogous to the matrices given by (1.11)–(1.15). Then $\cos(m(\mathcal{L}(\mathcal{X},\mathcal{Y}))) = a$ where a^2 is maximal among the eigenvalues of Σ' or $\widetilde{\Sigma}'$ smaller than 1.

The above definitions of the angle between subspaces and of its measures generalize the following elementary cases:

- (i) p = q = 1,
- (ii) p = 1, q = 2 or p = 2, q = 1,
- (iii) p = q = 2.

In all these cases \mathcal{X} and \mathcal{Y} are subspaces of a three-dimensional Hilbert space.

Wysocki [8] defined similar notions of angle between linear subspaces and its volume measure.

Generally, the angle introduced in Definition 1 is different from that proposed in Wysocki [8] but the two definitions are identical if H is a three-dimensional Hilbert space. The volume measure is given by

$$\arcsin\left(\left(\prod_{\sigma^2\neq 1}(1-\sigma^2)\right)^{1/2}\right),$$

where the product is over all eigenvalues of Σ' or $\widetilde{\Sigma}'$ which are different from 1.

2. Maximal correlation. Let $L^2 := L(\Omega, \mathcal{A}, P; \mathbf{R}^k)$ be the vector space of all k-dimensional centered random vectors $X = (X_1, \ldots, X_k)^T$ defined on (Ω, \mathcal{A}, P) with finite covariance matrix. The scalar product $\langle \cdot, \cdot \rangle_{\Lambda}$ is given by

$$(2.1) \langle X, Y \rangle_{\Lambda} := E(X^T \Lambda^{-1} Y) = \operatorname{tr}(\Lambda^{-1} \Sigma_{12})$$

where Σ_{12} is the covariance matrix between X and Y, and Λ is any given positive definite symmetric $k \times k$ matrix. The norm derived from (2.1), which will be denoted by $\|\cdot\|_{\Lambda}$, is complete; thus $(L^2(\Omega, \Lambda, P; \mathbf{R}^k), \langle \cdot, \cdot \rangle_{\Lambda})$ is a Hilbert space. It can be shown that it is separable.

The dimension of \mathcal{H}_X is not greater than k^2 , and it is equal to k^2 iff X is a nondegenerate random vector (cf. Introduction for suitable definitions).

Let I_{ij} be a $k \times k$ matrix with (i, j) entry equal to 1 and all remaining entries zero. The sets

$$\{I_{ij}X: i, j=1,\ldots,k\},\$$

$$\{I_{ij}Y: i, j=1,...,k\}$$

are bases of \mathcal{H}_X and \mathcal{H}_Y , respectively. Thus for any $k \times k$ matrix $A = (a_{ij})$, $AX = \sum_{i,j} a_{ij} I_{ij} X$. Analogously $BY = \sum_{i,j} b_{ij} I_{ij} Y$.

Clearly, the spaces \mathcal{H}_X , \mathcal{H}_Y , \mathcal{L}_X^2 , \mathcal{L}_Y^2 are closed in L^2 and the dimensions of \mathcal{L}_X^2 , \mathcal{L}_Y^2 are at most countable.

LEMMA 2. (a) For any $X \in L^2$, $E(\cdot \mid X) : L^2 \to \mathcal{L}_X^2$ is an orthogonal projector.

(b) For any $X,Y \in L^2$, X nondegenerate, a transformation $P'_2: \mathcal{H}_Y \to \mathcal{H}_X$ is an orthogonal projector iff

(2.4)
$$P_2'(BY) = B\Sigma_{11}^T \Sigma_{11}^{-1} X.$$

(c) If the bases of \mathcal{H}_X and \mathcal{H}_Y are given by (2.2), (2.3), respectively, then the matrix of the transformation (2.4) is

$$I_k\times (\varSigma_{11}^{-1}\varSigma_{12})\,,$$

where x stands for Kronecker matrix multiplication.

Proof. (a) results from the theorem on orthogonal projection and from the following equality stated in Sampson [7]:

$$\inf\{\|Y - f(X)\|_{\Lambda}^2 : f(X) \in \mathcal{L}_X^2\} = \|Y\|_{\Lambda}^2 - \|E(Y \mid X)\|_{\Lambda}^2.$$

The infimum is attained for f_0 given by $f_0(x) = E(Y \mid X = x)$.

(b) Sufficiency of (2.4) is obvious.

Now let $P_2'(BY) = A_0X$ for some $k \times k$ matrix A_0 . For any $k \times k$ matrix A, we have

$$\langle BY - A_0 X, AX \rangle = \operatorname{tr}(\Lambda^{-1} \operatorname{cov}(BY - A_0 X, AX))$$

= $\operatorname{tr}(\Lambda^{-1}(B\Sigma_{12}^T - A_0\Sigma_{11})A^T)$
= $\operatorname{tr}((B\Sigma_{12}^T - A_0\Sigma_{11})A^T\Lambda^{-1}) = 0$.

The only solution of the above is

$$A_0 = B \Sigma_{12}^T \Sigma_{11}^{-1}$$
.

(c) To derive the matrix of the projector (2.4) in the bases (2.2) and (2.3) we use Remark 2 and (1.11), (1.13). The matrix of P_2' is equal to $\check{\Sigma}_{11}^{-1}\check{\Sigma}_{12}$, where

$$\check{\Sigma}_{12} = [\langle I_{ij}X, I_{i'j'}Y \rangle_{\Lambda}],$$

$$\check{\Sigma}_{11} = [\langle I_{ij}X, I_{i'j'}X \rangle_{\Lambda}], \quad i, i', j, j' = 1, \dots, k.$$

Since $\langle I_{ij}X, I_{i'j'}Y\rangle_{\Lambda} = \operatorname{tr}(\Lambda^{-1}I_{ij}\Sigma_{12}I_{i'j'}^T) = \overline{\lambda}_{i'i}\operatorname{cov}(X_j, Y_{j'})$, where $\Lambda^{-1} = [\overline{\lambda}_{ij}]$, we have $\check{\Sigma}_{12} = \Lambda^{-1} \times \Sigma_{12}$. Similarly $\check{\Sigma}_{11} = \Lambda^{-1} \times \Sigma_{11}$, and finally $\check{\Sigma}_{11}^{-1}\check{\Sigma}_{12} = I_k \times (\Sigma_{11}^{-1}\Sigma_{12})$, where I_k is the $k \times k$ identity matrix. Notice that P_2' restricted to the subspace \mathcal{L}_Y is given by

$$P_2'(bY) = b\Sigma_{12}^T\Sigma_{11}^{-1}X.$$

Let $X,Y \in L^2$ be nondegenerate and let Σ_{11} , Σ_{22} and Σ_{12} denote the covariance matrices of X,Y and between X and Y.

Let

$$\varrho(X,Y) := \frac{\langle X,Y \rangle_A}{\|X\|_A \|Y\|_A} = \frac{\operatorname{tr}(A^{-1}\Sigma_{12})}{(\operatorname{tr}(A^{-1}\Sigma_{11}))^{1/2}(\operatorname{tr}(A^{-1}\Sigma_{22}))^{1/2}} \,.$$

In view of the preceding considerations $\varrho_{\Lambda}(X,Y)$ can be interpreted as the cosine of the angle between X and Y in $(L^2,\langle\cdot,\cdot\rangle_{\Lambda})$. According to this interpretation, we treat $\langle X,Y\rangle_{\Lambda}$ as the covariance of X and Y, and $\|X\|_{\Lambda}$, $\|Y\|_{\Lambda}$ as their respective dispersions. Sampson [7] introduced ϱ_{Λ} as a measure of dependence for a pair of random vectors.

Now, we will maximize ϱ_{Λ} on suitably chosen sets of random vectors in order to obtain different measures of dependence. We will consider the following measures of dependence:

$$\varrho_{\Lambda}^{(i)}(X,Y) = \sup\{\varrho_{\Lambda}(U,V): U \in \mathcal{X}_i, V \in \mathcal{Y}_i\}, \quad i = 1,\ldots,5,$$

where

$$(2.5) \mathcal{X}_1 = \mathcal{H}_X, \quad \mathcal{Y}_1 = \mathcal{L}_Y,$$

(2.6)
$$\mathcal{X}_{2} = \mathcal{L}_{X}^{2}, \quad \mathcal{Y}_{2} = \mathcal{L}_{Y},$$

$$\mathcal{X}_{3} = \mathcal{H}_{X}, \quad \mathcal{Y}_{3} = \mathcal{H}_{Y},$$

$$\mathcal{X}_{4} = \mathcal{L}_{X}^{2}, \quad \mathcal{Y}_{4} = \mathcal{H}_{Y},$$

$$\mathcal{X}_{5} = \mathcal{L}_{X}^{2}, \quad \mathcal{Y}_{5} = \mathcal{L}_{Y}^{2}.$$

Note that in view of Remark 1 (Sec. 1) the assumptions of Theorem 1 are fulfilled for the first four cases. The fifth case requires a separate treatment and will be dealt with in Theorem 2.

In the sequel we consecutively discuss $\varrho_A^{(i)}$ for i = 1, ..., 5.

1) Maximization of ϱ_{Λ} on $\mathcal{H}_X \times \mathcal{L}_Y$. Let $X,Y \in L^2$ and let P_1' , P_2' and T_1' , T_2' be the orthogonal projections and the operators appearing in Remark 2 which correspond to the spaces (2.5). Thus, P_1' and P_2' are of the form

$$P_1'(AX) = (\operatorname{tr}(\Lambda^{-1}A\Sigma_{12})/\operatorname{tr}(\Lambda^{-1}\Sigma_{22}))Y$$

for any $k \times k$ matrix A, and

$$P_2'(bY) = b\Sigma_{12}^T \Sigma_{11}^{-1} X$$
,

where b is any real number, and $\Sigma_{12}^T \Sigma_{11}^{-1}$ is the matrix of P_2^t . This is due to the representation of Y which involves linear regression of Y on X, namely

$$Y = \varSigma_{12}^T \varSigma_{11}^{-1} X + U$$

where U is a random vector uncorrelated with X.

Consequently,

$$\langle Y - \Sigma_{12}^T \Sigma_{11}^{-1} X, AX \rangle = 0$$

for any $k \times k$ matrix A. Turning to T'_1 and T'_2 we have

$$T_1'(AX) = \frac{\operatorname{tr}(\Lambda^{-1}A\Sigma_{12})}{\operatorname{tr}(\Lambda^{-1}\Sigma_{22})} \Sigma_{12}^T \Sigma_{11}^{-1} X,$$

$$T_2'(bY) = b \frac{\operatorname{tr}(\Lambda^{-1}\Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12})}{\operatorname{tr}(\Lambda^{-1}\Sigma_{22})} Y.$$

There exist X_0 and Y_0 such that

(2.8)
$$\varrho_{A}^{(1)}(X,Y) = \left(\frac{\operatorname{tr}(A^{-1}\Sigma_{12}^{T}\Sigma_{11}^{-1}\Sigma_{12})}{\operatorname{tr}(A^{-1}\Sigma_{22})}\right)^{1/2} \\ = \sup\{\varrho_{A}(AX,bY) : AX \in \mathcal{H}_{X}, \ bY \in \mathcal{L}_{Y}\} \\ = \varrho_{A}(X_{0},Y_{0}).$$

The quantity $(\varrho_A^{(1)}(X,Y))^2$ is the unique eigenvalue of T_2' and the maximal eigenvalue of T_1' . For any given Λ , $\varrho_A^{(1)}(X,Y)$ is a measure of dependence between X and Y which generalizes multiple correlation [4]. If $\varrho_A^{(1)}(X,Y)$ is smaller than 1 then it is the cosine of the angle between \mathcal{H}_X and \mathcal{L}_Y .

Let us now discuss the relations between $(\varrho_{\Lambda}^{(1)}(X,Y), \Lambda \in \mathcal{M}_k)$ and the measures proposed by Höschel [1] and by Jupp and Mardia [3]. It is convenient to concentrate first on nondegenerate X and Y. Höschel formulated a set of axioms to be fulfilled by a measure of linear stochastic dependence; then he constructed a suitable measure and proved its uniqueness. For nondegenerate X and Y Höschel's measure is given by

(2.9)
$$\varrho^{(H)}(X,Y) = \frac{\operatorname{tr}(\Sigma_{22}^{-1/2} \Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1/2})}{\operatorname{rank} \Sigma_{22}}.$$

The matrix appearing in the numerator of the right-hand side of (2.9) is equivalent to $\Sigma_{22}^{-1}\Sigma_{12}^T\Sigma_{11}^{-1}\Sigma_{12}$; hence

$$\varrho^{(H)}(X,Y) = \frac{\operatorname{tr}(\Sigma_{22}^{-1}\Sigma_{12}^T\Sigma_{11}^{-1}\Sigma_{12})}{\operatorname{rank}\Sigma_{22}}.$$

It follows that

$$\varrho^{(H)}(X,Y) = (\varrho^{(1)}_{cov(Y)}(X,Y))^2$$
.

Jupp and Mardia defined their measure as follows:

(2.10)
$$\varrho^{(J-M)}(X,Y) = (\operatorname{tr}(\Sigma_{22}^{-1}\Sigma_{12}^T\Sigma_{11}^{-1}\Sigma_{12}))^{1/2};$$

however, they did not provide any justification for this proposal. Comparing (2.10) with the definition of $\varrho_A^{(1)}$ we see that

$$\varrho^{(\mathsf{J-M})}(X,Y) = k \varrho^{(1)}_{\operatorname{cov}(Y)}(X,Y) \, .$$

It follows that

$$\varrho^{(H)}(X,Y) = (\varrho^{(J-M)}(X,Y))^2/k^2$$
.

If X or Y are degenerate, we obtain similar results replacing (if necessary) the inverse matrices in (2.8), (2.9) and (2.10) by Moore-Penrose inverses.

2) Maximization of $\varrho_A^{(2)}$ on $\mathcal{L}_X^2 \times \mathcal{L}_Y$. Now P_1' , P_2' and T_1' , T_2' will be the orthogonal projections and the operators appearing in Remark 2 which correspond to the spaces (2.6). Thus

$$\begin{split} P_1'(f(X)) &= \frac{\operatorname{tr}(\Lambda^{-1}\operatorname{cov}(f(X),Y))}{\operatorname{tr}(\Lambda^{-1}\varSigma_{22})}Y\,, \\ P_2'(bY) &= bE(Y\mid X)\,, \\ T_1'(f(X)) &= \frac{\operatorname{tr}(\Lambda^{-1}\operatorname{cov}(f(X),Y))}{\operatorname{tr}(\Lambda^{-1}\varSigma_{22})}E(Y\mid X)\,, \\ T_2'(bY) &= b\frac{\operatorname{tr}(\Lambda^{-1}\operatorname{cov}(E(Y\mid X),Y))}{\operatorname{tr}(\Lambda^{-1}\varSigma_{22})}Y \\ &= b\frac{\operatorname{tr}(\Lambda^{-1}\operatorname{cov}(E(Y\mid X)))}{\operatorname{tr}(\Lambda^{-1}\varSigma_{22})}Y = b\varrho_{\Lambda}^{(2)}(X,Y)Y\,, \end{split}$$

where

$$\varrho_{\Lambda}^{(2)}(X,Y) = \left(\frac{\operatorname{tr}(\Lambda^{-1}\operatorname{cov}(E(Y\mid X)))}{\operatorname{tr}(\Lambda^{-1}\Sigma_{22})}\right)^{1/2}.$$

It follows from the form of T'_2 that $(\varrho_A^{(2)}(X,Y))^2$ is its unique eigenvalue. It is also the maximal eigenvalue of T'_1 . Let X_0 and Y_0 be eigenvectors of T'_1 and T'_2 which correspond to this eigenvalue. Since

$$cov(E(Y \mid X), Y) = cov(E(Y \mid X), Y^{T}) = E(E(Y \mid X)Y^{T})$$

$$= E(E((Y \mid X)Y^{T}) \mid X) = E(E(Y \mid X)(E(Y \mid X))^{T}) = cov(E(Y \mid X))$$

we have

$$\varrho_{\Lambda}^{(2)}(X,Y)=\sup\{\varrho_{\Lambda}(f(X),Y):f(X)\in\mathcal{L}_{X}^{2},\ bY\in\mathcal{L}_{Y}\}=\varrho_{\Lambda}(X_{0},Y_{0}).$$

The measures $\varrho_{\Lambda}^{(2)}(X,Y)$ were introduced by Sampson [7]. They generalize the correlation ratio between a random variable X and a random vector

- Y. If $\varrho_A^{(2)}(X,Y)$ is smaller than 1 then it is the cosine of the angle between \mathcal{L}_X^2 and \mathcal{L}_Y^2 .
- 3) Maximization of ϱ_A on $\mathcal{H}_X \times \mathcal{H}_Y$. The orthogonal projectors P_1' , P_2' , and the operators T_1' , T_2' (defined in Remark 2) for $\mathcal{H} = \mathcal{H}_X$, $\mathcal{Y} = \mathcal{H}_Y$ are of the following form:

$$P'(AX) = A\Sigma_{12}\Sigma_{22}^{-1}Y, \quad P'_{2}(BY) = B\Sigma_{12}^{T}\Sigma_{11}^{-1}X,$$

$$T'_{1}(AX) = A\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{12}^{T}\Sigma_{11}^{-1}X, \quad T'_{2}(BY) = B\Sigma_{12}^{T}\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}Y.$$

By Lemma 2(c), the matrices of T'_1 and T'_2 in the bases of (2.6), (2.7) are

$$(2.11) I_k \times (\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^T \Sigma_{11}^{-1}),$$

$$(2.12) I_k \times (\Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1}),$$

respectively.

Notice that (2.11) is a block matrix with k matrices equal to $\Sigma_{12}\Sigma_{22}^{-1}$ $\times \Sigma_{12}^T\Sigma_{11}^{-1}$ on the diagonal and with zero off-diagonal blocks. Therefore the eigenvalues of (2.11) are equal to those of $\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{12}^T\Sigma_{11}^{-1}$. Analogously the eigenvalues of (2.12) are those of $\Sigma_{12}^T\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}$.

Let a^2 denote the maximal eigenvalue of $\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{12}^T\Sigma_{11}^{-1}$. We have

$$\varrho^{(3)}(X,Y)=a=\sup\{\varrho_{\Lambda}(AX,BY):AX\in\mathcal{H}_{X},BY\in\mathcal{H}_{Y}\}=\varrho_{\Lambda}(X_{0},Y_{0}).$$

The random vectors X_0 , Y_0 are eigenvectors of T'_1 , T'_2 , respectively, for the eigenvalue a^2 .

Johnson and Verhly [2] introduced $\varrho^{(3)}(X,Y)$ and called it the maximal canonical correlation.

If $\varrho^{(3)}(X,Y)$ is smaller than 1 then it is the cosine of the angle between \mathcal{H}_X and \mathcal{H}_Y .

For degenerate X and Y we use the Moore-Penrose inverse matrices in (2.11) and (2.12) if necessary.

4) Maximization of ϱ_{Λ} on $\mathcal{L}_{X}^{2} \times \mathcal{H}_{Y}$. For $\mathcal{X} = \mathcal{L}_{X}^{2}$, $\mathcal{Y} = \mathcal{H}_{Y}$, the operators T'_{1} , T'_{2} are of the following form:

$$T'_1(f(X)) = cov(f(X), Y) \Sigma_{22}^{-1} E(Y \mid X),$$

$$T'_2(BY) = B cov(E(Y \mid X)) \Sigma_{22}^{-1} Y.$$

The matrix of the operator T'_2 in the base (1.5) is

$$(2.13) I_k \times (\operatorname{cov}(E(Y \mid X)) \Sigma_{22}^{-1}).$$

The maximal eigenvalue of the matrix (2.26) is equal to that of $cov(E(Y \mid X))\Sigma_{22}^{-1}$, it is also the maximal eigenvalue of the operators T_1' and T_2' . Let a^2 denote this maximal eigenvalue and let X_0 , Y_0 denote the corresponding eigenvectors of the operators T_1' and T_2' , respectively.

Hence we have

 $\varrho^{(4)}(X,Y) = a = \sup\{\varrho_A(f(X),BY) : f(X) \in L_X^2, BY \in \mathcal{H}_Y\} = \varrho_A(X_0,Y_0).$ If $\varrho^{(4)}(X,Y)$ is less than 1 then it is the sesing of the angle between \mathcal{L}^2 and

If $\varrho^{(4)}(X,Y)$ is less than 1 then it is the cosine of the angle between \mathcal{L}_X^2 and \mathcal{H}_Y .

In Sampson [7], ϱ_{Λ} has been maximized on the set $\mathcal{L}_{X}^{2} \times \widetilde{\mathcal{H}}_{Y}$, where $\widetilde{\mathcal{H}}_{Y}$ is the set of random vectors BY such that $cov(BY) = \Lambda$. By this procedure he has got

$$\begin{split} \widetilde{\varrho}^{(4)}(X,Y) &= \sup\{\varrho_{\Lambda}(f(X),BY): f(X) \in \mathcal{L}_{X}^{2}, \ BY \in \widetilde{\mathcal{H}}_{Y}\} \\ &= \left(\frac{1}{k}\operatorname{tr}(\operatorname{cov}(Y \mid X)\varSigma_{22}^{-1})\right)^{1/2} = \varrho_{\Lambda}(X'_{0},Y'_{0}) \end{split}$$

for suitably chosen random vectors X'_0, Y'_0 .

5) Maximization of ϱ_{Λ} on $\mathcal{L}_{X}^{2} \times \mathcal{L}_{Y}^{2}$. Dealing now with the most general case, we will give a simple condition under which maximal correlation exists.

Theorem 2. Suppose X and Y have finite respective covariance matrices. If $P_{(X,Y)}$ is absolutely continuous with respect to $P_X \otimes P_Y$, and if the squared density p of $P_{(X,Y)}$ with respect to $P_X \otimes P_Y$ is integrable then there exist random vectors $f_0(X)$ and $g_0(Y)$ such that

(2.14)
$$\varrho^{(5)}(X,Y) = a = \sup\{\varrho_{\Lambda}(f(X),g(Y)): f(X) \in \mathcal{L}_X^2, g(Y) \in \mathcal{L}_Y^2\}$$

= $\varrho_{\Lambda}(f_0(X),g_0(Y)),$

where a^2 is the maximal eigenvalue of the operators T'_1 , T'_2 which correspond to the spaces \mathcal{L}^2_X , \mathcal{L}^2_Y .

The proof is an obvious modification of that given by Rényi [5] in the univariate case. Let P'_1 , P'_2 and T'_1 , T'_2 be the orthogonal projections and operators appearing in Remark 2, related to the spaces (2.7). Hence we have

$$P'_1(f(X)) = E(f(X) \mid Y), \quad P'_2(g(Y)) = E(g(Y) \mid X),$$

$$T'_1(f(X)) = E(E(f(X) \mid Y) \mid X), \quad T'_2(g(Y)) = E(E(g(Y) \mid X) \mid Y).$$

In view of Theorem 1 it is sufficient to show that T'_1 and T'_2 are compact. We will prove it for T'_1 since the proof for T'_2 is analogous.

Let us introduce the following Hilbert space:

$$\widetilde{\mathcal{L}}_X^2 = \left\{ f : f(X) \in \mathcal{L}_X^2 \right\},\,$$

with the scalar product

$$\int_{\mathbf{R}^k} (f_1(x))^T \Lambda^{-1} f_2(x) \, dP_X(x) \, .$$

It is obvious that \mathcal{L}_X^2 and $\widetilde{\mathcal{L}}_X^2$ are isomorphic. Thus, T_1' can be used in $\widetilde{\mathcal{L}}_X^2$ and it has the following form ([6]):

$$T_1'(f(X)) = \int_{\mathbb{R}^k} f(u) \Big(\int_{\mathbb{R}^k} p(u,v) p(x,v) dP_Y(v) \Big) dP_X(u).$$

It follows that T'_1 is an integral operator with kernel

$$\int_{\mathbb{R}^k} p(u,v)p(x,v) dP_Y(v).$$

We will show that the squared kernel is integrable, which, as is known, implies the compactness of the integral operator. By the Schwarz inequality,

$$\Big(\int\limits_{\mathbb{R}^k} p(u,v)p(x,v)\,dP_Y(v)\Big)^2 \leq \Big(\int\limits_{\mathbb{R}^k} p^2(u,v)\,dP_Y(v)\Big)\Big(\int\limits_{\mathbb{R}^k} p^2(x,v)\,dP_Y(v)\Big)\,.$$

Consequently,

$$\int\limits_{\mathbf{R}^k}\int\limits_{\mathbf{R}^k}\bigg(\int\limits_{\mathbf{R}^k}p(u,v)p(x,v)\,dP_Y(v)\bigg)^2\,dP_X(u)\,dP_X(x)$$

$$\leq \left(\int\limits_{\mathbf{R}^k}\int\limits_{\mathbf{R}^k} p^2(u,v)\,dP_Y(v)\,dP_X(u)\right)^2 < \infty.$$

It follows by Theorem 1 that there exist functions f_0 and g_0 such that

$$T_1'(f_0) = a^2 f_0, \quad T_2'(g_0) = a^2 g_0,$$

where a^2 is the maximal eigenvalue of T'_1 and T'_2 . Moreover, f_0 and g_0 satisfy (2.14).

If $\rho^{(5)}(X,Y)$ is smaller than 1 then it is equal to the cosine of the angle between \mathcal{L}_X^2 and \mathcal{L}_Y^2 .

References

- H. P. Höschel, Ein axiomatischer Zugang zu Abhängigkeitsmaßen für Zufallsvektoren und die Spurkorrelation, Math. Operationsforsch. Statist. 7 (1976), 789-802.
- [2] R. A. Johnson and T. Verhly, Measures and models for angular correlation and angular-linear correlation, J. Roy. Statist. Soc. B 39 (1977), 222-229.
- [3] P. E. Jupp and K. V. Mardia, A general correlation coefficient for directional data and related regression problems, Biometrika 67 (1980), 163-173.
- [4] C. R. Rao, Linear Statistical Inference and its Applications, Wiley, New York 1973.
- [5] A. Rényi, On measures of dependence, Acta Math. Acad. Sci. Hungar. 10 (1959), 441-451.
- [6] F. Riesz et B. Nagy, Leçons d'analyse fonctionnelle, Akadémiai Kiadó, Budapest 1952.

- [7] A. R. Sampson, Positive dependence properties of elliptically symmetric distributions. J. Multivariate Anal. 13 (1983), 375-381.
- [8] W. Wysocki, A geometric approach to measuring dependence between random vectors, Zastos. Mat. 20 (1990), 191-202.

WLODZIMIERZ WYSOCKI INSTITUTE OF COMPUTER SCIENCE POLISH ACADEMY OF SCIENCES P.O. BOX 22 00-901 WARSZAWA, POLAND

> Received on 24.2.1988; revised version on 19.2.1990