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POLYNOMIALLY SOLVABLE
TRAVELING SALESMAN PROBLEMS

Abstract. We introduce a class of symmetric traveling salesman problems
which can be solved in polynomial time. Roughly, it can be decided in
polynomial time if there is an ordering of the cities such that there is a
band of small, equal elements about the diagonal of the distance matrix. In
this case, an optimal tour is known. An open question about polynomial
time special cases is included.

Introduction. The special case of the traveling salesman problem
(TSP) in Lemma 1 of [2] has a specific tour of minimum length. Then
it is shown in [2] that there is a polynomial time recognition algorithm for
TSPs which can be transformed by renumbering cities so that a simpler
case of Lemma 1 holds. The results for the TSP in this paper have the same
general pattern.

In Lemma 1 we state a special case of the TSP which has a specific tour
of minimum length. The proof of Theorem 1 contains a polynomial time
algorithm for recognizing TSPs which can be transformed into a simpler
case of Lemma 1 by renumbering cities. We conclude with a general open
question about special cases of the TSP.

A TSP is characterized by a square matrix whose i, j entry (i # j) is the
distance from city i to city 5. A tour for the salesman is a cyclic permutation
of the cities. A solution for a TSP (called an optimal tour) is a tour which
has minimum length, i.e., the sum of the entries from the matrix for the
tour is a minimum over the sums for all tours. '

Some of the properties which characterize TSPs are found in [1], 3],
and [4].
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Special case. We assume all TSPs are symmetric.

In Lemma 1 a specific tour 7 is shown to be optimal for all TSPs with
a band characteristic. An induction argument lifts the optimal tour 7 on
n— 1 cities to the optimal tour  on 7 cities when the band characteristic is
satisfied.

LEMMA 1. Let A = [a;;] be an n by n TSP where n > 5. Leti,j,p,q be
four distinct integers. Let m be an integer such that m = q or m # 4,3,p,4-
Let

aij + Qjm +apq Z Qim + Qjp + Qjq
whenever [i — j| > 3, [p—¢| <3, |[7—p| <3, and |[j — ¢q| < 3. Let
ays + a43 + a3z > a13 + azs + aq2 .

Then T = (135...642) is an optimal tour for A.

Proof. Induction on n. We denote the length of a tour ¢t by f(¢). For
n = 5 there are 11 tours ¢; to be considered. We group them according to
the pattern of f(t;) — f(¥) where t = (13542).

Group 1 Group II Group III Group IV
t1=(15324) t,=(14532) 13=(15234) t4=(15432)
t5=(14352) te=(15342)
t7=(15243) t5=(13452)
tg=(14523) i]o=(14253)

t11=(15423)

Group I is the case when m # %, j,p,q. Group II is the case m = ¢, and
Group III uses both m # i, 7, p,q and m; = ¢;. We will show one calculation
from Groups I and II. The others are similar.

f(t1) = f(t) = asy + a14 + az3 — (as4 + a12 + a13) > 0,
f(t2) = f(t) = a14 + az2 — (a13 + a42)
= a14 + a43 + a3 — (@13 + ag2 + a43) > 0.
For Group III,

f(t3) = f(t) = a14 + aq3 + asz — (@13 + ags + ag2)
+ as1 + a13 + a3 — (as3 + @32 + a13) > 0.

For Group IV, f(t4) — f(t) > 0 is a direct result of the hypothesis.

Let t be a tour on n—1 cities. If the salesman proceeds directly from city
i to city 7 on tour ¢, then by t} we denote the tour on n cities that is obtained
when 7 is inserted in ¢ between i and j. By the induction assumption and
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symmetry (which accounts for the odd and even cases of 1), it follows that

f(t.‘?) - f(?) 2 Gin + Gnj — Gij — (a’ﬂ-—l,ﬂ- +ap -2 — an—l,n—z)

= @in + Apnj + CGp—1n—-2 — (aij + aypn-1+ an,n—2) .
To verify that f(t}) - f () > 0, the following four cases need to be checked:

{i,j}n{n-1,n-2}={n-1,n-2},
{!',j'}n {n_ 1,11—2} ={n- 1}’
{i,j}n{n—-1,n-2} = {n -2},
{i,ij}n{n-1,n-2}=0.u
We consider a simpler case of Lemma 1 when there is a band of equal
elements about the main diagonal which are smaller than the elements out-
side the band. For z in {2,3,...,2— 1}, an n by n TSP A = [a;;] is said to

have a z-band if 0 < |k —m| < zand 0 < |p— ¢| < z < |r — s| implies that
Qkm = Gpg < @rs. Note that if a TSP has a 2-band, then t = (135...642) is

an optimal tour.

ExaMpPLE 1. For n = 5 we will illustrate the 0,1 symmetric TSPs with
various z-bands.

- 0 0 1 1 - 0 0 0 1
0 — 0 0 1 0 — 0 0 0
z2=2 0 0 — 0 O z=3 0 0 — 0 O
1 0 0 - 0 0 0 0 — 0O
1 1 0 0 - 1 0 0 0 -
- 0 0 0 O -1 1 1 1
0 — 0 0 0 1 - 1 1 1
z=4 0 0 — 0 O and 1 1 - 1 1
0 0 0 — 0 1 11 - 1
0o 0 0 0 - 11 1 1 -

THEOREM 1. Let A be an n byn TSP and n > 4. Then it can be
determined in polynomial time if there is a renumbering of the cities of A
such that the resulting TSP has a z-band.

Proof. Let A = [a;i;]. The number of elements a,, such that 0 <
|[p—gq| < zis 2(2n — z — 1). The a;; (i # j) are ordered to determine if for
some z in {2,3,...,n— 1} there are 2(2n — z — 1) equal elements which are
smallest. If so, this set is called B. Then we look for a row of A, say &,
which has exactly z members of B. If so, we interchange cities 1 and k, and
renumber the cities so that the z members of B in row 1 are in positions
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(1,2),(1,3),...,(1,24 1). The entry in each of the positions

(2,3),(2,4),---,(2,3'{" 1)’
(3,4),...,(3,3"" 1)'}

iz’z'l' 1)

is checked for membership in B. If 2 < n — 1, then for r = 2,...,n — 2, the
entries in row 7 in positions (r,7 + 2),...,(r,n) are checked for exactly one
member of B. If this member of B is not in position (r,r + z), it is moved
to position (r,r + z) by interchanging two cities. Finally, for z < n — 1, the
entry in column r+ z in each of the positions (r+1,r+2),...,(r+2-1, r+2z)
is checked for membership in B. The result is an O(n®) algorithm. =

EXAMPLE 2. We will illustrate the proof of Theorem 1 for n = 5 and

-1 0 0 0
1 = 1 0 0
A=|(0 1 - 0 1
o 0 0 - 0
0o 01 0 -

Ordering the elements of A indicates that for z = 2 there are 2(2n—2—1) =
14 equal elements which are smallest. So B = {a;; : a;; = 0} contains 14
members. Since row 1 of A has more than 2 members of B and row 2 of A
has exactly 2 members of B, we exchange cities 1 and 2. Then we move the
two zeros in row 1 to positions (1,2) and (1,3) by exchanging cities 2 and
5, and cities 3 and 4. The result is

- 0 0 1 1
0 — 0 1 0
0 0 — 0 O
1 1.0 - 0
1 0 0 0 -

Then for r = 2, position (2,4) does not have a member of B. Exchanging
cities 4 and 5 shifts a member of B from position (2,5) to position (2,4).
The result is the first matrix in Example 2.

Open question. There appears to be more than 20 special cases of
the TSP in the literature which are solvable in polynomial time. Ten or so
of them are in [1]. It seems that it would be useful to formulate a general
theory which encompasses special cases and shows their relationships. This
may reveal some of the structure of the TSP.
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