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A NEW BRANCH AND BOUND ALGORITHM
FOR PROJECT SCHEDULING
WITH RESOURCE CONSTRAINTS

Abstract. A new branch and bound algorithm for project scheduling with
resource constraints is described. Only the preemptive case is considered.
In this treatment the front model for scheduling of project networks is used.
Branching is realized in analogy to subtour elimination algorithms for the
traveling salesman problem. The main advantage of this algorithm is the
use of a lower bound which is based on the resource constraints where the
Precedence relations are relaxed. The corresponding relaxation problems
are solved using the revised simplex method and column generation tech-
nique. In order to generate one column (i.e. one subset of jobs which can be
processed simultaneously) a special knapsack problem has to be solved.

Introduction. Project scheduling with resource constraints consists of
determining a set of starting times for the jobs of the project in such a
way that the precedence constraints between them and the resource con-
straints, limiting the total amount of available resources at each time of the
schedule, are satisfied and the total completion time is minimized. In the
Preemptive case job splitting is allowed, i.e. the processing of any job may
be interrupted and resumed at a later time without any additional costs.
Preemptive scheduling with resource constraints is an NP-hard problem [15].
Problems of realistic size without resource constraints can be solved by crit-
ical path and network flow techniques. Therefore such problems are often
considered as relaxation problems for resource constraint problems as well
as for the non-preemptive case [5], [15]. In [15] the updating technique in
the bound computation is used, and in [5] some improved relaxations are in-
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vestigated. There, in the underlying integer programming model the linear
programming relaxation is used for the calculation of the bounds. In order
to improve the quality of the bounds special cutting planes are introduced
which avoid the violation of some integer constraints. The computational
results in [5], [15] show that the developed branch and bound algorithms
solve problems with up to 25 jobs and 3 resources in a reasonable time.

The non-preemptive scheduling problem is the more important practical
case, and the knowledge of sharp lower bounds is of greatest interest for
the construction of effective branch and bound algorithms. In this paper
we consider the preemptive scheduling problem which may be possibly used
as a lower bound for the non-preemptive case. The underlying model (see
Section 2) is based on the concept of a so-called front. A front is a subset of
jobs which may be processed at the same time (i.e. a front is an antichain
(independent set) with respect to the precedence relation). Every front is
represented in the model by one variable which is the duration of the front.
The crucial restriction in the model is the so-called compatibility condition.
With respect to the violation of this condition a branching process is pro-
posed in Section 3.2. The branching is similar to that in subtour elimination
algorithms for the traveling salesman problem [8]. The bounds (see Section
3) are based upon a linear optimization relaxation containing the resource
constraints. Because of the exponential number of variables (fronts) the re-
laxation problems are solved by the column generation technique. Section
3.3 presents the whole algorithm. In Section 4 the power of the algorithm
is demonstrated for a representative scheduling example with one resource
constraint.

2. Description of the model. In the following we consider a project
scheduling problem with resource constraints and with job splitting (pre-
emptive case). There is given a finite set of jobs V = {v,...,vn,} and
a set I of different types of non-storable resources with total availabilities
Ri,k € I. We assume that Ry, k € I, are constant over the whole duration
of the project.

A job w;, j = 1,...,m, has a duration /; and requires an amount r;x,
rjk < Ry, of resource k, k € I. The precedence constraints induce an
m X m-adjacency matrix W = (w;;) with

1 if v; < vj,

w,-5={-1 if v; < v;,

0  otherwise
(i.e. W represents the transitive closure of the precedence relation). v; < v;
means that v; is completed before the starting of v;. A nonempty set F' of

jobs, F C V, can be processed parallel if there is no pair u,v € F with u < v,
i.e. F is an independent set with respect to the given precedence relation.
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We call F a front. A front F is called feasible if all resource constraints are
fulfilled, i.e. Y erTik < Ry for all k € I. Every front can be represented
in a unique manner by an m-dimensional 0-1 vector a¥ = (af,...,a5)T
with
ap:{l ifv; e F,
: 0 otherwise.
The precedence relation “<” between jobs induces a precedence relation
“<” between fronts. Let a and b represent two fronts. We write a < b if
there exist two indices 4, with a; *b; = 1 and w;; = 1. Two fronts a and b
are called incompatible if both a < b and b < a. Let A = {F!,..., F*} with
n < 2™ be the set of all feasible fronts. We identify A with an m X n 0-1
matrix A where the column a represents the front F7.
With the introduced notations the problem of project scheduling with
Tesource constraints can be formulated as follows:

(1) z=eTz =min (completion time)
subject to
(2) Az =1 (duration condition),

(3) there exists no front set {a”,...,aPe} with J = {py,...,p,} C
{1,...,n} and [];¢,2; > 0 and a”* < a”? < ... < aP* < @™ (com-
patibility conditione),

(4) z2>0
where
z = (z1,...,2,)7 and z; denotes the duration of front a’,

i=1,...,n,
e=(1,...,1)T eR",
S

Our solution strategy is as follows: We construct a branch and bound al-
gorithm relaxing the condition (3). If the solution of the relaxation problem
(1), (2), (4) does not fulfill the compatibility condition then branching is
Necessary. Subproblems are defined using additional precedence conditions.

3. The branch and bound algorithm

3.1. Computation of the lower bounds. Given a current subproblem P,
where at the beginning P, is the original problem, then P, is characterized by
a subset of columns of A fulfilling the current precedence relations of Py. In
order to obtain a lower bound b(Fp) of Py the relaxation problem (1), (2), (4)
Is used. We solve this linear programming problem with the revised simplex
method and column generation. First, we choose m linear independent
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column vectors in A. These vectors form the basis B, the corresponding
variables are denoted by zp (basis variables), and the remaining colums
vectors and variables define the matrix Ay and the vector z respectively-
Now we can write (1), (2), (4) as follows:

(5) z=enzp + exTN = min
subject to

(6) Bxzpg + Ayzy =1,

(7 zg 20, zny20.

From this we get

(8) T = —B_IAN:E)V-I-B_II,

9) z=(ek —esB 'AN)zn + e5B7I.

If B-1l > 0and ek —eLB~1An > 0, then it follows that zp = B[,z =0
is an optimal solution of (1), (2), (4). Therefore, to check the optimality
of zg (= B~!l) in the primal simplex algorithm (here B~1! > 0) we have
to determine a feasible front with minimal transformed objective function
coefficient. That means we need to solve the problem

(10) 1 -dTa’ = min
subject to
(11) a’ is a column of Ay

where d7 = e5B~! denotes the vector of the simplex multipliers. The
problem (10), (11) can be replaced by

(12) dTa = max

subject to
m m m
Zf‘.ﬁka,‘ < Rk, k € J, Z Z wijaia; = 0, a; = Oorl
i=1 i=1 j=i+1

(i.e. a = (@1,...,am)T represents a feasible front).

Let a’ be an optimal solution of (12). If 1 — d7a? > 0 then zp =
B~'l,z = 0 is an optimal solution of the relaxation problem (1), (2), (4)-
Otherwise, a new basis matrix B’ containing a’ is to be computed and we
have to return to the optimality test in the simplex algorithm.

Because of the linearity of the objective function and the knapsack-like
restriction 3.7, rika; < Ry for all k € I we call (12) a special knapsack
problem. In summary we see that the relaxation problem (1), (2), (4) can
be solved with the revised simplex method with column generation, where
special knapsack problems as subproblems have to be considered in each
simplex step. In order to solve the column generation problems (12) one
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can use a modification of the best bound search algorithm of Kolesar [9] or
an appropriate algorithm (e.g. of Martello-Toth [11]).

3.2. Branching—Definition of subproblems. For the calculation of lower
bounds we relaxed the compatibility condition (3). Now, let F be the set
of fronts in the optimal solution of the relaxation problem corresponding
to the current subproblem P,. If the calculated lower bound b(F,) is less
than the current value of the best known solution, then we need to check
Whether F fulfills the condition (3) or not. For this we define a directed
graph G = (F, E), where the fronts of F' are the nodes of G, and for all
Pairs F € F, F; € F with F; < F; we introduce an arc (F3, F3) € E. Then
the following statement holds: F fulfills (3) iff G contains no directed circuit
(cycle) (see [7]). Therefore, if G contains no cycle, F is an optimal solution
of the subproblem considered. Otherwise G contains at least one cycle.

Let F C F be a subset forming a cycle with minimal length (i.e. with
minimal number of arcs) in G, and without loss of generality, numbered so
that

F:{F],...,F,—} (1"22), Fi<FB<..<F<HF.
This implies the existence of jobs u; € F; and w; € Fj,i=1,...,r, inducing
the precedence relation between the fronts by

(13) Wi <uip, i=l..,r—-1, w.<u,
where u; # w;,i=1,...,r, since F is a cycle of minimal length.

Remark. The assumption that F represents a cycle with minimal
length can be replaced by the weaker condition u; # w;, i = 1,...,r, but
then the number of subproblems of P increases.

In order to avoid the violation of (3) a partition of the considered problem

Py into subproblems P; is realized. Therefore, we destroy the cycle of G by
prohibition of the nodes (i.e. prohibition of fronts) in analogy to the subtour
elimination algorithms (see [4, 8]). The subproblems of Py are defined as
follows:

Pl — POA(‘EA‘,] H wl),

Py = Py A (u]jw1) A (uz § w2),
(14) Po= .

Pr = PIJ A (ﬂ'l”wl) A...A (uf'—l"w""'l) A (ur H wr) .
The realization of u; }f wy (“u; nonparallel to w;”), which means the prohi-
bition of the front F; and of all fronts containing u; and w; can be achieved
by the condition “u; < wy or u; > wy”. This corresponds to the partition
of P, into two disjunctive subproblems.
In the case u;||w; (“uy parallel to w;”), which means the prohibition of
all fronts incompatible with the front {u1, w1}, we consider the additional
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conditions

u < w for all u € V with u < 4y and w € V with w; < w and
w < u for all w € V with w < wy and u € V with u; < u.

(15)

By using the corresponding network with W as adjacency matrix, (15) is
equivalent to the conditions

(16) u < w for all immediate predecessors u € V of u; resp. w; and all
immediate sucessors w € V of w; resp. u;.

For r = 2, by (15) the front F; with {u3,w2} C F; is excluded since
w; < ug, wy < ty, and it follows that w; < u;. In this case a partition of
P, into two subproblems is not necessary since the subproblem

17) Py A (u]|wr) A (uz < wy)

implies the condition w; < u; and therefore (17) is a subproblem of Fp A
(w1 < u1). In other words, when r = 2 we get three subproblems:

P[) A (‘lﬂ] < ‘Hl) 5
(18) Po=>4{ PoA (w1 <wy),
P{] A (H]”W‘[) "
In summary, the branching rule yields subproblems having the same

structure as Fy, and only additional precedence conditions are to be taken
into consideration.

3.3. The algorithm. In this section we describe the whole branch and
bound algorithm based on the lower bounds and branching defined in Sec-
tions 3.1 and 3.2. Here K denotes the set of subproblems which still have
to be investigated. The procedure is summarized as follows:

S0:  START
The original problem is used to be the current subproblem P,. Set
K :=0 and 2z := 0.

S1: BounD

Solve the relaxation problem (1), (2), (4) for Py with the revised
simplex method and column generation. Let b(Fp) denote the corre-
sponding optimal value (i.e. the bound) and F the set of fronts in the
optimal solution of the relaxation problem. If b(Fp) > 2, then go to
S3 (i.e. Py does not contain a better solution). Find a cycle in the
graph G = (F, E) induced by F and the corresponding precedence
conditions. If no cycle exists, then set z := b(F,), save F and go to
S3 (i.e. a better feasible solution of (1)—(4) is found).
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S2: BRrANCH
Select a subset F C F representing a cycle of minimal length in G.
Add the subproblems, defined according to (14), to the set K.

S3: BACKTRACK
If K = (), then stop since no better solution exists (z is the optimal
value of problem (1)-(4)). Otherwise select a new subproblem P,
from K in accordance with a suitable branching strategy. Set K :=
K\ {P} and go to S1.

In Step 3 we may use several branching strategies, e.g. best bound search
or depth first search (LIFO). The processing order of the subproblems de-
fined by (14) is variable and should be specified in a suitable manner.

4. An example. We consider the resource constrained network with
20 jobs v;, i = 1,...,20, as represented in Fig. 1.

9/& ¢&le m 5/8 67

Fig. 1. Precedence relations; the nodes v; are labelled with I;/r;; R = 18

The numbers next to the node v; are the duration /; and the amount 7;
of one resource. The resource capacity is given with R = 18. The longest
path in the network has length 53 (CPM-bound). The resource constraint
gives at least a length

20
(z I.-r.-)/R = 56.389 (resource bound).
i=1

Solving the relaxation (1), (2), (4) of the given problem, we get the lower
bound b(P,) = 65. The corresponding optimal solution contains among
others the incompatible fronts F; = {v11,v12} and F; = {vg, v13,v17}. Ac-
cording to (14) two subproblems

Po A (1}11 H 1.?12) and P A (011"1}12)/\ (‘09 H 017)
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are defined. In order to realize the second subproblem we add the precedence
conditions vg < w17 and v9 < vy3 to the network. According to (18) 2
partition of P, into three subproblems is realized:

Py =Py A(v12 < v11),
Py = { Pig = Py A(v11 < v12),
P1,3 =P A (1.’9 < 017) A (‘Ua < ‘U13).

The complete branching tree for this example using the best bound search
is shown in Fig. 2.

Fig. 2. Branching tree using best bound search

[:23 7] 1§ 9 [] 8]
g FH '5]\[%&4/ | -1

<]

b ey M

Fig. 3. Precedence relations of the fronts in the optimal solution

The lower bounds of the subproblems, i.e. the optimal values of the cor-
responding relaxation problems are shown below the nodes. The precedence
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Conditions defining the subproblems are given next to the arcs. The solu-
tion of the relaxation problem of Ps; is the optimal solution of the given
Problem (1)-(4). This solution G = (F, E) is shown in Fig. 3. Here every

ont is represented by the indices of its jobs, and the processing duration
of a front is denoted beneath it.

In this example a large number of optimal solutions exist since every
sequence of fronts of F' which does not violate the precedence condition
yields an optimal one.

The CPM-bound for Ps; is 53, and it has not increased in comparison
with the bound of P. Since P is a subproblem of P, 3, P42 of Py
and Pg; of Pg 3 it is not necessary to solve the corresponding relaxation
problems.

5. Concluding remarks. The branch and bound algorithm for re-
source constraint project scheduling developed in this paper is based on
a relaxation which takes the resource constraints into account. We refer
e.g. to [5], where the importance of bound improvements is shown. The
column generation technique is used to overcome the difficulties with the
exponential-size feasible fronts, but it should not be forgotten that the gen-
eration of a column itself is an NP-hard problem. For an efficient implemen-
tation of the simplex method we refer to [3]. If the resource constraints are
relaxed, the relaxation problems can be solved by critical path techniques.
This relaxation technique is used in [5], [7], [15]).
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