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MINIMAX CONTROL OF A SYSTEM
WITH ACTUATION ERRORS

0. Introduction. The minimax approach to the problem of control
of stochastic systems has been studied in various aspects (see [2], [5]-[9],
[11]-{13]). The variety of the problems is caused by the variety of assump-
tions concerning the uncertainty about the examined system. The descrip-
tion of the uncertainty in our paper is similar to the one considered in [13].
We are looking for strategies which are minimax in the sense determined in
that paper.

In this paper a discrete-time linear stochastic system is considered. We
assume that the system is observed via random actions which influence its
Plant and which have an unknown mean. It is also assumed that the param-
eters of the system are random matrices of known Gaussian distributions.
In view of the plant equation (1) these assumptions imply that the states of
the system are unknown and it turns out that we deal with the state esti-
mation problem as well. For references connected with the state estimation
problems see [6] or [9]; both estimation and control problems are considered

in [5].

1. Preliminary remarks and notations. Throughout the paper,
Greek and upper-case bold letters except T—Z indicate matrices, upper-
case bold letters T-Z and lower-case bold letters indicate vectors. Scalars

are denoted by italics. _
In the sequel we will use the following notations:

o;,e; = the [-dimensional vectors all of whose components
are, respectively, zero and unity,
I, = thel x I identity matrix,
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[A1...A,] = the square matrix in the block-diagonal form
with the blocks A; on the principal diagonal,
aTa for every vector a,

llall®
trA
At = the Moore-Penrose pseudoinverse matrix to A,
A ® B = the Kronecker product of A and B,
A B = the Hadamard product of A and B.

the trace of the matrix A,

For definitions and properties of the pseudoinverse matrix and the above
matrix products see e.g. [10].

Let Ag, Ay,...,A, be square matrices having the same dimensions.
We denote the product A,A,_1... Ax by A, k. If £ > n then A, ; is the
identity matrix of the appropriate dimension.

All random vectors which can be observed up to the moment n will be
denoted by W, (they will be specified in the sequel).

In our model we assume that random vectors V, which influence the
controlled system have distribution depending on an unknown parameter
V. The parameter is assumed to be a random variable. The following
notations connected with this parameter will be very useful:

Px|v, fxjx(x|y) = the conditional distribution of a random
vector X given a random vector Y,
and its density function, respectively,
Pxiv » fxj¥,»(x|y,v) = the conditional distribution of a random
vector X given a random vector Y and V = v,

and its density function, respectively.

Let X; be a random vector. Then

-~

X;); = the conditional expectation of X; given W,
Cov(X; | j) = the covariance matrix of the conditional distribution
of X; given W;,
A}‘]J- = the conditional expectation of X; given W,, and V=v,
Cov(XY | j) = the covariance matrix of the conditional distribution
of X; given W and V = v.

2. Model description. Consider the l-dimensional, discrete time linear
stochastic system given by the following plant equation:

(1) Xat+1 = anXp + fpn + 12 Va, n=0,1,...,M,
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Where X,,, u,,, V, are the state, control and disturbance, respectively.

The initial state Xg is assumed to be a random vector with the known
fﬁﬁtribution N(m, ©). It is also assumed that for each n the matrix g,
18 random; it represents a disturbance which is usually called a random
actuation error (for more details see e.g. [4]). It is introduced into the system
by exercising control over it and its magnitude depends on the magnitude
of the control. It is assumed to have the Gaussian distribution N(B,, A, ®
4,) (see [3]), where B,, is a known mean matrix and A, 4, are given,
nonsingular, [ X [ matrices.

We assume that for each n the random vector V,, has the distribution

(2) N(gVe;,qL)

Where ¢ is a given positive constant and V is an unknown real parameter.
Let N denote a horizon of control. The horizon is assumed to be a
random variable with the distribution

M
P(N=k)=pr, k=0,1,...,M, py>0, Y pp=1.

k=0
In our model the observation equation has the form
(3) Y,.=taVa+2Z, n=0,1,....,.M,

Where Y,,, Z,, are p-dimensional vectors, &, is a given p X ! matrix and Z,,
has a known distribution N(op, Zy).
The following data are available at the moment n:

Yl (Yg‘v--aYZ—l)T’ U™t = (“'{s---,uz-l)T-

As we have already mentioned, WI denotes the vector ((Y™~1)T,
(U™=1)T), The control vector u,, is a Borel function of W,.
The random elements N,Xg, Vyn,Zp,0n, » =0,1,..., are independent.

3. Game-theoretic aspects of the control problem. Let ug,...,uys
be controls. The system of vectors U = (ug,...,upn) is called a control
strategy. For the given control strategy U we define the risk function by

N
R(v,U) ¥ ENE, E Li(Xi, u;, v)
i=0
where Ex( ) denotes the expectation with respect to (w.r.t.) the distribution
of N, and E,( ) denotes the expectation w.r.t. the distributions of X,
VayBa, n=0,1,..., given V = v. The functions L;(-, -, ) are given by
L,‘(X.‘, u;, v) = (1, v, X?‘)R.,(l, v, X:F)T + u?Kgu.-

with R; and K; being nonnegative definite matrices of appropriate dimen-
sions. In order to simplify our further formulae we write Ry, in the block
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form
R(ﬂ] Rgﬂ} R"i“]
R.= R} R R
Ry R RY
where R.:(,g} is an I X [ matrix, Ra; = R1T3, Ras = 7; are [ X 1 matrices, and
Ri1, Ri2 = Ry, Ry; are 1 X 1 matrices (scalars).
Assume that the parameter V of the distribution (2) is unknown but we

know its prior distribution D. For the given D and control strategy U we
define the Bayes risk connected with D and U by

r(D,U) = EpR(V,U),
where Ep( ) denotes the expectation w.r.t. the distribution D of V.
The Bayes risk will be the cost function (loss function) in our problem.
Let Cp denote the class of control strategies U for which the Bayes risk
r(D,U) exists. Then a control strategy U* which satisfies
r(D,U*) = Ulclslgp r(D,U)

is called a Bayes strategy (w.r.t. D).

Sometimes we do not know D but we have some information about it,
e.g. we may know some of its moments. Then we know that D belongs to
some class G of distributions of the parameter V. Denote the class of control
strategies U for which the Bayes risk (D, U) exists for each D € G by I'g-

A control strategy U is called a minimaz control strategy (w.r.t. G) if

sup r(D,U) = inf sup n(D,U).
Del;’( ) UGFFDEI:J( »U)

Our principal aim is to find minimax control strategies w.r.t. some classes
of prior distributions. We will use the following lemma.

LEMMA. Let {Di}2,, Dk € G, be a sequence of distributions of V and
let {Ui}2, and {r(Dy, Ur)}2, be the corresponding sequences of Bayes
control strategies and Bayes risks. If U is a control strategy for which

(4) sup r(D,U) < ]Jm iy (D, Ug)
Deg

then it is a G-minimaz estimate.

This generalization of the well-known theorem 6.5.2 in [14] can be found
in [12].
The following corollary is also well known.

COROLLARY. If a control strategy U* is Bayes w.r.t. some distribution
belonging to G and satisfies

VDeG r(D,U*)= const.,
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then it is a minimaz control strategy w.r.t. G.

4. Statement of the problems. In the sequel we consider the classes
G1, G, of prior distributions of V defined as follows:

DeG « EpV?<a,
DeG & EDV=m1AEDV2=m2,

Where the constants a, m;, m; are known.
Our task is to solve the following two problems.

ProBLEM A. For the stochastic system described in Section 2 find a
Mminimax control strategy against the nature’s choice of distribution in the

class Gr.

ProBLEM B. For the same system, find a minimax control strategy
When the nature’s choice of the distribution of V is confined to the class G,.

5. Conditional distributions. Suppose that the parameter V is
known to be equal to v. Then by (3), in view of our assumptions, Y,, has
the Gaussian distribution with mean and covariance matrix, respectively,

(5) ?,‘: = quene;, Cov(Y?)= qENEI +2,.

From (3) and (2), using the Bayes rule, one can obtain the distribution
v, lv,: it is normal with covariance matrix and mean

COV(V:: [ n+ l) = (EEL‘“E? 4 9-111)‘1 ;
Vg = [Cov(VE | n+ DI(ETE1Y, + ver) .

In order to shorten further formulae the two covariance matrices given
in (5) and (6) will be denoted by =, and F,, respectively.

Now let the parameter V be a random variable having a prior distribution
N(rs~1, s=1), with r, s being known constants, s > 0. This distribution
will be denoted by D, ..

According to the Bayes rule, using (5), we find that the conditional
distribution of V given Y™ is N(rns;!,s;1) where r,, s, can be obtained
from the equations

(6)

(7) rapi =t +tTY¥,, ro=r, sspi=s+t., =3,
with
t, = qE',:lene; and t, = qtz:ene;, n=0,1,...

In view of our assumptions in the case where the parameter V is known
the random vectors V, and Y*~! are independent. So, the conditional
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distribution P\",_ [yn-1 is theﬁ equal to P\ﬂf.' Using this fact, the formulae
(2), (7) and the equation

Naws=1(a 1Y) = [ vy o(va |97 0) fypya-a(v |y 1) do
R

one can find that Py _|ys-1 is Gaussian with covariance matrix and mean

Cov(Va | n) = g7 Ti+ (gl + sn) "ese] ],
Vo = (gl + 80)~ 1Cov(Vy | n)rae.
It is easy to verify that
[07' L + (gl + 3a) 'eref ] = qli + %55 ese] .
Using this equation we obtain eventually

vnln = geirys, t H COV(V,‘ I n) =q; + q23; 3 efe? .

6. Filtering of the states. For our further investigations we need the
conditional expectation of X, given W,. It is well known (see e.g. [1]) that
the expectation is the minimum mean squared error estimate for the state
variable. In this section we consider the cases where the parameter V is
fixed and where V' has the prior distribution D, ,. So we solve the problem
of Bayesian filtering (w.r.t. D, ,) as well.

First suppose that V is known to be equal to ». Since the distribution
of the initial state is assumed to be Gaussian and since each of the ran-
dom elements V,, Z,, f,, n = 0,1,..., is also Gaussian, the distribution
Pi_iw, at each stage is again Gaussian. We shall obtain its parameters

i Cov(XZ | n). According to our assumptions we have the following

initial conditions: igfﬂ = m and Cov(X§ | 0) = ©. Suppose that Xﬂl,.
and Cov(X}, | ») are known and Y, has been observed. The independence
of X, and Y, implies that after the value of Y, has been observed the
conditional distribution of X,, does not change. Then, using (1) and (6) we
obtain

jEﬁ+1|m+1 = “nﬁﬁm +Bnun + 7ﬂ?:ln+1 )
Cov(X54q | n+1) = an Cov(X], | n)o: + AT @ ulAu, + 7. FnyT
(for the distribution of 8, u, see e.g. [3]).
Now suppose that V has the distribution D, ,. Then all random vectors
having distributions depending on V become dependent and the filtering

problem is more difficult. Moreover, the observation at the moment n influ-
ences the estimate for X;, 1 < n. Write the state X,4+; down emphasizing
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its dependence on the initial state Xy and the random vectors V,,:

n n
(8) Xnt1 = an0Xo + zan,i+1ﬁi“i + zﬂn,iﬂ'i’ivi .
i=0 i=0

In view of (8) the only distribution we need to find in order to obtain the con-
ditional distribution of Xp41 is the conditional distribution of the (n + 1)I-
dimensional vector V* = [VJ, VT,..., VI|T given the vector W 41. If we
know the density functions fy= vo(y™ | v*) and fy»(v™) this distribution
Can be obtained by the Bayes formula. By our assumption on indepen-
dence of the random vectors Z,, the formula (3) implies that the distribution
Py.iv» is N(¢"V", ™), where the matrices €® and Z™ are of the following
block-diagonal forms:

i I-Eo,El,...,En_l and X" = [50,21,...,‘5‘“] .

The distribution of V" can be obtained similarly to Py _|y«-1 (see Sec-
tion 5). It is

N(grs~'e(nsyrs lnpryt + 4757 €npryiefnay) -

Finally, using the Bayes rule we find that the required distribution is
Gaussian with covariance matrix

e(ﬂ+1)'e(1;;+1)l ] -

= s T yny=1_n -1 -
Cov(V* |n+1) = [(6) (Z™)7e" + 47 Lnsy an+1)+s

and mean

E(V"* | Wpy1) = Cov(V" | n+ 1){(aﬂ)T(2ﬂ)—1Y“

T
_ €(n+1)I€(n4ayt | T
1 e B AREEN | T
+ [q (R @+ Di+s 45 €(nt1)l | -

The above expressions can be simplified with the help of the following
equations:

g(n + 1) = g* el 11yi(€™)Tlge™(€™)T + 271 e e(nay
(9) + e(Tnsz"eaHu ’
q(E“)T[qsn(Sn)T + En’]_l = Fn(en)']"(zn)-l ;
where F* = (¢™)T(Z7)~1¢n + ¢ I(n41). Note that F* = [Fo,Fy,...,F,].
Using (9) one can prove that
s+ Q(n + l)l =Sp41 t+ e(T:-;-'-])lF“e(ﬂ.'l'l)' ’

Where 8,41 is given in (7).
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Now one can easily verify that
Cov(V* |n+1)=F" +s;], F”e(n+1)!e(q:;+1)£Fn J
E(V®| Wap1) = FM(e™)T(Z™) Y™ + rap18pt1€men)i] s

where 7,41 is given in (7).
Using (8) and (10) one can check that

(10)

in+1|n+1 = aﬂirﬂﬂ +Baus + (Jn + 3;-}-1 N,)Yn.
(11) + ('TnFne! + W%“))fnsﬁ‘ ’
Cov(Xnt1 |2+ 1) = an Cov(X, | n)al + ATulALu, + H,,

where
Jn =" 7nFn£zE;1 B
n
T o—
N, = Z Qn,k+1 7&:erl’e’{an€n T 3 ’
k=0
n
wiV = —t, Z an k+17cF e,
k=0
n—1n-1
H,= - s;‘a;}_,tu Z E ﬂn,k+1TkaeleTFi7?az,i+l
k=0 i=0
n=1
-1 T T
+ 341 [%Fneee}"Fn'rﬂ + ) (1nFnee] Firlal 4q
k=0

+ an k417, Freel Foyl )] + 7aFarl.

Note that the first equation in (11) is the filter (one step prediction)

equation for our model. The initial condition is Xgjp = m.

7. Conditional expectations. Now we write down formulae for con-
ditional expectations which will be used in further calculations. They can

be obtained with the help of (3), (7), (11) and the equation

E(wTAw | W,) = E(wT | W,)AE(w|W,,)
+ e[ [A x Cov(w | n)le;,

which holds for an arbitrary random vector w and a matrix M of appropriate
dimension. Since the Hadamard product is, obviously, distributive with

respect to the sum of matrices the above equation is very useful for us.
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‘We obtain:

E("n+13n+1 | Wa,uy) =ras; 5y

E(xn+l|n+1 | Wy,un) = anxnlu + Bnu, + Tnelqrn's;l ’

-2 -1_.-1
E(rn+13n+l l wﬂ! “ﬂ) - rﬂaﬂ- + ‘3 3n+ltﬂ ]

E(xn 1jn ‘lrn-l-ls; Iwﬂ’uﬂ)
(12) +1jn+ +1

= Ppdn’ (a,j&nh + Bnu, + Tnegras;l) + 3;-}-1 N,Gut,,
E(i3+1|n+1Ain+llu+1 | Wa,un)
= (aninfr‘ + Bou, + Tneigras; )'I'A(irar,,.)‘?[,,|ﬂ + Bau, + 1reigreas;?t)
+ef (In+ 5731 Na)TA@Jn + 5511 Ns) * Gpey,
where G, = Cov(Y, | n) = en(qLi + ¢*s; ee] )eT + X, and A in the last

equation is an arbitrary ! X I matrix.

8. Bayes strategies. Now we are looking for the Bayes control strate-
gies w.r.t. D, ,. Following Bellman’s approach suppose that we are at the
nth stage and we start to control our system. The data W,, are known and

the Bayes risk is
¥s

where U,, = (uy,...,up). This risk can be transformed to the form

ra(Dar, Un) = En{

i

N
Tn(Ds;ry Un) = E[ZpiLg(X;,u,-, v) I Wn]

i=n

with pf, = (Tal; pe)(Thl, pr) 7"
Let w,,(X,),) = inf r,(D,r, Uy), where the infimum is taken over all
control strategies U,, for which the Bayes risk exists. It is easy to see that

Wr (X piaes ™m) = Lnae(X e 01, T8t ) + ef [RSY" + Cov(Xar | M)]e;
+ (M) —1 4 2 (g”lMS;fl

Forn = 0,...,M - ], using the results of Section 5, we obtain the
following Bellman equation:

(13) wa(Rojns7a) = nf{L(Knjns Uns 75 ") + e [RE * Cov(Xa | n)ley

_I_R_g;) oy 2Ré§)lﬂs_1 4+ pit? E[wn+1(xn+1|n+1) | Wal}.

In the above equations 1, = E::ol ay_1,it17iFier.
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According to Bellman’s optimality principle, using (13) and (12), one
can show by an inductive argument that for n = 0,..., M — 1 the infimum
wy, of the Bayes risks takes the form

wﬂ(xﬂln) (] rﬂsn ’ xn]n)Aﬂ(l TnSp ’ann)T
+ el (ALY * Cov(X,, | n))ey
and the Bayes control u}, satisfies
(14)  {K.+prH[BTALYVB, + Ael (ALY « 4,)el}ul,
= n+1[BTA(ﬂ+nanxﬂ|n + BT(A( +1)q7nei
where the (I + 2) x (I + 2) matrices A, have the fol]owmg block form
ey
B ab ab Ak
Ayl Ayx Ay
with Ag';) being an [ x| matrix, A3y = A13, A3z = AT, being I x 1 matrices,
Aj1, Aj2 = Ay and Ay being 1 X 1 matrices (scalars).
Throughout the paper we assume that a solution of the equation (14)

exists. Then denoting the matrix in braces on the left-hand side of (14) by
M,, we can write

ul = -P, X, — hatus;' —da, n=0,...,M—1,
with
P, =pit'M{BTAG ey,
(15) h, = p,,,""M"'BT(A("H)qT,.eg 3 A(ﬂ+1))
d, = it IMEBTAGHY .

The blocks of the matrix A,, can be obtained from the following equa-
tions:

AP =RM + RW s + 2RM1, 57! — dTM,d,,
+ PR [AL) 4 T (A « H, + NTASHDN, + G, ey
+ AG s sk + 285 N, Gatas
A(") _ Rgn) hTM,d, + p"*(geT ,yTA('n+1) _]_Agv;ﬂ))’
A(ﬂ} - (ﬂ) —hTM,h,
(18) Pl A e + 245 + A
A = REY + 53+ (of - PIBDAGHY,
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AR = RY +p3+ (f - PIBT)(GAG e + AGHY),
AL =RE +p3" (o] - PIBDAG an,
ALY =RE + i (AL [an),
with the boundary condition:
AR = RO + R a3t + 2R3 s/
M M M
AQD _RUD, AU _RUD,  AUD RGO,
M M M
AGD=RUD, AL =R, AUO-RE,
and each of the remaining blocks is the zero matrix of appropriate dimen-
Sions.

For given k X k matrices A and B the symbol (A /B) (which appears in
the last equation) denotes the k X k matrix whose elements are determined

by
(A/B)[i,j] = e{ (A *B[i, -]"B[j, - ))ex

Where for an arbitrary matrix A the symbols A[z, j] and Ali, -] denote the
(%, 7)th element and ith row of the matrix, respectively.

The results we have just obtained are summarized in the following propo-
sition:

ProrosiTION 1. The Bayes control strategy U*(s,r) = (u§,...,u},)
w.r.t. the distribution D, , for the system described in Section 2 is given by

-~

uy =0, u,=-P.X;,~- hnrns,:l -d,, n=0,....M—-1,
with P,, h,, d,, being given by (15) and (16).
9. Risk functions for the Bayes strategies. Consider the case where

the parameter V equals v and a control strategy U is given. We are looking
for the risk R(v,U). Define the truncated risk R.(v, U) by

Ru(v,U) = EN{E,,[g:L,-(X;,u,-,w) ] w,,] N 2n}.

Note that Ro(v,U) = R(v, U).
The truncated risk can be written as follows:

N
Ru(v,U) = E,,[Z P (X, wi0) | Wi

One can easily derive the following recursive equations for the risk:
Rn(0,0) = La(X3jns Uny ) + €] (RE * Cov(X; | m))e
+p:+lEﬂ[Rn+l(vaU)|wn]3 Tf‘:Oa'“sM_l!
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Ra(v,U) = La(Xgyar upr, ) + €F (RED + Cov(X3y | M))ey .

Using these relations we find the explicit form of the risk function. We
need the following conditional expectations:

Ev(i:+1|n+1 | Wa,u,) = aﬂﬁ:[n + Bru, + gynev,
Eﬂ(ﬁn+l|n+l | Wa,u,) = anin[n +Bnuy + ¢(Jn + 5531 Nu)enew
+ (TFner + 51w )rasy?,
Ey(rnt+1 | Wayug) = 1n + oo,
Ey(rh41 | Wi, 0s) = (o + ta0)’ + ta
Eﬂ(izﬂjnﬂAinHInH | Wa,uy)
b ET(in+1|n+1 | Wa, “n)AEu(in+1}n+1 | Wa,uy)
+ e [(In + 37311 Nn)En(In + 3731 Ns)T + Aley,
Eu(iz'+1|n+1 AX3-1—1|u+1 | W, ua)
= ET(Xnt1pns1 | War un)AEy(X Yy jng1 | Wy tiz)
+ef [(Jn + 5711 Nn)Znd 7 + Aley,
EU[(izHlnH) AXn+1|n+1 | Wa,u,]
= Eg(i:-!-lh-}-l l Wm“n)AEv(i:Hm-l | Wi, u,)
+ el (JnZnd] ¥ Ader,
Eu(rnt1Xnt1jnt1 | Wa, )
= Ey(rn |Wns“n)Eﬂ(in+‘l]n+l | Wa,u,)
+ (Jn + 5741Nn)Zntn,
Ev(rﬂ+1ﬁ:+11n+1 | Wa,u,)
= Eo(tnt1 | Wa, un) Eo(Xi41pnt1 | Wiy ) + InEnta,

where A is an arbitrary matrix of appropriate dimensions.
With the help of the above equations one can prove that

(17) Ra(o,U(s,7) = [1 L e

xC, [1 v, — nl“, (X:Iﬂ)T:I eT(C) & Cov(XZ | n))er,
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Where the (2! + 3) X (2! + 3) matrix C,, has the following block form:

i
cy c® ... ci

-----------------------

with C{7, C{® = c{W7T, C{™ being I x I matrices, C{V = C{V7T, ¢ =
cT c‘;;’ C(n)T et = ot o) = C(n)T cl = C(n)T heing
Ix1 matrices, and c“" cg’;’ = cg';’, Cy;, CB) = g’;’, c, cg’;’ =c
being 1 x 1 matrices.
The blocks can be obtained from the following equations:
cg*;H) R(n) +dTM,d, + pi+ {tr J“:“JTC(HH) +try,F, ;{‘C(ﬂﬂ}
+tr 3,5, 3TC 4+ 2403, 5,373 +
2dTBT(C(n+1) ¥ C(n+1)) ey [2(C(n+l) + C(ﬂ-}l))Jan
+ tr(NoZp % + JnE,ND)CHH 4+ tr NI 2,3, 60411,
+[2C N Entn + tn + tr No E.NTCT D]s22 1 3,

C(';) - dTM h, +p:+l{[C(“+l) dTBT(C(ﬂH) 4l C(n“)]]snsﬂ_'_]

+[Ci*) - aTBT(C*Y + Wi,
(18)  +[C{i* - aTBI(CH™ + Ot )yaFney
- hBI(CHHY + cit),

of = A —

C = R 4 prHT[CEH) — () 4 cH)p 4.,

o) — AL -

O = R + p2# (G + wiPT(C w4 203+
+2CE* N gy,er) + gl 17 (CH: ""me; +2C{*) + 20Dy,
+2w{IT(CEH g 4 o) 4 G g )

+ 2w Ct V1, + 2geT 1T C V1)1,
+ [w(n}T(C(n-t—l) (n) +2C(“+1)tn)+ Cg““)t 522,

C{® = hTM,h,, + pn+! {C(""H)s2 spii+ 2w(")TC("+1)3nsn+1
+[2C8t )4, F e, — 20TBT(CHY + catV))s,s71,

+ [2¢] Fry7 it wi™ — 2nTBT(CHH + i) wiMs L,
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£ wT G (M =2 | TET IO, B o,
h’*“B"(c‘““’ +C)yFer},
oip) =21 (AlY - o - o),
c{® = PTM, h,, + p**{[(T - PTBT)C(3*" - PTBTC{3)s, 571
+[(eI - PTBT)CY - PTBTC w571,
+[(off - PTBD)CG — PTBTCU ) |y, Frey
""(C‘"“’ +C§)B.hn},
Cgrzu) =R2 +p,,+1 T[C(“+1)+(C(“+l}t +C(n+1) (“])8—1

+ S + Ol arel,

Cg’;) +1 T[(C{ﬂ+l)3n3ﬂ+1 +Cg:+l) gﬂ-) ;}_1 3 C("H‘) .F.e
- (C{t*V + €GB,k |

ol = Al o) - oy - i,

c{M = prttaT[ci) (a, — B,P,) - CMDB,P,],

Cg';} - R3“)+ n+1 TC(nH) Qn s

c = AQ — 2 —

oA,

(n)

where wgn) = qJ.eqe; and wy ' = qNyen€.

The boundary condition is as follows: C(M] — RS‘IW}, C(M} R(M’
C(M) R(M) C(M) R(M} C(M) RgM] C(M) Rggﬂ, ngf} (M}
and the remaining elements va,msh

Note that all of the quantities which appear on the right-hand sides of
(18) except, obviously, s,, sp4+1 and some of C(“H) i,j=1,...,5, do not
depend on s.

It follows from the above considerations that the risk function
R(v,U*(s,r)) is given by (17) with n = 0.

10. Extended Bayes strategies and their risk. Let U(m) =
(W, - - ., Ups) denote the control strategy given by

ﬁﬁf:D! ii =""'Pﬂ.x h,m —d,, n=0...,.M-1,

where Py, h,, d, are given in (15) and for n = 0,...,M — 1 the vector
X:‘l“ is defined by the recursive equations

nln =

i~

X1 = 0 X0 + Bty + VaFnem + 1,3,Y,, XZ, =m.
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In the way presented in the previous section one can obtain the risk
function R(v,U(m)). The truncated risk is

(19) (t"| U(m)) = [1 v, m, (xnln)T (xn[n)T]S [l v, m,
(Xrin)T > Kiyo) 1T + € (S # Cov(X, | m))er
Where the (2/ + 3) x (2! + 3) matrix S, has the same block form

O S
S, = S31° Sz’ -cr Sy
s s - s

as C,, in (17). The blocks can be obtained from the following equations:

s{® = R(M + dTM,d,, + p ! [tr I, Z.ITSEHY) 4 tr, Fy TS

+tr I, 2, 3TSEHY 4 403, 5,3TS{3HY 4 s(n+D)
ZdTBT(S(““) + S(n+1))]
Sgﬂ) =d’M,h, +p +1{s{ﬂ+1) dTBT(S(n+1] +S(n+1))
+[S(n+1) dTBT(S(ﬂ+1) (n+1))]'¥nF &
hTBT(S(n+1) (n+1])} }

S = A — s

s = R{Y + prt1aT (ST — (SG + SGY)Badal,
s = AlD - s{y

51 »
Sgr;) - R{zn) +P.n+1[s(ﬂ+1) 3 (n)T(S(n+1) (n) +28{n+1}
(20)  +253 gvae) + gel 1T (S grner + 2851V,

S(“)thM h, +p +1[S(n+1) 2hTBT(S(n+l) (n+1))
+ el FT9TS(*, F e, — 20TBI(SUHY + (1)), Frel],
S = 2-1(A( — s — s,

S3) = PIM,h, +p,,+1{(a'f PTBT)S{T) — PTRTSEH
+[(aT - PTBT)s(2tY) — PTBTS(1*))]y,F,e
—aT(s(t) 4 s(it)B,Lh,},

{3’ = R{; )+Pn+1 T(S(ﬂ'm +SUtw (") + S(ﬂ+1)97ne!)s

S = prt1al[sGHY + (7, Foe — (S“‘“’+S(s’s‘+”)3nhﬂ1’

S = A -9 -5 50,
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(e = pital (S (an — BaP,) - SGTVB, P,
g:) - Rzn} + ppt! Ts(a+l) s

S0 = AL - 250 s,

S = AQ,
with the following boundary conditions: S{M = R&’{”, s - R‘,";:},
S0 = RUD, S0 — B3, S0 ~ RO (10 _ P 540 _ Rl
and the remaining elements vanish.

By an inductive argument, using (17)-(20) one can prove that in the

case where X“Iﬂ = X,,I,. we have

Rn(v,U(m)) = lm Ru(v,U%(s,7)), n=0,...,M.

ra~ leam

Since ifﬁo = io]o = m we obtain

R(v,U(m)) = _15?30 R(v,U*(s,1)).

By the definition of the Bayes risk and (17)—(20), this yields that for every
prior distribution of V,
(21) n(D,U(m))= lim r(D,U%s,r)).

rs l=m

—m

Note that this means that for each m, ﬁ(m) is an extended Bayes strategy.

11. Minimax control strategies. In view of (17) the Bayes risk
r(D,U*(s,r)) can be expressed as follows:

f(D, U*(‘s, 1")) o Z2(3)EDV2 + Z](S, r)EDV + ZU('-"’ 7') ’
where
Z (3) . ng) ’
Zy(s,r) = 2lmT(CY + €Q) + Y + cQrs 1],
Zo(s,r) = 2[CVCD f“’](rs ,mT,mT)T + trcP6 + cy
o o o
+(rs~!,m7,m7) C%:% Cﬁ? C%) (rs7',mT,m")T.
ciy ¢ o
Note that Z;(s) is always a positive number.

The following propositions provide minimax control strategies for Prob-
lems A and B.

PROPOSITION 2. A solution of Problem A does ezist and:
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(i) if Vs > a™', Zj[s,v/s%a—s] > 0 then the control strategy U(,/a)
is minimaz w.r.t. Gy, 5
(ii) if Vs > @™ Zi[s, —v/s%a — 3] < 0 then the control strategy U(—+/a)
18 minimaz w.r.t. G,
(iii) if 3s*,r* such that s* > 0AZy(s*, r*) = OA(r*)*(s*) 2 +(s*) 1 =a
then the control strategy U*(s*,r*) is minimaz w.r.t. Gi.

ProrosITION 3. Let 3= (mg — m?)~! and ¥ = my(mz — m})~1. The
control strategy U*(3,T) is minimaz w.r.t. G.

Proof of Proposition 2. First, suppose that the condition in (i)
is fulfilled. In view of (21), for each D € G; we can write

r(D,T(va)) = lim [Z{"(s)EpV? + Z{" (s, V/s?a - 5) EpV

+2§™ (s, V/s?a - s)]
< lim [Z{"(s)a+ Z{" (s, Vs?a - s)va

+2§M (s, V/s%a - 3)]
lim [Z{™ (s)a + Z{") (s, V/s?a — 8)s™1\/s?a — s

+23 (s, V/s?a - s)]
= ’li)ll;lo f(.D,ﬂ/;ga—_;, U‘(s, vV s2aq — 3)) .
This inequality, in view of our Lemma, implies that U(1/a) is a G;-minimax

control strategy. (ii) can be proved similarly.
Now we consider (iii). For each D € G; we obtain

r(D, U*(s*,r*)) = Z{"(s*)EpV? + Z{")(s*,r*)EpV + Z{"(s*,7*)
< Z{M(s*)a + 25 (s%,7%) = 1(Dye o, U*(s*, 7).
Setting Dy = Dy r» and U = U*(s*, r*) for each k in the Lemma
we find that the control strategy U*(s*,r*) fulfils the condition (4), so it is
Minimax w.r.t. G;.
One can easily verify that one of the three conditions given in (i)-(iii)

must be fulfilled. It follows that a solution for our problem always exists
and our proof is complete.

Proof of Proposition 3. Notice that D37 € G;. Foreach D € G,
we have

r(D,U*(5,7)) = 2§V (3)EpV? + Z{" (5,7) EpV + 25" 5,7
= Z{ (3)my + 2 (3,7)my + 2§ (5,7) = const.

Hence, in view of the Corollary the proposition is valid.

ll
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