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SOME RESULTS CONCERNING
THE POISSON-BOLTZMANN EQUATION

If a gas filling up some domain 2 is in thermodynamical equilibrium and
the only acting forces are those of gravity then their potential V satisfies
the Poisson equation

AV = 4wp
with the density p of the gas given by the Boltzmann formula
o = Muexp(-V/kT),

where M is the total mass of the gas, k£ the Boltzmann constant, T' the
absolute temperature of the gas, constant in {2 by assumption, and

p= ( I exp(—V/kT)) -,
2
Putting u = —V/kT, we obtain
(1) Au+opexpu =0,
where ¢ = 47(kT)~'M. One of the possible boundary conditions imposed
upon u is
(2) ulan = 0.

Problems of the form (1), (2) arise in the theory of gravitational equilibrium
of polytropic stars [5] and in thermal ignition [6] (cf. also [7]).

I. If 2 is the unit ball in R®, n = 2,3, then u is radially symmetric (for
n = 3 the additional assumption u € C%(f2) is needed, cf. [2], [8]). In this
Particular case the equation (1) takes the form

(3) (r"u') 4+ our"expu =0
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with » = 1,2, resp. To visualize some differences between the two- and
three-dimensional cases we consider the family of equations

(4) (rPu) +oprPexpu=0, Be[1,2],
1 g

(5) p= (frpexpudr) :
0

(we omit in p the coefficient containing 7) with u subject to the boundary
conditions

(6) w'(0) = u(1) = 0.

The equation (4) is invariant under the translation « — u+ const., therefore
we can replace (6) by the initial conditions

(7) u'(0) = u(0) = 0.
To get the original solution one has only to subtract from the modified

solution u its value at » = 1.

THEOREM 1. There ezists o* > 0 such that for o < o* there is a solution
of (4), (6) and for ¢ > o* there is no solution. Moreover, for sufficiently
small o the solution is unique. For f = 1, 0* = 4 and the solution is unique
for all o € [0,4].

Proof. The case § = 1 is integrable [2] and the unique solution u, p of

(4), (7) is
u(r) = —2In(1 + opr?/8), p=8/(4-0).

Passing to the case 8 > 1 we begin by showing that the initial value problem
(8) (r‘ﬂqb')' +rPexpgp=0,
©) $(0) = 4'(0)=0
has a unique solution ¢ defined for all » > 0. In the proof Schauder’s
theorem is used. On the space X of continuous functions over [0, R], R any

fixed positive constant, equipped with the supremum norm || ||, we define
the operator T by

(Tw)(r)= - f t~P dt f sP exp w(s)ds.
0 0

T is continuous and compact. Moreover, it maps {w : w < 0,||w]| <
R?*(B+1)~1/2}, which is a closed and convex subset of X, into itself. Hence
T has a fixed point which is a solution of (8), (9).
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If wy, wp are solutions of (8), (9) then

lwa(r) —wi(r)| < C [t dt [ sP|lwa(s) — wi(s)|ds
0 0

< ﬁ—(jTéf.sl*wz(s) — wy(s)|ds

by changing the order of integration. The last inequality allows us to apply
Gronwall’s lemma, from which the desired unicity of solution results.
Now integrating (4) over [0,1] and using (5) we get
(10) u'(1)+0=0.
Hence our problem (4), (6) is equivalent to the following: find u and g such
that (4), (10) and u(0) = 0 are satisfied. To do this we put
u(r) = ¢(Ar), A>0,

and by (10) the problem of existence of the solution of (4)—(6) reduces to
the existence of A satisfying

AP (A)=-0.
The key point is the introduction of the function x(z) = —z¢'(z) whose
behaviour is as in Fig. 1.

X X
Ag>1 g=1

2 4
I z

Fig. 1

To show this let (cf. [5])
P(z) = —z(¢'(z)) T expP(z), x(z) = —z¢(z).
It is easy to verify that if ¢ satisfies (8), then the functions thus introduced
satisfy the equations

Y = %(ﬂ-kl—x—'fl’), X = i_—((l-ﬂ+¢)-

In the new independent variable s = In z the last equations may be rewritten
in the form

(11) Y =9pB+1-x-9), x'=x(1-F+9).

If 3 > 1 then the equations (11) have singular points (0,0), (3 + 1,0),
(8 — 1,2); the first two are saddles, the third is a sink. The curve corre-
sponding to the solution of (8), (9) is a separatrice v = (¥(t), x(t)), ¥(t) > 0,
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starting at the saddle (8 + 1,0). It is easy to see that v is contained in 2
bounded subset of R?, hence its w-limit set is either a periodic orbit or the
singular point (8—1,2). Theorem 31 in [1] (p. 226 and Ex. 7,p. 234) excludes
the first possibility, therefore 4 looks like the curve presented in Fig. 2. T0
make it clearer we have only drawn the curve corresponding to the desired
solution.

X g>1 X =1
2 4

¥ L/
-1 B+1 2

Fig. 2

Looking at the figure we conclude from the graph of x that the depen-
dence of the solutions of (4), (7) upon the parameter o may be represented
by the diagram of Fig. 3 corresponding to the case 8 > 1.

&
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2 o

[l

Fig. 3

In the case # = 2, 0* may be estimated from above, o* < 6. To see this
note that for r > 0

ri¢'(r)= - ft2 exp #(t) dt
0

= (3 expd(r) + [ (P/3)(1)expd(t)dt.

Now since ¢’ < 0 we have r?¢/(r) < —(r3/3) exp ¢(r). Integrating and using
the preceding equality we get

t?
t2+6

r¢(r) 2 —6 [ m—zdt > —6r,
0

from which o* < 6 follows.
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II. As in the preceding part, we here also consider radially symmetric
Solutions of (4), restricting ourselves to § = 2 (for other values of 3 the sit-
Uation is completely similar). However, we modify the domain of definition
of the unknown function u to the annulus a < r < 1 with a positive and less
than one and consider the boundary conditions of the following two forms:

(12) u'(a) = k/a®, u(1)=0,
(13) u(a) =u(1)=0.

We show that in contrast to the case considered in part I the equation
1 \ 4
(14) (P*u') 4+ oprlexpu=0, p= (fr expudr) "
a

with either of the boundary conditions (12), (13) has a solution for any value
of o > 0.
Consider the case (12). Integrating (14) we get

;
u'(r) = k/r? — (op/r?) f32 expuds, a<r<l.

We have u [7 s?expuds < 1, hence (k — 0)/r? < /(r) < k/r? and
(15) [u(r)| < (Ik| + o)/a.
The problem (14), (12) is equivalent to the equation u(r) = T'u(r), where

1 t
Tu(r):k(l—l/r)+o,uft‘zdtfsgexpuds.

The operator T' considered on the class of continuous functions defined on
[a, 1] with supremum norm is continuous and compact and the a priori esti-
mate (15) holds true for all solutions of the family of equations

u=ATu, 0<A<1;
therefore the theorem of Leray-Schauder may be applied to show the exis-
tence of a solution of the problem under consideration.
In a completely similar way the problem with the boundary condition
(13) may be treated. This time, using the corresponding Green function we
transform the problem to the form

1
u(r) = TE_%[(I —a/r) f(l/s —1)s’expuds

+(1/r-1) f(l—a/s)szexpuds]



270 A. Krzywicki and T. Nadzieja

and this is the starting point for a procedure parallel to the preceding
one.

It seems that in spite of their simplicity, the last two examples indicate a
nontrivial fact of influence of the topology of 2 on the existence of a solution
of (1); for other problems that phenomenon was noted earlier (cf. [4]).

III. Consider now the general case of the problem (1), (2) with u defined
on a bounded domain 2 in R3, u = ([, exp u)~!. We assume the boundary
a1 to be regular enough to guarantee the existence of a Green function G
(see below). We prove the following local existence theorem:

THEOREM 2. There ezists a positive constant og such that the problem
(1), (2) has a solution for any o, 0 < o < 0p.

Proof. The proof is a slight modification of the reasoning given in [3].
Let G be the Green function of A for the domain 2 with zero Dirichlet data.
Then (1), (2) may be replaced by the equivalent equation

(16) u(z) = op(G expu)(a),

where (G exp u)(z) = [, G(z,y) expu(y) dy.

Consider the space X = C°(f2) x R, the norm of its elements (v,t)
being given by ||v|| + |¢], ||[v|| = sup|v(z)|. Then X is a Banach space and
B = Xpr x [0,L), where Xpr = {v € C%(2) : 0 < v < M} and L, M are
positive constants, is a closed, bounded, convex subset of X.

Consider on B the continuous transformation G defined by

Gexpu ||Gexpu||)
G(u,t) = (t , O .
0= \"Teewul " [epu

Moreover, by the obvious inequality [,expu > |f2| valid for » > 0, where
|£2] is the volume of §2, we have

G expu]

Jaexpu
where C = sup,¢q [, G(z,y)dy < co. Therefore, if o, L, M are chosen so
that the right hand side of the last inequality does not exceed L < M then

G : B — B and the Schauder theorem may be applied to show the existence
of a fixed point (u,t) of G, i.e.

< Co|R|Yexp M,

—_— Gexpu ’ t=a_||Gexpu“
|G exp ul| Jaexpu

k]

which is equivalent to (16) and the proof is complete.
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The questions of nonexistence of solutions of (1), (2) for large ¢ is partly
answered by the following theorem.

THEOREM 3. Suppose that 812 is of class C! and satisfies the following
strong starlikeness type property with respect to the point 0 lying inside 02:
ds

il 6
an (x'ln>

where n is the exterior unit normal to 312. Then the problem (1), (2) has
no solution in the class C*(2) N C'(R2) for o > 7 = 3/A.

Proof. We make use of the Pokhozhaev identity, which for the general
equation —Au = g(u) in £2, u = 0 on 342, has the form (cf. [4])

1 du\?
) -3/ [u+3 [ow=; [ (52) @mnas,
Q Q EY)
where G(u) = [ g(t)dt. In our case g(u) = opexpu, therefore the left
hand side of (17) is

—lorp. fuexpu+30',u f(expu—1)<3o',
25 2

since u > 0. Applying now the inequality

= (o) < J (G em ] o

on

we get 0 < 3/A. In dimension two the number 3 in (17) should be replaced
by 2 and the conclusion is similar.
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