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MAXIMAL CORRELATION IN PATH ANALYSIS

Abstract, The notions of multiple correlation coefficient and correlation
Tatio are generalized in this paper to the case of a system of random vectors.
By geometrical means, using both linear regression and regression, a certain
formula used in path analysis is also generalized to the vector case. The
formulae obtained allow one to compute the generalized partial correlation
Coefficient for a pair of random vectors (Y1, Yz) after the linear impact or
Impact of random vectors X;, ¢ = 1,...,n, has been eliminated.

1. Introduction. In the sequel we use the index of stochastic depen-
dence between a pair of random vectors (Z, Z2) introduced in [6).
The index is given by the following formula:

(Z Z)— tr(A_ICOV(ZhZz))
ea, 220 = (A —Tcov(Zy, 22)) 2 (tr(A-1cov(Zs, Z3)) /2 °

Where A is a given, symmetric and positive definite k X k matrix.
In Section 2 we maximize g4 on two sets of random vectors L(Y) x
Hx,,..x, and L(Y) x L%k,  x. , where Y and X;, i = 1,...,n, are k-
imensional, centered random vectors with all coordinates being random
Variables with finite second moments. L(Y) denotes the space spanned by
Y. The space Hx,,....x. consists of all random vectors X of the form X =
=1 AiX;, where A;, i = 1,...,n, are k X k matrices. The space L%, . .x.
Contains all random vectors having the form f(X;,...,X,), where f is a
Borel vector-valued function whose second order moments of coordinates
are finite.
Maximization of g4, on the sets described above leads us to new
indices of stochastic dependence between systems of random vectors
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(Y,(X1,-..,Xy)), namely:
0A(Y; X1,...,Xy) = sup{es(bY, X): bY € L(Y), X € Hx,,...x.}

= QA(Y! XO),
04(Y; X1,...,X,) = sup{ea(bY,Z2):bY € L(Y),Z € L}’ e Xn
= pA(Y, Xg) .

The random vectors Xy and X are eigenvectors of certain operators.

The indices p4(Y’; X1,...,Xy) and p4(Y; X1,...,X,) are natural gen-
eralizations of the multiple correlation coefficient and the correlation ratio,
respectively, to the case of a system of random vectors (Y, (Xy,..., Xy))-

In Section 3 a certain formula known in path analysis is generalized to
the vector case. The formula was originally given in [6]. A principle of path
analysis [4] was used to prove it. This principle claims that the correlation
coefficient between two random variables is the sum of all paths connect-
ing them on a suitable diagram. The formula unifies ordinary correlation,
multiple correlation, partial correlation and path coefficients.

Using some geometric interpretation (given in [2]) we generalize the for-
mula to the vector case. Two cases are considered, the first one uses the
regression of Y; on Hx,, . x, (linear), the other one that on L%,  for
1 = 1,2. The following formulae can be obtained:

(1'1) QA(K,Y'?) - \?A(YI;XI'J' . '1Xn)QA(Y‘l’a1,2r)QA(Y2;Xls .o "Xn)
+ w104(U1, U2)us,

where u; = (1 — g%(Yi; X1,...,X0))!/%, and U; € M, x fori = 1,2,
with YV such that ¥; = Y/ + U It should be noted here that the random
vectors U; are the rema.mders of Y;, ¢ = 1,2, after subtracting the linear
impacts X;, j =1,...,n. Next,

(1'2) QA(Y'I H Y?) = EA(],'l ) Xl IEERE Xﬂ)gd(l,l"l Y‘;)EA(Y&; Xl'! s0ey X‘l’l)
+ w104(U1, Uz)uz ,

where u; = (1 - 25(Yi; X1,...,X,))"/? and U; € (L%, x, )%, with Y/
satisfying Y¥; = Y" + U;. The random vectors U; are the remamders of ¥;
after eliminating the impacts X;,fort=1,2and j =1,.

The numbers u;,u; appearing in (1.1) and (1.2) are pa,th coeﬂicients. In
the case described above they are also correlations in the sense of the index
04 due to the fact that p4(Y;,U;) =0 for i = 1,2.

The indices p4(Uy,U;) appearing in (1.1) and (1.2) are generalizations
of a partial correlation coefficient with linear impact, the impact of the
random vectors X,,...,X, removed. The formulae can be employed in
order to calculate the partial correlation p4(Uy, Us).
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2. Maximal correlation for a system of random vectors. In this
and the next sections we consider, with certain restrictions, k-dimensional
Tandom vectors. They are defined as follows. _

Let L?(2, A, P,R¥) denote the space of all k-dimensional centered ran-
dom vectors defined on a probability space (2, .A, P) such that all coordi-
Nates have their second moments finite. For a given symmetric and positive
definite k x k matrix A we introduce in L*(2, A, P,RF) the scalar product
(ZI, Zg)A = E(Zi‘rA—l Zz) = tl‘(A—ICOV(Zl, Zg)) for Z,,Z, € Lz(ﬂ, A, P, Rk).

The norm generated by this product is denoted by || ||4. It is complete.
For purposes of this paper some subspaces of L?(12,.A, P,R¥) are defined.
Let X;,i=1,...,n,and Y be in L?({2, A, P,R¥). Then

(21) L(Y) is the subspace spanned by Y,
(22) 1%, x. ={f(X1,...,Xn) € L*(2,A,P,R¥): f :R"¥ — R¥
is any Borel function whose all coordinates have
the second moments finite},

(2'3) Hxls"-txu = {X € Li'l,...,x. :X = EASIX!' ?

=1

where A; are k x k ma.trices} :

Of course, (2.3) is a subspace of (2.2) and its dimension is at most nk?. The
Spaces (2.1), (2.2), (2.3) are closed in L*(2, A, P,R¥). From the Schwarz
lnequality one can see that the number

(Z1,22) 4
1Z11| 4ll 22114
tl‘(A_ICO\f(Z] , Zg))
tr(A-1cov(Zy, Z3))1/2(tr(A-1cov(2Z,, Z2)) /2
can be considered as the cosine of the angle between the vectors Z;, Z; in
the space (L?(2, A, P,R¥), (, )4)-

This suggests that the scalar product (Z;,Z;)4 can be viewed as the
covariance of the random vectors Z, Z3, and the numbers ||Z; |4 and || Z;||4
as dispersions of these random vectors. The formula (2.4) was introduced by
Sampson [6] as an index of stochastic dependence between random vectors.
This index will be maximized on the following spaces of random vectors:

(2.5) L(Y) X 'Hxl,...,x.. ]
(2.6) LY)x L%,,..x, -

Let X; = (Xi1,...,Xu)T,i=1,...,n,and Y = (Y1,...,Y5)7 be ran-
dom vectors in L?(2, A, P,RF). Denote by X the column vector consisting

(24)  04(21,2,) =
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of Xi’s,1=1,...,n:

(2.7) X =(x{¥,....xD)T.

We also introduce the following covariance matrices:

(2.8) Yo =cov(Y,Y),

(2.9) X; = cov(X,;,Y), t=taim,

(2.10) Zij = cov(X;, Y;), 7% [0 P

(2.11) Y=cov(X,X)=[2], 43=1,...,n,

(2.12) T =(z], i=1,...,n.
Let B denote the block matrix

(2.13) B=[Bf), i=1,...,n.

~ The facts necessary to prove that the maximization of o4 on the sets
(2.5) and (2.6) is correct are gathered in the following lemma:

LEMMA l.a. If the matriz X (cf. (2.11)) is nonsingular then the orthog-
onal projector Py : L(Y) — Hx,,... x.. has the form

(2.14) P(bY) =bETE1X .
LEMMA 1.b. The conditional ezpectation, given the random vector X, 15
the orthogonal projection L(Y) — L%, . x  given by
(2.15) Py(bY) =bE(Y | X)Y .
LEMMA l.c. The orthogonal projection Py : L*(12, A, P,R¥) — L(Y) has
the form
tr(A=1cov(Z,Y))

(2'16) pl(z) = tr(A‘lEo)

>

Proof of Lemma 1.a. Suppose that the random vector
n
(2.17) Y B:iX;=BTX,
i=1

where B;, i = 1,...,n, are some k X k matrices, is a projection of Y on
Hx,,...x,- We have used (2.7) and (2.13) here.
For every system A;,..., A, of k X k matrices the following holds:

(2.18) (Y -y Bixi, Y AjX,->A
i=1 i=1

= tr(47leov(Y = Y BiXi, Y 4;%;)) =0.

i=1 i=1
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We shall now find the last covariance matrix:

(2.19) cov(Y - i B;X;, Xn:AJ'XJ')
i=1 j=1

n n n n n
=) zTAT - Zﬂe(zﬂiﬂi?) =) (E.'T— ZB:'EJ':')A?-
i=1 i=1 =1 i=1

=1
It is clear that a necessary condition for equality (2.14) to hold is that the
Covariance matrix (2.19) is the null matrix,

n n
Y (S? - ZB_,-Eji)A}" =0.
1 =1

The last equality is equivalent to the system of n equalities:

(2.20) Y BiZu=XT, i=1l,..,n, or
=1

n
Y ZiBl =%, i=1,...,n.
=1

Using (2.7) and (2.9)-(2.13) we can write the system (2.20) as B = X.
.Since Y is nonsingular, we have B = Z~1X. This, together with (2.17),
Implies the formula (2.14) for the orthogonal projector.

Proof of Lemma 1.b. Set Zy = E(Y | X). First we show that
221) Y -2l =Y - 2ol + 120 - 2|} for Z € L, . x, -
Note that the random vectors Y — Zy and Zo — Z are orthogonal in
(Lz(Q,A, P$ Rk)’ < ’ >A):

(Y — Zy, Zg — Z)_,1I = tr(A_ICOV(Y — 20,20 — Z))
= tr(AT E(Y — Zo)(Zo — Z)T)
= (AT E(E((Y — Z0)(Z%0 - Z)" | X))
=tr(AT E(E((Y — Zo) | X)(Zo - Z2)T)) = 0.
Squaring both sides of the equality Y — Z = (Y — Z) + (Zo — Z) we obtain
(2.21).

The equality inf{||Y — Z||4 : Z € L%, x,} =Y = E(Y|X)|ls is a
consequence of (2.21). Hence the orthogonal projection theorem and the
last equality yield the assertion of Lemma 1.b.

Proof of Lemma 1l.c. The proof is obvious.

In the case where the matrix X is singular, we replace the inverse X1
in the formula (2.14) by the Moore-Penrose inverse [3].
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Maximization of g4 on (2.5) and (2.6) will be performed via the following
theorem (see [7]):

THEOREM. Let X and Y be (closed) subspaces of a real Hilbert space (*)
(H,(,)), and let P, : X - Y, Py : Y — X be the orthogonal projections. If
P10P; and Py 0Py are compact then there ezist vectors zo and yo in X and
Y, respectively, such that

(30,%) {(3&?)) }
—_—— et EX, € =a,
Teolllsoll — = Ulzlllsf * = € ¥ €Yy =2

where a is the square root of the mazimal eigenvalue of these operators.
Furthermore, zo and yo are the respective eigenvectors.

Mazimization of p4 on L(Y) x Hx,,...x,. From (2.14) and (2.16) we
can obtain the following form of the operator P; o P; acting in L(Y):
t(A-18T2-15)

tr(A-1%,)
This operator has a unique eigenvalue a?, equal to the maximal eigenvalue
of 'P3 o P] .

Let Y and X, denote respective eigenvectors of the two operators. We
obtain

¥

(P10 P,)(bY) =

(tr(A—lﬁTz—' E))‘*‘2
tr(A-1Zp)

sup{e4(bY, X)} = ea(Y, Xo),

where the supremum is taken over bY € L(Y) and X € Hx,,.. x,-

Mazimization of g4 on L(Y) x L%, x . From (2.15) and (2.16) we
obtain

(2.22) eA(Y; X1,..., Xn) =

tr(A=Tcov(Y, E(Y | X)))
tr(A-1%,)
and by an analogous argument combined with the easily verified fact

cov(Y, E(Y | X)) = cov(E(Y | X), E(Y | X)),

P1oPp(bY) =

we have

r(A~cov 1/2
(2.23) Ba(Y; Xy, Xn) = (" (4 ‘f,&’ll“; ();) E(Y | X))))

= sup{pa(bY,2): Y € L(Y), Z € L}h._‘,x_}
= gAY, Xé)

(*) The original proof of the theorem was given under the separability assumption
imposed on the Hilbert space. Actually, it remains valid without it.
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Note that for k = l,orif X;, 4 = 1,...,n, and Y are simply random
Variables, (2.22) reduces to the multiple correlation coefficient and (2.23)
lo the correlation ratio provided n = 1 [6]. Thus we clearly see that the
indices eA(Y; X1,...,X,) and g4(Y; X1,...,X5) are generalizations of the
Multiple correlation coefﬁcient and the correlation ratio, respectively, to the
System of random vectors (Y, (X1,...,X,)). The index 4(Y; X1,...,X5)
i8 the Sampson correlation ratio for n=1.

3. Maximal correlation in path analysis. In this section we at-
tempt to generalize a certain formula that is used in path analysis and was
Originally obtained algebraically in [4, 5]. There one of the principles of
Path analysis was used that claims the equality between the correlation co-
efficient and the sum of all paths between corresponding random variables
On a suitable diagram. The formula obtained unifies ordinary correlation,
Mmultiple correlation, partial correlation and path coefficients.

Let (H,(,)) be a real Hilbert space. In the sequel it is treated as an
affine space (with adjoint vector space H). We recall a lemma of [2], in a
slightly more general formulation. The proof is still valid without change.

LEMMA 2. Let q; and gz denote the orthogonal projections of points p,
and p,, respectively, in the affine space H onto its closed subspace Hy. Then
the measures of angles

(3.1) a; = mZ(0p;,0¢;), i=1,2,

(3.2) B =m£(0g1,0q2),

(3.3) 7 =mZ(0p1,0p2),

(3.4) ¢ =mL(p1q1,P202)

Satisfy

(3.5) cosy = cos a; cos B3 cos ap + sin @y cos @sin ay .

Note that if # = ¢ = 0 the formula (3.5) is simply
cos(a; — az) = cos oy cos @ + sinag sinay .
We will apply Lemma 2 to the subspaces Hy = Hx, .. x, and Hy =
L?‘-h .x,» introduced in Section 2 by (2.2) and (2.3), respectively. Let
Yi,Ys, Xi,i=1,...,n, be in L2(12, A, P,RF).

Case Hy = Hx,,...x,. Denote by E iy ¢ = 1,2, the matrix defined by
(212)for Y = Yi, i =1, 2 and suppose that the matrix X (see (2.11)) is
honsingular. Then from (2.14) we see that the orthogonal projections of
Y; on H, have the form Y= E‘?Z’X for i = 1,2. Hence Y; =Y/ + U;,
Ui € Hx, x.0 04(Y,U;) = 0 for i = 1,2. We call U],Uz the remainders
of¥1,Y, after el.lmmatmg the linear impact of Xi,...,X,. Use now Lemma
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2 with p; = Y;, ¢ = 1,2. We have ¢; = Y/ and p;q; = U; for i = 1,2. The
cosines of the angles (3.1)—(3.4) are

cose; = pA(Yi, YY) = 0a(Yi; X1,..., Xn), i=1,2,

cosf = 0a(Y{,Y2), cosy=041,Y2), cosp=p0a(lh,U2),
In this case (3.5) takes the form

(3‘6) gﬂ(“ ) Yz) = QA(YI ) Xlg seey Xn)QA(Y;, er)gd(n; Xi greny Xﬂ)
+ w104(U1, Uz)uz, ,

where u; = (1—0%(Yi; X1,. .., Xs)) /2 for i = 1,2. The numbers u;,i = 1,2,
correspond to the path coefficients, and in this case they are the correla-
tions u; = p4(Y;, U;), ¢ = 1,2. Note that p4(Y;; Xq,...,Xn), ¢ = 1,2, in
(3.6) is the multiple correlation coefficient for the systems of random vec-
tors (Y;,(X1,...,Xn)), t = 1,2 (see (2.22)). p4(Uy,U;) is a generalization
of the partial correlation coefficient. This is a correlation in the sense of the
index (2.4) for the pair (Y7,Y2) with the linear impact of X3,..., X, being
eliminated.

Case Ho = L% x, . Dueto (2.15) the form of the orthogonal projec-
tion of Y; on L% . is the following: Y; = E(Y;|X) for i = 1,2. Hence
Y=Y+ U, U; E-(L};,...,X.. ) and pA(Y/,U;)=0fori=1,2.

By an argument analogous to that used in the previous case, U;, i =
1,2, are called the remainders of Y; after eliminating the impact of Xj,
j=1,...,n. Use now Lemma 2 with p; = Y;, then ¢; = Y/ and p;q; = Ui
for i = 1,2. The cosines of the angles (3.1)—(3.4) are

COS(I,‘=QA(Y'.',]/"')EQA(Y:';Xl,..-,Xn), £=1}2’
cos B = pa(Y{,Y7), cosy=p4(V1,Y2), cosp=p4(U1,03).
In this case (3.5) takes the form

(3-7) Qﬂ(},l ] y:.!) = E:‘I(YI 3 Xh ey Xﬂ)QA(Yl'$ Y;)EA(H; Xl IERERY Xﬂ)

+ uip4(Uy, Uz)ug,
where u; = (1 — g3(Y;; X1,...,Xp)) /2 for i = 1,2.
The numbers u;, i = 1,2, correspond to the path coefficients, and

in this case they are the correlations in the sense of p4. The numbers
24(Yi; X1,...,X,) appearing in (3.7) are the correlation ratios for the sys-
tems (Y;; X1,...,Xy) of random vectors, ¢ = 1,2 (cf. (2.23)). As in the pre-
vious case the index g4(U;, Us) is a generalization of the partial correlation
coefficient for the pair (Y;,Y2) with the impact of Xi,..., X, being elimi-
nated. For k = 1 or for the system of random variables (Y3, Y2, X1,..., X»)
formula (3.6) reduces to that obtained in [1]. (3.6) and (3.7) can be of some
help when calculating the partial correlation coefficient for a system of ran-
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dom vectors (71,Y2,(X1,...,Xn)). The first of them uses linear regression
While the second uses regression.

In [7] the notion of angle between linear subspaces and its measure were

introduced. The values 04(Yi; X1,...,Xy) and 94(Y;; X1,y...,Xy) for i =
1,2 are the cosines of the angles between L(Y;) and Hx,,... x, in the first

€ase and between L(Y;) and L%, _ x_ in the second case. This yields a
geometric interpretation of (3.6) and (3.7).
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