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Introduction. The paper consists of two parts: geometrical and prob-
abilistic. :

In the first part we introduce the notion of an angle between linear
Subspaces and of its measure. Let (X,)) be a pair of closed subspaces of
a real separable Hilbert space (H,(:,)) and let P{, P; be the orthogonal
Projections of X on Y and of Y on X, respectively. The angle is defined
for pairs (X, ) such that PJP} and P] P} are compact. The set of all pairs
(&, Y) with this property will be denoted by K(H); by a? we will denote
the largest eigenvalue of PP among eigenvalues smaller than 1, which is
€qual to the respective eigenvalue of P{ P;. Then, for any (X,)) € K(H) we
define the angle between X and ) as the angle between unit eigenvectors
of P,P{ and P]P} which correspond to a?, and arccosa is said to be the
Measure of this angle.

If H is finite-dimensional then C(H) consists of all pairs of subspaces
of H.

In the probabilistic part of the paper the cosine of the angle between
subspaces ;¥ and Y of a real separable Hilbert space (L%(£2, A, P;R¥), (-;)4)
is considered. This space consists of all k-dimensional centered random
Vectors with finite covariance matrix, and the scalar product is given by

(X,Y)s = E(XTA7YY) = tr(A712y5),
Where A is a positive definite symmetric k X k matrix, and X, is the covari-
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ance matrix of X and Y. Thus, wedefineforU € X,V € Y, (X,Y) € K(H),

(U,V)

V)= e~

e V) = v,

which may be interpreted as the cosine of the angle between U and V.
Maximal values of this expression on suitably chosen sets of pairs of random
vectors will serve as measures of dependence between X and Y. Let Lx be
the subspace spanned by X,let Hx = {AX | A € M} where M is the set
of all k X k matrices, and let L% be the set of all square integrable random
vectors of the form f(X) where f is a Borel measurable vector function;
then fori=1,...,5

(')(X Y) =sup{ea(U,V):U € X;, V € Yi},

where (A;,);) is respectively equal to (Mx,Ly), (£%,Ly), (Hx,Hy),
(L%, Hy), (£L%,L:). The supremum is attained if at least one of the
subspaces &; and ); is of finite dimension, i.e. for ¢ < 4. Then there
exist (X;,Y;) such that gg}(X Y) = (")(X,,Y) Moreover, for : < 4,
(69 (X,Y))? is the maximal eigenvalue of PP} and P}P}.

Since the measures ¢)(X,Y) are identical for any A, the subscript A
may be omitted. The same concerns g( ), and also gA) for any (X,Y’) such
that o 5)(X Y) is defined.

The family (9(1) A € My) is strictly related to the measures of de-
pendence proposed by Hoschel [1] and by Jupp and Mardia [3]. Hoschel’s
measure is defined in a complicated manner and it is computationally in-
convenient, while Jupp and Mardia gave no justification for their proposal.
We show that for any (X,Y) Hoschel’s measure is equal to QE:) for A equal
to the covariance matrix of Y and that Hoschel’s measure is equal to the
square of that proposed by Jupp and Mardia divided by the squared rank
of the covariance matrix of Y.

The measures QAJ, A € My, introduced by Sampson [7], generalize the
correlation ratio between a random variable and a random vector. The
measure (), known as maximal canonical correlation, was proposed by
Johnson and Vehrly [2]. The measure o{*) is closely related to another
measure defired by Sampson [7]: Sampson’s measure is of the same form
but Hy is restricted to BY such that cov(BY) = 4

Sampson remarked in his paper that the procedure of maximizing
04(U,V) on L% x Hy can be treated as a half way between maximal canon-
ical correlation ¢(®)(X,Y) and maximal correlation o(*)(X,Y).

Maximization of g4(f(X),9(Y)) on £% X L3 which is performed for
¢ = b requires the compactness of P;P{ and P{P;. It is shown that the
operators are compact if P(x,y) is absolutely continuous with respect to
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Px ® Py and the square of the density of P(x,v) is integrable. Obviously,
Px, Py, P(x,y) are the distributions generated by the random vectors X, Y
and (X,Y), respectively. For (X,Y) satisfying these assumptions maximal
florrela.tion exists (Theorem 2) and is identical for any matrix A. Clearly,
It generalizes the maximal correlation considered by Rényi [5] for a pair of
Tandom variables.

Generally, gg)(X ,Y) is the cosine of the angle between the respective

subspaces for any ¢ < 5 and for any (X,Y) such that gf:)(X, Y)<1.

1. Angle between linear subspaces. Let (H,(:,;)) be a separable
real Hilbert space, and let X', ) be its closed subspaces.

Let Z denote X N and let Xp, Vo be the orthogonal complements of Z
in ¥ and Y, respectively. We assume that X # Z and Y # Z. Continuity
of the scalar product implies closedness of Xp and ).

Let (z;,% € I) and (y;j,j € J) be orthonormal bases of Xy and )}, where
I and J are some sets of indices, and let

By,={z€X:|zl|=1}, By ={vedo:|vll=1},
s=8(X,Y)=sup{(z,y):2 € Bx,, y € By, },
po=cardI, ¢ =cardJ.

Furthermore, let P, : X — Yo, P2 : Yo — Ap be the linear transforma-
tions defined by

(1.1) Pw:E(z,yj)yj, $EXO,
jeJ

(1-2) sz=2(y,3i)a’is yeyﬂa
i€l

Thus, P, (P;) is the orthogonal projection of Xy on Y, (of Vo on A,). By
the continuity of P;, P, the operators Ty, T3, defined as

(1.3) T] = PgOPl,
(1.4) I:=Poh,
are also continuous.

THEOREM 1. If Ty, Ty are compact then there exist vectors zo € By,
and yo € By, such that

(1-5) 5(X;y)= {30,‘9‘0),
(1.6) T;.'.Bo = 82.’50 M
(L7 Toyo = syo .

Moreover, s? is the largest eigenvalue of Ty and T;.
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Proof. First, we will show that P, and P, are adjoint to each other,
i.e.
(1'8) (Plus' z) = (“! sz)
for any u € &y, z € Vy. The left-hand side of (1.8) can be rewritten as
%l X127, where
2 = [(:i:yj): t=1..,p,7=1,. "!%]?
and the vectors %, Z are the counterparts of u, z in the coordinate spaces
RPo and R% which obvoiusly can be identified () with Xp and ).
The right-hand side of (1.8) has the same form, and therefore Py = P,
where Pf* is adjoint to P;.
The operators Ty and T3 are self-adjoint, since
T;:(P;OPI)‘=P;OP; = P20Pl =T1
and similarly Ty = T2. They are also nonnegative definite: for any z € Ap
(Tiz,z) = (P, P1)z,2) = (Piz, Piz) = || Piz||®> > 0

and the same holds for T5.

Now we will prove that ||Py|| = ||P:|| = s. Note first that the scalar
product (-, ), restricted to Ay X o, can be expressed as
(1.9) {z,y) = (z, Py),
(110) ) (:C, y) = <P1$, y) 8

Applying the Schwarz inequality to (1.9) we get (z,y) < ||z||||l¥]l||P2l|l- So
by comparing the suprema of both sides of this inequality over By, X By,,
we have s < ||P;||. But by (1.9), s > (z, Pay) for any ||z|| = 1, ||y|| = 1.
Setting z = Py/||P2y|| we get s > ||P2y|| for any ||y|| = 1. Thus s > || P2l
and, consequently, s = || P2||. The proof of s = || P;|| is analogous.

The next step is to show that ||T3|| = s?, where

 ||Ta|| = sup{(Tuz,%) : € Bx,}.

Indeed, for any z € X, (Tiz,z) = ||P1||?; comparing the suprema of
both sides of this equality we get ||T1]| = s*. The equality ||T3|| = s? is
proved in a similar way.

Suppose now that the supremum

§= sup{(x,y) T E B(Yu'.l NS Byu}

is attained on some vectors z¢ and .

(*) If po and go are not finite then the elements of RP® and R% are square summable
sequences of real numbers.
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By the Schwarz inequality applied to (1.9) and (1.10), Pizo = syo and
I‘:’zyo = 829, which implies Tyzo = s2zg, Tovo = $’yo, i.e. 2o and yo are
eigenvectors of T; and T5, respectively.

Remark 1. Both T; and T, are compact if either pp or gp is finite.
This follows from the compactness of the superposition of two continuous
Operators of which at least one is compact (and a finite-dimensional operator
18 compact).

If po and go are finite then zo, yo and s(X,)) can be given explicitly.
Let (z;,i € I) and (5,7 € J) be any bases of Xp and ), respectively. Let

(L11) 2y = [z, 25)], i,j=1,...,p0,
(1']2) Loy 1= [(yi’y.f)]s i:j = 11---1%3
(1'13) IRTRES [(zisyj}]! t=1...,p0, J=1...,9,

(114) Z=35'5,55'5T,
(L15) Bi=spl5T5l5y.
The matrices of P; and P, are equal to 23 X% and ' 2y, and the ma-
trices of T} and T; are given by (1.14) and (1.15), respectively, while s(X,Y)
Is the square root of the largest eigenvalue of (1.14) and thus of (1.15). If 7,
and g, are vectors in the respective coordinate spaces corresponding to the
Vectors zg and yg, then to find Fp and 7, it is necessary to solve the system
of equations:
(2 -81,)T =10, Ty I =1,
(2—82190)5{]:6, .53‘222?0 = 1:
Where I} is the k x k identity matrix.
Let K(H) be the set of all pairs of closed subspaces A and Y such that
the corresponding operators T; and T3 are compact.

DEFINITION 1. The angle between the unit eigenvectors zy and yo of T},
T, corresponding to the common largest eigenvalue s(X',Y) (cf. (1.6) and
(1.7)) will be called the angle between the subspaces X and Y and denoted
by Z(X,Y). Moreover, we shall treat arccos(s(.X,Y)) as the measure of this
angle, denoted by m(4(X,))).

This definition will be generalized so that it can be applied in the case
When Z = X' N is equal to X or Y. Then £(X,)) is defined as the angle
between any two unit vectors z;,2; € 2, and we put m(4(X,Y)) = 0.

We have

cos(m(£(X,Y))) = (2o, %0) -
Thus, 0 < m(£(X,Y)) < /2.

Orthogonality of X and ) implies m(Z4(X,))) = 7/2, but not conversely.

It can easily be seen that X’ and Y are orthogonal iff m(4(X,Y)) = 7/2 and
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xXnYy={0}.

Remark 2. A simpler procedure of deriving the cosine of the angle
between subspaces is the following. We choose orthonormal bases (z!,i € I')
and (3,7 € J') of X and Y, respectively, where card I’ = p, card J' = ¢ and
I', J' are some sets of indices.

Analogously to (1.1)-(1.4), we define P{ : X — Y, P} : Y — &,
Ty and T3; if T{ and T; are both compact then we deal with the eigen-
value a? which is maximal among the eigenvalues smaller than 1. Then
cos(m(4(X,)))) = a.

If p and g are finite then we choose any bases of X’ and ) and form matri-
ces Ti;, X%y, iy, X', X' analogous to the matrices given by (1.11)-(1.15)
Then cos(m(4(X,Y))) = a where a? is maximal among the eigenvalues of
X' or X' smaller than 1.

The above definitions of the angle between subspaces and of its measures
generalize the following elementary cases:

(i)p=q=1,
(ii)p=1,g=20rp=2,¢9=1,
(iii) p=g=2.

In all these. cases X and ) are subspaces of a three-dimensional Hilbert
space.

Wysocki [8] defined similar notions of angle between linear subspaces
and its volume measure.

Generally, the angle introduced in Definition 1 is different from that
proposed in Wysocki [8] but the two definitions are identical if H is a three-
dimensional Hilbert space. The volume measure is given by

a.rcsin(( H (1- 02))”2) ;

o2#1

where the product is over all eigenvalues of X' or %' which are different
from 1.

2. Maximal correlation. Let L? := L(£2, A, P; R¥) be the vector space
of all k-dimensional centered random vectors X = (Xy,..., X;)T defined on
(£2, A, P) with finite covariance matrix. The scalar product (-,)4 is given
by
(2.1) (X,Y)4:= E(XTA7Y) = tr(A71 2y3)
where Xy, is the covariance matrix between X and Y, and A is any given
positive definite symmetric k X k matrix. The norm derived from (2.1),
which will be denoted by || - ||4, is complete; thus (L?(£2, A, P;R¥),(-,-)4)
is a Hilbert space. It can be shown that it is separable.
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. The dimension of Hx is not greater than k?, and it is equal to k? iff X
18 a nondegenerate random vector (cf. Introduction for suitable definitions).
Let I;; be a k x k matrix with (i, ) entry equal to 1 and all remaining
entries zero. The sets
(2.2) {I;X :4,j=1,...,k},
(2.3) (LY thF=Lyeusk}
are bases of Hx and Hy, respectively. Thus for any k X k matrix A = (a;;),
AX =3, ;@i 1;;X. Analogously BY = 3, . bi;[;;Y .
Clearly, the spaces Hx, Hy, L% L% are closed in L? and the dimensions
of £%, £} are at most countable.
LEMMA 2. (a) For any X € L?, E(- | X) : L? — L% is an orthogonal
Projector.
(b) For any X,Y € L?, X nondegenerate, a transformation P} : Hy —
Hx is an orthogonal projector iff
(2.4) P{(BY)=BELEX.
(c) If the bases of Hx and Hy are given by (2.2), (2.3), respectively,
then the matriz of the transformation (2.4) is
Ik X (21_11 212) 3
where X stands for Kronecker matriz multiplication.
Proof. (a) results from the theorem on orthogonal projection and from
the following equality stated in Sampson [7]:
inf{|[Y — F(X)I% : f(X) € L} = VI3 - I EY | X)I%-
The infimum is attained for fy given.by fo(z) = E(Y | X = z).
(b) Sufficiency of (2.4) is obvious.
Now let PJ(BY) = ApX for some k X k matrix Ag. For any k X k matrix
A, we have '
(BY — AgX,AX) = tr(A™ cov(BY — Ao X, AX))
= tr(A"Y(BZ], — 40 Z11)AT)
= tr((BSL, — Ao Zn)ATA™) =0.
The only solution of the above is
Ao = BIL B!,

(c) To derive the matrix of the projector (2.4) in the bases (2.2) and (2 3)
we use Remark 2 and (1.11), (1.13). The matrix of P} is equal to X' 3,,
where .
Zha = [(I;;X, TujY ) 4],

211 = [(Iin,Ii'J"X)A}! is i'!j$jr= 13---rk'
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Since (I;; X, IijY )4 = tr(A™ L;; 2121, ) = Ayicov(X;,Yj), where A~ =
[_,_,], we have 313 = A7 x Zyj,. Similarly 3y, = A~ x 44, and finally
Eu S =I % (S" 212), where I is the k X k identity matrix. Notice
that Pj restricted to the subspace Ly is given by

Pj(bY) =025 251X,

Let X,Y € L? be nondegenerate and let 5, X3, and X)), denote the
covariance matrices of X,Y and between X and Y.

Let

(X,Y)4 tr(A~12y,)
o(X,Y):= = 1 1/2 =1 172"
IXNAlY Tl (te(A=1211))1/2(tr(A1 Z22))V/

In view of the preceding considerations g4(X,Y) can be interpreted as the
cosine of the angle between X and Y in (L2, (-,-)4). According to this inter-
pretation, we treat (X,Y)  as the covariance of X and Y, and || X||4, [|Y|l4
as their respective dispersions. Sampson [7] introduced o, as a measure o
dependence for a pair of random vectors.

Now, we will maximize p4 on suitably chosen sets of random vectors
in order to obtain different measures of dependence. We will consider the
following measures of dependence:

gg)(X,Y) =sup{os(U,V):U € X;,Ve)Y}, i=1,...,5,
where
(2.5) X =Hx, Ih=Ly,
(2.6) Xo=L%, W =Ly ;
Az =Hx, Y3=MHy,
Xy=L%, Yi=Hy,
(2.7) Xs=L, Ys=L}.
Note that in view of Remark 1 (Sec. 1) the assumptions of Theorem 1 are
fulfilled for the first four cases. The fifth case requires a separate treatment

and will be dealt with in Theorem 2.
In the sequel we consecutively discuss g ) for i = | P 2

1) Mazimization of oy on Hx X Ly. Let X,Y € L? and let P|, P}
and T}, T} be the orthogonal projections and the operators appearing in
Remark 2 which correspond to the spaces (2.5). Thus, P| and P; are of the
form

P;(AX) = (tr(A_lASw)/ l‘.l‘(A»1 Egg))Y
for any k£ X k matrix A, and
Pj(bY) = bEhLE X,
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Where b is any real number, and X7, X'j;! is the matrix of P. This is due to
the representation of Y which involves linear regression of Y on X, namely

Y=SL23X+U

Where U is a random vector uncorrelated with X.
Consequently,

(Y-ZHZR1X,AX)=0
for any k x k matrix A. Turning to T{ and Tj we have
tr(A~1A%,;)

! _ o\ 2] T -1
TI(AX) = tI‘(A_IEn) 212211 X!
- -1
ry(by) = A T Th Ba)y

tl‘(A_lzzg)
There exist Xo and ¥y such that
_IETE—IE ) 1112
92, (1) - tri(A7 2525 2h )
( 8) 24 (X? Y) ( tl'(A_lzzz)
= sup{os(AX,bY): AX € Hx, bY € Ly}
= 04(Xo,Y0).

The quantity (¢/)(X,Y))? is the unique eigenvalue of T and the maximal
eigenvalue of T]. For any given 4, gg)(X ,Y) is a measure of dependence
between X and Y which generalizes multiple correlation [4]. If gf,il)(X +Y)
is smaller than 1 then it is the cosine of the angle between Hx and Ly.

Let us now discuss the relations between (o'1)(X,Y), 4 € M) and the
measures proposed by Hoschel [1] and by Jupp and Mardia [3]. It is conve-
nient to concentrate first on nondegenerate X and Y. Hoschel formulated
a set of axioms to be fulfilled by a measure of linear stochastic dependence;
then he constructed a suitable measure and proved its uniqueness. For non-
degenerate X and Y Hoschel’s measure is given by

(S SR SR 2 fn )
rank Xy )

(2.9) (X, Y) =

The matrix appearing in the numerator of the right-hand side of (2.9) is
equivalent to X5;! 2, X'1;! Z12; hence
tr( 25, 25 25 2ho)

rank Yy, '

Q(H}(Xs Y) =

It follows that
e™(X,Y) = (6l v)(X, V))? .
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Jupp and Mardia defined their measure as follows:
(2.10) eOM(X,Y) = (25 ZL B0 Bra)) 3 ;

however, they did not provide any justification for this proposal. Comparing
(2.10) with the definition of lel) we see that

o M(X,Y) = kel (X, Y).
It follows that
o™M(X,Y) = (X, Y)) /K.
If X or Y are degenerate, we obtain similar results replacing (if nec-

essary) the inverse matrices in (2.8), (2.9) and (2.10) by Moore-Penrose
inverses.

2) Mazimization of gf) on L% x Ly. Now P{, P} and T}, T} will be
the orthogonal projections and the operators appearing in Remark 2 which
correspond to the spaces (2.6). Thus

~1cov
PG = AL f0.Y)
P(bY) = bE(Y | X),

ri(son) = MR D ey | ),

tr(A A COV(E(Y I X)'l Y))Y
tr(A-125)

_ (A7 cov(E(Y | X)))

- tr(A-12,;)

Y,

TI(bY) = b

Y = 00X, Y)Y,

where

_ (t(A cov(E(Y | X))\
Q&z)(x3 Y) == ( tr(A"l En) ) .

It follows from the form of T} that ( Q(Az)(X ,Y))? is its unique eigenvalue.
It is also the maximal eigenvalue of T]. Let X, and Y, be eigenvectors of
T{ and T; which correspond to this eigenvalue. Since

cov(E(Y | X),Y) = cov(E(Y | X),YT) = E(E(Y | X)YT)
= E(E((Y | X)YT) | X) = E(E(Y | X)(E(Y | X))T) = cov(E(Y | X))
we have
oD (X,Y) = sup{ea(f(X),Y) : (X) € L, bY € Ly} = ea(Xo,Yo).
The measures gff)(X ,Y') were introduced by Sampson [7]. They general-
ize the correlation ratio between a random variable X and a random vector
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Y. ¥ gf)(X ,Y) is smaller than 1 then it is the cosine of the angle between
L% and 3.

3) Mazimization of ps on Hx X Hy. The orthogonal projectors P}, P},
and the operators T{, T; (defined in Remark 2) for H = Hx, Y = Hy are
of the following form:

P'(AX)= A%,25'Y, Pj(BY)=BILE3X,

T{(AX)= A ZR ST X, TiBY)=BILEG 2,25y .

By Lemma 2(c), the matrices of T{ and T} in the bases of (2.6), (2.7) are

(2.11) I x (20225 L2401,
(2.12) L x (ZhE5' 2 Zs)),
Tespectively.

Notice that (2.11) is a block matrix with k matrices equal to Sy, X!
XZL X! on the diagonal and with zero off-diagonal blocks. Therefore the
eigenvalues of (2.11) are equal to those of X1, X5,' XT X1, Analogously the
eigenvalues of (2.12) are those of 5329 w179 sl

Let a? denote the maximal eigenvalue of X, X5, F, X1, We have

e®(X,Y) = a = sup{es(AX, BY) : AX € Hx, BY € Hy} = p4(Xo, Vo).

The random vectors X, Yy are eigenvectors of T/, T}, respectively, for the
eigenvalue a?.

Johnson and Verhly [2] introduced ¢(®)(X,Y) and called it the mazimal
Canonical correlation.

If o®)(X,Y) is smaller than 1 then it is the cosine of the angle between
Hx and Hy.

For degenerate X and Y we use the Moore-Penrose inverse matrices in
(2.11) and (2.12) if necessary.

4) Mazimization of ps on L% XHy. For ¥ = L%,Y = Hy, the operators
T3, T} are of the following form:

Ti(f(X)) = cov(f(X),Y)Z5 E(Y | X)),
Ti(BY) = Beov(E(Y | X)) Z5,lY .
The matrix of the operator T; in the base (1.5) is
(2.13) I x (cov(E(Y | X)) Z5Y).

The maximal eigenvalue of the matrix (2.26) is equal to that of
cov(E(Y | X))XZ5;}, it is also the maximal eigenvalue of the operators T}
and T}. Let a? denote this maximal eigenvalue and let Xy, Yy denote the
corresponding eigenvectors of the operators T} and T}, respectively.
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Hence we have
e™(X,Y)=a=sup{ea(f(X), BY): f(X) € L%, BY € Hy} = 04(Xo,Yo)-

If 6)(X,Y) is less than 1 then it is the cosine of the angle between L% and
Hy.

In Sampson [7], ¢4 has been maximized on the set L% X Hy, where Hy
is the set of random vectors BY such that cov(BY) = A. By this procedure
he has got

2W(X,Y) = sup{ea(f(X), BY) : f(X) € L, BY € Hy}
1/2
= (-;—tr(cov(Y | X)Z5! ) = 0A(X3, YY)

for suitably chosen random vectors X3, Yy.

5) Mazimization of p4 on L% X L}. Dealing now with the most general
case, we will give a simple condition under which maximal correlation exists.

THEOREM 2. Suppose X and Y have finite respective covariance matri-
ces. If P xy) is absolutely continuous with respect to Px ® Py, and if the
squared density p of P x,y) with respect to Px ® Py is integrable then there
ezist random vectors fo(X) and go(Y') such that

(2.14) ¢®)(X,Y) = a = sup{es(f(X),9(Y)): f(X) € L%, 9(Y) € L}}
= 04(fo(X),90(Y)),

where a® is the mazimal eigenvalue of the operators T{, T} which correspond
to the spaces L%, L% .

The proof is an obvious modification of that given by Rényi [5] in the
univariate case. Let P{, P; and Tj, T} be the orthogonal projections and
operators appearing in Remark 2, related to the spaces (2.7). Hence we have

P{(f(X))= E(f(X)|Y), P(9(Y))= E(g(Y)]|X),
Ti(F(X))= E(E(f(X)| V)| X), T3(9(Y)) = E(E(¢(Y)| X)|Y).

In view of Theorem 1 it is sufficient to show that T and T} are compact.
We will prove it for 7] since the proof for T, is analogous.
Let us introduce the following Hilbert space:

Lk = {ff(X)e‘Cg(}:
with the scalar product

[ (A@)T4™ fy(z) dPx(z).
nk
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It is obvious that £% and L% are isomorphic. Thus, T} can be used in £%
and it has the following form ([6]):

T{(f(X)= [ f@)( [ p(w,)p(z,v)dPy(v)) dPx(u).
nk

al
It follows that 77 is an integral operator with kernel
f P(u,v)p(z,v)dPy(v).

nl
_We will show that the squared kernel is integrable, which, as is known,
mplies the compactness of the integral operator. By the Schwarz inequality,

(f p(u,v)p(z,v)dPy(v))zs( f p2(u,v)dPy(v))( f p’(z,v)dPy(v)).
R* R R*

Consequently, _
f f ( f P(‘u, v)p(a:, U) ‘IPY(‘L’))2 dPx(ﬂ) dPX(a:)

Rk Rh nb

<( [ [ #(wv)dPr(v)dPx(w)) < oo.
R* R*
It follows by Theorem 1 that there exist functions fy and go such that
Ti(fo) =a’fo, T3(g0) = a’go,
E"zh;!:; a? is the maximal eigenvalue of T{ and T;. Moreover, f; and g, satisfy

If o®)(X,Y) is smaller than 1 then it is equal to the cosine of the angle
between £% and £2.
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