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A NEW APPROACH TO THE PROBLEM
OF CONSTRUCTING RECURRENCE RELATIONS
FOR THE JACOBI COEFFICIENTS

Abstract. A new method is presented for obtaining a recurrence relation
for the Jacobi series coefficients of a function which satisfies a linear ordinary
differential equation with polynomial coefficients.

1. Introduction. Let a function f, defined in the interval [—1,1], be
sufficiently regular so that it can be expanded in a uniformly convergent
series with respect to the Jacobi polynomials (Jacobi series, in short)

(1.1) £=Y a*PfPEP  (a,8>-1),
k=0
where P,(c“‘m is the kth Jacobi polynomial defined by

o
25EN(1 — 2)*(1 + z)P dz*

(12)  P*z):= [(1 - z)k*e(1 4 2)k+7],

and the coefficients as:"‘g )[ f] are given by

(e K2k +N)(k4+X)
(1.3) ay?[f]:= Prk+a+ )I(k+pB+1)

1
x [ (1-2)*(1+2)’ PPN 2)f(z)dz  (k=0,1,..),
-1
where we put A := a+ 3 + 1 (see, e.g., [1], Vol. 2, Sects. 10.8 and 10.19; or
[6], Vol. 1, Sect. 8.3).
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Some alternative forms for the coefficients (1.3), which are available for
many elementary and special functions (see, e.g., [6], Vol. 2, Chap. 9), in-
volve other special functions and, therefore, may not be used easily for
computations. On the other hand, it is relatively easy to evaluate ai“’m[f]

for k belonging to some finite set K if the sequence {ag"ﬁ }[ f1} is known to
satisfy a recurrence relation of the form

(14) > eiRa 1 = o(k),

where ¢g, ..., ¢, and o are known functions (see [6], Vol. 2, Sect. 12.5; or
[7], Sect. 13; or [9], Chap. 11).

There is a class of general methods for obtaining equation (1.4) under
the assumption that the function f satisfies a linear differential equation

(1.5) P.f=) pf =4

i=0
of order n, with suitable initial or boundary conditions. In (1.5), po,...,Pn

are polynomials, and the coefficients ai“"e )[q] exist and are known. See [5]
for some historical comments on the subject.

In (3] and [5] we proposed several methods belonging to the above men-
tioned class; earlier (see [2]) we discussed the problem of constructing a
recurrence relation for the coefficients of the Gegenbauer series of a func-
tion f, closely related to the Jacobi series of f with @ = . In particular,
we described in [2] and [3] an optimum method providing a recurrence re-
lation of minimum order among all such equations which can be obtained
from the differential equation (1.5), using basic difference and differential
properties of the Jacobi polynomials (see (3.1), (3.2)). This method seems
to be of great theoretical value. For instance, it helped us to discover the
existence of certain new recurrence relations for a class of hypergeometric
functions; explicit forms of those relations were later derived using results
from the theory of such functions (see [4]). However, the complexity of the
optimum method grows rapidly with n, so the calculations may be very te-
dious. Also, the order of the recurrence relation cannot be predicted (that
is—expressed in terms of the order and coefficients of the differential equa-
tion (1.5)) easily. In this connection, let us mention the following problem
raised by Paszkowski [8]:

Let Q be a linear differential operator with coefficients being rational
Junctions of z. Obviously, if the function f satisfies the equation (1.5), then
f is also a solution of the differential equation

(16) P*f=q"
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with P* := QP,, and ¢* := Qq. Find Q which minimizes the order of the
recurrence relation for the coefficients ai"'ﬁ )[f] obtained using (1.6).
For example, the function f(z) = ze” satisfies the first-order equation

Pif=szf'—(z+1)f=0
which implies the fourth-order recurrence relation

tk—2[f] — 2(k — 2)txe-1[f] — 2(k + 2)tk41[f] — tr42[f] = 0
for the Chebyshev coefficients ti[f] of the function f (closely related to
ai‘”z"'"lz)[f]; see Section 5). Now, taking

Q:=z7[z(z? — 1)D? + (222 + 1)D + (z - 1)I],
where D := d/dz, and 1 is the identity operator, we abtain
P f=(?-1)f"-(z2-8z-1)f"-(42-1)f'-=3f =0
and consequently the second-order recurrence relation
(K + k + Dtk-a[f] = 2K 44[f] = (K° — k + Dtesa [f] = 0

(1bid.; see also Example 5.1). To be sure that the obtained result is the best
one, it is necessary to find a formula expressing the order of the recurrence
relation in terms of the coefficients of the operators P; and Q.

For the reasons explained above, several simpler methods were proposed
(see [2]; [5]; [7], Sect. 13), which, however, are not optimum algorithms, in
general.

In the present paper a new method is given, which in the author’s belief
is equivalent to the optimum method. The method exploits in a substantial
way some differential-difference identities satisfied by the coefficients (1.3)
(see (3.30)-(3.33)). The main result of the paper is given in Section 4 (see
Theorem 4.1). The special cases of Gegenbauer and Chebyshev expansions
are discussed in Section 5. Sections 2 and 3 contain the necessary definitions
and lemmata.

In the sequel we shall use the notation

et Tktatl)  (ap)
(1'7) bk[f] - bk [f] T P(k-l- /\)(Qk-l- j 1)3 aj [f] .
Here the symbol (c¢),, denotes the shifted factorial: (c)o = 1, (¢)m =
c(e+1)...(c+m—1) (m > 0). We call bi[f] the Jacobi coefficients of
the function f.
Sometimes it is convenient to use coefficients with negative indices. We
assume that if a # 3, or & = § but 2a + 1 is not an integer > 0, then

B P[f:=0 (k=1,2,..),
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and if a = § and 2a + 1 = m is a nonnegative integer, we define
0 (k=0,1,...,m—1)
b(a,a) :={ w y 1y ’ )

V1= ey (k2 m)

(see [2]).

2. Difference operators. The results given in the following sections
are expressed in terms of a certain type of linear operators. Let S denote the
linear space of all “doubly infinite” sequences of complex numbers, with ad-
dition of sequences and scalar multiplication defined as usual. Obviously &
is the space of all complex-valued functions defined on the set of all integers.
Let S;a: denote the set of all rational functions s € S.

Consider the set S* of all linear operators mapping S into itself. For T €
8* and {2z} € S, we denote the kth coordinate of the sequence T{z;} € S
by Tz, so that T{z;} = {Tz:}. The zero operaior, the identity operator
and the mth shift operatorin S* are denoted by @, I and E™, respectively.
Then we have

(2.1) sz = 0, Iz;, = Zk, E"‘zk = Zk4m

for every {2} € S. Clearly, E® = I.
Let £ be the set of all operators L € S* such that

(2.2) L= zr: Ai(k)EvHE

where r > 0 and u are integers, and Ag,...,Ar € S;at- Every nonzero
operator L € L can be expressed in the form (2.2) with A # 0 and A, #0.
The number r = 7(L) is referred to as the order of the operator L, while
A; are called the coefficients of L. The elements of the set £ are known as

difference operators.
Let L € L be defined by (2.2) and let M € L be such that

t
M := z,(;zj(lk)E"""jF X
=
We define the product of the operators L and M to be the operator

r i
LM := )" Xi(k) Y pi(k + u+ i) Evtori+s,
i=0 j=0
It can be seen that under this definition of multiplication, with addition of
operators defined in a natural manner, £ forms a (noncommutative) ring
with the identity 7.
Let L € £ and o € §. The equation

(2.3) Lz, = o(k)
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is the recurrence relation for the sequence {z;} € S; the order of the recur-
rence relation (2.3) is the order of the difference operator L.

3. Difference and differential-difference properties of the Ja-
cobi coefficients. Let us recall the basic identities satisfied by the Jacobi
coefficients ([3], [5]):

(3.1) br[zf(z)] = Xbilf],

(3:2) Dbi[Df] = bi[f],

where D := d/dz, and X, D are the following difference operators of the
second order:

2

(3.3) X =) &(K)ET,
j=0

(3.4) D:= ) 6;(k)EI,

where in turn
bo(k) :=2(k+ @)(2k+ A - 3)/~(k),
b1(k) := 2(a - B)(2k + A)/v(k),
(3.8) { 62(k) = —2(k + B+ 1)(2k + A+ 3)/7(K), (k) := (26 + A = 1)s,
bo(k) := kbo(k), &i(k):=(1-A)6i(k)/2,
£a(k) := —(k + A)ba () .
Identity (3.1) follows from the three-term recurrence relation obeyed by
the Jacobi polynomials (see, e.g., [1], Vol. 2, Sect. 10.8; or [6], Vol. 1,
Sect. 8.3) while in the proof of (3.2) one can exploit the representation
of the polynomial (1 — xz)DP,‘E“"e)(z) as a linear combination of the poly-
nomials P}“‘m (j = k= 1,k,k + 1) and use the second-order differential
equation satisfied by P{*?) (ibid.; see also (3.27)).
The following identities are the generalized forms of (3.1), (3.2), respec-
tively: '
(3.6) blpf] = p(X)be[f]  (p a polynomial),
(3.7) DO A =blf] (r=0,1,..).
Now, assume that f is a solution of the differential equation (1.5) and
that (™ has a uniformly convergent expansion in a Jacobi series. The kth

Jacobi coefficients of both sides of (1.5) are equal, hence bi[P, f] = bi[q].
Using (3.6) we get

(3.8) EP:‘(X )bi[D* f] = bk[q] .
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A recurrence relation for the Jacobi coefficients of f may be obtained by
eliminating, by means of (3.7), the Jacobi coefficients bx[Dif] (i = 1,...,n)
from the identity (3.8). To be strict, one should rather speak about a class of
methods characterized by the set II(P,) of pairs (P, L) of nonzero difference
operators P, L € L obeying the identity

(3.9) Pbi[P,f] = Lbg[f].

Given an arbitrary pair (P, L) € II(P,), the recurrence relation
(3.10) Lbi[f] = o(k)

holds, where o(k) := Pbi[q]; the order of (3.10) equals

(3.11) r(L) = r(P) + 20921235#0(8” -3)

where dp; is the degree of the polynomial p; (see [3], Sect. 4.2). In the cited
paper, it was shown, giving a generalization of an earlier result [2], that
the set IT(P,) is generated by a “minimal” pair (P*, L*) in the sense that
for every pair (P, L) in this set there exists a nonzero difference operator C
such that P = CP* and L = CL*. A specific feature of the generating pair
(or the generator) (P*, L*) is, therefore, that the operators P* and L* have
no common left divisor of positive order. In virtue of (3.11), the recurrence
(3.10) is of the lowest order when C is an operator of zeroth order, i.e. when
the operators P and P* as well as L and L* are equivalent. An algorithm
for construction of a generating pair for IT(P,) is given in [3]. However,
in some cases this pair can be given ezplicitly. For instance, we have the
following

LEMMA 3.1. Let P,, be the differential operator
(3.12) P, = ip,-D‘,
i=0
Do, - - -, Pn being polynomials. Assume that p,(—1) #0, pn(1) #0. Let
(3.13) P*':=D" L':= i D™¢;i(X),
i=0

where

(3.14) o= _z:;(—l)-*'-" ()™ G=0..m.

i
Then (P*,L*) is a generator of II(P,).

Proof. It is known that the operator (3.12) can be written in the
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equivalent form

(3.15) P.f=) D¥af),

i=0

90,..-,gn being the polynomials given by (3.14) (see, e.g., [7], p. 232).
Hence, in view of (3.7), it follows that the pair (P*, L*), defined in (3.13),
belongs to IT(P,).

We will prove the lemma using induction on =.

When n = 1, the result can be obtained easily with the aid of Lemma
3.5 of [3].

Now, let n = m > 1. Assume that the lemma is true for all » < m. Let
(P, L) be an arbitrary pair in IT(P,,). Then

(3.16) Pbi [P, f] = Lbi[f].
Let P,,_; := 2:-’;;1 pi+1D?, so that Py, — pol = P,_D. Itis easy to see
that
Pbi[Py1Df] = {L - Ppo(X)}bk(f].

Letting g := D f and using (3.2) we get

Pbk[l?’m—lg] = Lrbk[g] ]
where L' := {L — Ppo(X)}D. Thus (P, L") € I(P,,_,) and by assumption
we obtain, in particular,
(3.17) P=Cpm!
for some nonzero difference operator C. Hence, in view of (3.13), (3.15) and
(3.7),
(3.18) Cbx[D(gm f)] = L"bx[f],

where L" := L — C Y75 D™ i~1¢;(X). Equation (3.18) means that
(C,L") € II(P}), where P;f := D(gnf). According to the first part of
the proof we have C = C'D, where C' is a nonzero difference operator.
This, in view of (3.17), implies that P = C'D™. Using (3.2) in (3.18) yields

L=C") D™ q(X).
i=0
Thus the lemma is true forn =1,2,... »
The following differential operators will play an important role in the
sequel:
(3.19) U:i=(z*-1)D+[A+1)z4+a-6]I, J:=UD,
(3.20) Vei=(z+e)D+v.I, K.:=V.D (¢==1).
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Here I denotes the identity operator, and
(3.21) ve:=[A+1+¢(B-a)l/2 (e==1).
Recall the following definition.

DErINITION 3.1 ([5]). Given € € {—1,1} we define the sequence (A%}
of difference operators by

(3.22) A =T+ rOR)E (m=0,1,..),
where
2e(k + ve)
(&) (k) := —
@2 mwE) = -gEr ekt At me, (20
(6o is given in (3.5)). Further, let
I (1< 3)
3.24 S = { Dald) e
(3.24) ; APSE, . (i27>0),
(3.25) P2=8%e =0l
Finally, let
i
(@) (Y -

uay; (k)= (k+ve)i/ || bo(k+h)

(3.26) o . ,E (G=0,1,..).

HiPa (k) 1= (k + 5 + ve)pa; (k)
Observe that J and K, occur in the following equations satisfied by the
Jacobi polynomials:

(3.27) [9 - x(k)gP™? =0,
(328) K.P{*P(z) = (z - ) 2BO[R PP (z)] (e = £1),

where
A(K) 1= k(k + 2),
¢ 1 pl
3.29 B®) = 5—PR",
) W E)
hi := 22[(2k + A\)2 = 1)I'(k + B + 1)/k!.

Obviously, (3.27) is the well-known second-order differential equation
satisfied by the kth Jacobi polynomial. Equation (3.28) seems to be a less
standard result.

From (3.19), (3.20), the following identities can be deduced, using (3.6)
and (3.7):

(3.30) be[Uf] = »(k) Dbi[f],
(3.31) bi[J f] = x(k)be[f],
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(32 ROVeA=mO WAL
§i= .
(333)  P{OBK.f] = 4 (k) Ebilf]
As an immediate consequence we obtain
LEMMA 3.2. The pairs (I, x(k)D), (I, %(k)I}), (P(s),ﬂlc)(k)P( E)) and
(P9, 19 (k)E) are generators of the sets II(U), I(3), H(V,) and I(K.)
(e = £1), respectively.

The above results can be generalized to the case of powers of the opera-
tors J and K, and their products. Obviously we have

(3.34) bk[I*f] = *' (k)bilf]
for any t = 0,1,... By induction on s (s = 0,1,...) one can prove the

equalities
- 1 €) () ( ple)\s g A (=)
(BO) = E=——F7, RO(BY) = E~——Pil,
HE2 (k) i (k)
which lead to the following generalization of the identities (3.32) and (3.33):
(3.35) L2 sba[KS VES] = w2 5(K)E*P{ bl ]
(s=0,1,...; §=0,1; e = £1),

In the next section, we will discuss differential operators of the form
(3.36) Q:=D'K:Vitu?,

where 7, s, t are nonnegative integers, §, §' € {0,1},and ¢ € {-1,1}. Using
(3.7), (3.35), (3.34) and (3.30), we obtain

(3.37) Qb[Qf] = Mb[f],

where

63:) Q= PELD,

(3.39) M := O, ,(k)E*P{9 %+ (k)DP .

It can be seen that the operators @ and M have no common left divisor
of positive order. Consequently, we have

LEMMA 3.3. The pair (Q, M) of difference operators defined by (3.38),
(3.39) is a generator of the set I1(Q), where Q is the differential operator
(3.36).

The next lemmata give some properties of operators of the type (3.38)
which will be needed in the next section. It will be useful to introduce a
new family of difference operators.
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DEFINITION 3.2. Given € € {—1,1} we define the sequence {Rﬁi)} ctl
by

(3.40) R := bo(k)E + 0O (k) (m=0,1,...),
where
k+m+v_
(€) — el s I — i
(3.41) oS (k) : 25(2k+ T (m=0,1,..),

8o is given in (3.5), and v_, in (3.21). Further, let T'-(‘? € £ and U}f) €L
be defined by

I (> 7)
3.42 T(t) — { e « 3 ’ .
342) 5O\ ROTS, 0<i<i)
(3.43) U9 =T, (h=0,1,..).

The two families of difference operators introduced by Definitions 3.1

and 3.2 are closely related. First, we have
(344) RPAP =D, ROAY =49 R, (m=1,2..)

m-—1

for € € {—1,1}. Using the above relations, it can be shown that
345)  SPTY =T, 5, (+Hl+1=j+hh>i>5h>127),
which for 1 :=0,2:= h — 1, j := 0 reduces to
PORE) = RS,
Multiplying this on the right by Al(f) and using the first equality of (3.44)
and S{9 AS? = P{%), (cf. Definition 3.1) yields
PD=RIPY,,
which leads to the more general equation
(3.46) PEOD =T P9 (v,r=0,1,..).

v,u4r—1
LEMMA 3.4. Let the difference operators Q1,...,Qn (h > 1) be given by
(3.47) Qi:=PEID"  (i=1,...,h),

where ¢ € {—1,1}, and v;,r; are nonnegative integers. Further, let the
operator Q be defined by

(3.48) Q:=P,D",
where
(3.49) Vo AL fry W= lrélia.sxh(r; +v;)—r.

Then Q is the least common multiple of Qq,...,Qnr. Moreover,
(3'50) Q =Yi0Q; (‘i= 11""3}!’)?



Recurrence relations for Jacobi coefficients 313

where
(3'51) Y= 51(-21'“'—'1.' T‘(’S—)’Yﬁ“i o (@ =_ L., h) ’
where, in turn,

Yi=v+r—(vi+nr) (i=1,...,h).

Proof. First, we will show that equation (3.50) is valid, i.e. that Q
is a common multiple of Q1,...,@p. Let us transform the right-hand side
of this equation by substituting the expressions for ¥; and Q; ((3.51) and
(3.47)), and using (3.46), (3.24) and (3.25). We obtain consecutively

¥ = B2y T i A D

v=1,v—";
= S{EJ P(t) DT-TiDn = P(us}Dr =Q.

v=1,0—7; © v—7i

Now we will show that Q is the least common multiple of Q4,...,Q}.
1° If there exists ig € {1,...,h} such that r = r;; and v + 7 = v;, + r;,
then also v = v;, and, according to (3.51), (3.24) and (3.42), we have

Yi, = S(E) T(E}—l =1.

v—-1l,v-v,v

Thus Q is identical with Q;, and obviously has the property in question.
2° If no index has the above property, there exist iy,7; € {1,...,h}
such that ¢; # 45, r = ry;, > 7, and v+ r = v;, + 715, > v;, + 75, (hence
v;, > v > v;,). Equation (3.50) yields, after some simplification,
}/‘_1 - S(&‘) Y;'2 — T(G)

v—1,v;, ? Ui, —1 -

Suppose that Y;, and Y;, have a common left-hand factor of positive
order. Then there exists either an operator W € L\{0} such that Y;, =

ROW or an operator Z € £\{@} such that Y, = A, Z. Consider the
first case (the second can be treated in an analogous way). The operator

Q' = P'E:-)l prt
is then a common multiple of @Q;, and Q;,, i.e.
Q'= W@, = T!(:I')l,ﬂgz ~1Qiz -

(Note that Q = RE,S)Q'.) Substituting in the first equation the expression
for Q;, obtained from (3.47), we get

P,(,_?] D™ '=WPEID" (u:=v;),
which yields P{, = WP D. As P{D = R PL9), (cf. (3.46)), we obtain
(3.52) 54 1 = WR.
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Multiplying (3.52) on the left by R and making use of

R-gf) ‘5‘1(:3;-!-1 = ‘91(;!—)1,1; Rgf)
cf. (3.45)), we obtain, after some simple algebra,
( g
(3.53) 5, . = ROW.

The equations which are obtained by multiplication of (3.52) on the right by

Agf), and of (3.53) on the left by AE,‘), have identical left-hand sides, hence
the equality of their right-hand sides follows:

(3.54) WRE AP = AOREW .
Taking into consideration the orders and the form of the operators S‘(:,),H
and R it is easy to deduce from (3.52) that

d
W =) wi(k)EH!,
i=0

where d := v—u—1, and where w; are rational functions. Putting the above
expression, as well as the expressions for A9, A(?, R{?) and R{?) obtained
from Definitions 3.1 and 3.2, into (3.54), performing the multiplications and
equating the coefficients of E?*! on both sides, we obtain

pulk + d + Nwa(k) = @y(kwa(k +1),
where ¢;(k) := g{f)(k)‘r‘-(e)(k) (¢ > 0; cf. (3.41) and (3.23)). Hence

k-1 .
pu(i+d+1)
wq(k =const.” -,
d( ) i=1 (pu(i)

However, the above formula means that w, is not a rational function of k,
thus W is not in £. This contradiction ends the proof. =

LEMMA 3.5. Let Qq, Q2 be the difference operators
(3.55) Qi = FID",
(3.56) Qa:= P9 D*,

where € € {—1,1} and v, r, u, s are nonnegative integers such that v+ r 2>
u+ 8. Then the operator

(3.57) Q := P pt,
where
(3.58) t:=max{u+s,r}, wi:i=v+r-t,

is the least common multiple of Q1, Q2. Moreover,
(3-59) Q=WQ; (i=1,2),
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where
(3.60) Wi =50 s
(3.61) W, := P DU (9.

Proof. Equation (3.59) can be verified by putting in it the expressions
for Q, W;, Q; given by (3.57), (3.60), (3.55), (3.56), and using (3.46).

If 7 > u + s then, according to (3.58), we have t = 7, w = v, so that Q
and Q; are identical in this case.

Ifr<u+sthent=u+s, w=v+r—u-3s(cf. (3.58)), and equations
(3.60), (3.61) yield

Wl - T{E)

w,r—17 W, = P:E.-E) Uﬁ_‘) .
It can be shown, using an argument similar to that of the second part
of the proof of Lemma 3.4, that W; and W; have no common left factor of

positive order. m

4. Recurrence relation for the Jacobi coefficients. In this section
we give a description of a method for constructing a recurrence relation
for the Jacobi coefficients (1.6) of the function f satisfying the differential
equation (1.5). The main result of this work is contained in Theorem 4.1.

Let P,, be the differential operator of order n,

(4.1) P, := me’Di ’
i=0

where pno, Pni,---,Pnn are polynomials, p,, # 0. Define the differential
operators P; (i = 0,...,n — 1), Q; (7 = 1,...,n), and the polynomials
gm (m =0,...,n) in the following recursive way.

Fori=n,n—1,...,1, given the operator P;,

i
(4.2) P;=) pi;D7,
=0

where p;; (j = 0,...,%) are polynomials, and given ¢ € {—1, 1}, nonnegative
integers g, o, and a polynomial w; such that w;(—1) # 0, w;(1) # 0, and

(4.3) pii(z) = (z* = 1)%(z + &) wi(z) ,
1° define the differential operator Q; by
Jm-wygw ifo>m (case A),
(4.4) Q;:= KT"‘""““"V.‘;’J‘-' ifo+o>m>p (caseB),
Di-2e-29K?Je ifm>p+o (case C),

where m := (i + 1)/2], w := i — 2m, and U, J, V,, K, are introduced in
(3.19), (3.20),
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2° define the polynomial ¢; by

(22 = 1)e"™(z +¢€)° (case A),

(4.5) gi(z) :i= wi(=) { (z +¢g)eto—m (case B),
1 (case C),

3° define the operator P;_; by
(4.6) Pi1f =Pif - Qi(aif)-

Remark 4.1. It follows readily from (4.2)-(4.5) that (4.6) actually
defines a linear differential operator of order ¢ — 1.

Remark 4.2. It is convenient to introduce the notation

Qo:=I, ¢ :=poo-

Here pgo is the only coefficient of the operator Py.

Remark 4.3. It is easy to observe that the differential operator (4.1)

may be written in the form

(4.7) Pof=)_Qi(gif) +Piaf

i=i

for any ¢ = 1,...,n. In particular,

(4.1) Pof =) Qi(s:f)-
i=0
Remark 4.4. Note that (4.4) is equivalent to
(4.8) Q: = DK VII“U%,
where

T :=‘i—28,' —2&—6;—6;,
s; == min{o,m—t; —w},
t; := min{p,m — w},
5. .= Jw (case B),
(4.9) {7710 (case A or C),
ol e {w (case A),
~ |0 (case B or C),
e (0>0),

f‘:{l (o =0),

and where m, w, p, 0, € are as in (4.4).
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Also, notice that (4.4) simplifies considerably for small values of 7. In

particular,

(4.10)

(4.11)

(4.12)

{U (e >0),
Q=4 V. (920, 6>0)$
D (¢e=0=0),

J  (e>0)
Q: =1{ K, (.Q=0, 0‘)0),
D? (p=0=0),
JU  (e>1),
VJ  (e=1,0>0),
_)KVe (e=0,0>1),
B=VD3 ~ (¢=1, c=0),
DK, (¢=0,0=1),
D* (e=0=0),

where g, o are as in (4.3) with ¢ = 1,2, 3, respectively.

Let us introduce the notation
(413) nN:={,...,n}, :={iec:55=9} (n=41),
(4.14) v; 1= 28; + §; (t' € Q) 3
(4.15) e, := }2?.21::, Ti, dyi= }2%3:(0,- +ri)—e, (np==1),

(4.16)  e:= {

1

(di+e1 2d_y+eq),
1 (di+e<d-1+eq)

(4.17) e :=max{e;,d_.+e_.}, d:=d.+e. —e.

Here ¢;, s;, 6;, r; are the constants defined by (4.9). If the set 2, is
empty for some 7, we assume that both maxima in (4.15) are zero.
Further, define the difference operators P, W(" (n = 1), Y; (i € ),
Z; (ie 2U{0}) by

(4.18) P:= P D,
(<) =

(4.19) W .= | “dde (n=e),

Pc(‘e)De—e_‘—d_‘Uu(‘::) (n = —e¢),
(4.20) Y= Sﬂ(*?;}—hdn-"riT!E:)—'h,w-»l e N +1
(4.22) Zo:=P,
where
(4.23) vii=dp+ey—vi—1; (i€ 2yn==£1).
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Finally, define the operators M; by

(4.24) M; = p&) (k) E% P{T5) it (k) D% (i€ 0),

where x(k) := k(k + A), and pl&)(k) is given in (3.25).
THEOREM 4.1. Let f be a solution of

(4.25) P.f=gq,

where P, is the differential operator (4.1). Suppose the derivative f™ can
be ezpanded in a uniformly convergent Jacobi series. Then the Jacobi coef-
ficients of f obey the recurrence relation

(4.26) Loilf] = w(k),
where LE L,wE S,
n
(4.27) L:=)_ Z:Mg(X),
i=0
(4.28) w(k) := Pby[q].
The order of the recurrence (4.26) is
(4.29) r=d+2e+ 205‘.51:'(;?3'(“;0(31?“5 -1).

Proof. It suffices to show that the pair of the difference operators
(P, L), given by (4.18) and (4.27), belongs to the set IT(P,). To this end,
we will use the equation (4.1'),

Pnf — z Q:’(ql'f) y
i=0
and will show that the operator P is a common multiple of the first elements
of the pairs (Q;, M;) which generate the sets I1(Q;) (i=0,...,n).
More specifically, we will show that P is the least common multiple of
the operators

(4.30) Qi:=PID%  (i=1,...,n)
and that
(4.31) P=2Q; (i=1,...,n),

Z; being the operators (4.21). By Lemma 3.4, the operator
N® = PPDT  (n=41),

where d,, e, are the numbers defined in (4.15), is the least common multiple
of all the operators in {Q; : i € §2,}; moreover,

(4.32) N =Y,Q: (i€ Qyn=21),
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where Y; is given by (4.20) for any i € £2. Now, using Lemma 3.5 we see
that P is the least common multiple of N() and N(-1), and that
P=WON® (5=4+1),

W) being given by (4.19). Hence, in view of (4.32) and (4.21), equation
(4.31) follows.

By Lemma 3.3, the pair (Q;, M;), where M; is the operator defined in
(4.24), generates the set I1(Q;) (i = 1,...,n); hence

Qibi[Qif] = Mibi[f] (i=0,...,n).

Here we set Qg := I, My := I, for the sake of symmetry.
Applying P to both sides of (4.1'), using (4.31), (3.6) and the above
equation, we get

Pbi[P,f] = Zﬂ: Z:Q:bk[Qi(gi f)] = z Z;M;biq; f]

= {3 Zidias(X) J0ulf] = LbAlA),
=0
where L € L is given by (4.27). Thus (P, L) € II(Py).
Now, in view of the remarks given in Section 3 (see the fragment con-
taining the formulae (3.9)-(3.11)), we readily obtain the recurrence relation
(4.26) as well as the expression (4.29) for its order. (Obviously, we have

p(P) = r(P‘g')) +r(D¢)=d+2.) u
Remark 4.5. Lemma 3.1 may be used to obtain the following simpli-

fication of the method. Recall that the differential operator (4.1) can be
written in the form

Pof =) Qj(gif) +Piaf
=i
for any ¢ € £2 (cf. (4.7)). Now, let i be the greatest (i.e. the first one met in
the course of the computation) index such that the leading coefficient p;; of
the differential operator P; (see (4.2)) satisfies p;;(—1) # 0 and p;;(1) # 0.
Then, according to Lemma 3.1, the pair (Q;, L;),

Q,' = Dt ’ L; = Z Di_jQ5(X) .
J=0

where
i

(4.33) gj = ) (-1 (?) D*pin  (§=0,...,i),

h=j
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generates IT(P;). Without affecting its validity, we may put in Theorem
4.1 Q; :=DJ (j =0,...,1), and assume that the polynomials go,...,g; are
defined by (4.33). (Of course, we should assume that r; = j, s; =6§; =1; =
8, =0forj =1,...,iin (4.13)~(4.24)).

Some partial results as well as results of numerical experiments led us to
the following conjecture.

CoNIECTURE 4.1. The pair (P, L) given by (4.18) and (4.26) generates
I(P,). In other words, among all recurrence relations with coefficients
from S, satisfied by the Jacobi coefficients of the function f which may
be obtained from the differential equation (4.25) using the identities (3.1),
(3.2), the relation (4.26) has the lowest order.

Remark 4.6. Theorem 4.2 of [2] implies that the above conjecture is
true in the case of n = 1.

EXAMPLE 4.1, Let

142
4.34 = . F ¥1,P2,¥3 ) p
{faa) f(2)= oFs ( 1,92 2

where 3 F; denotes the generalized hypergeometric function, and where ¢1,
¥2, P3, P, Py are complex parameters such that

(4.35) re(p1 + @2 + 93 — 1 — 9) < 0.
It is known that f can be expanded in a Jacobi series (1.1) with coefficients
(4.36) ™[]

= _(@0e(ei(pae (kwl,sz,kws,kwu |1)
ke + Ne(@0)e(@2)e ' 2 \k+ %1,k + 2,2k + A+ 1

(see [6], Vol. 2, Sect. 9.3). The following differential equation can be obtained
using a linear differential equation satisfied by 3 F3(t) (see, e.g., [1], Vol. 1,
Sect. 4.2; or [6], Vol. 1, Sect. 5.1):

P3f = (32 — 1)(3-{-l)fm-f-(:c-]-1)((.‘32$+dag)f"-}-(6312+d31)f'+630f =0,
where

C30 :=P1p203, Cani=pr1prtmpztoipstortertestl,
e i=p1+patps,  dari=ca 29192, dazi=cap—2¢1 — 29— 2.
Thus we have
paa(z) = (2 - 1)(z+1), e=0=e=1, wz=1
(cf. (4.3)), and
Q=Vi, g=1,
r3=83=063=0, e3=8=1t3=1
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(cf. (4.8), (4.9)). Further, we get
Pyf = P3f — Qs(gsf) = (2 + 1)(c2az + dag) " + (e217 + d21) f' + cao f

where

cp2i=cp—A—-[F—4, dy :=dyz—a+26+1,

€21 := €31 — (z\+ 1)(ﬁ+2), dyy:i=dsy1 - 2A-1-(B+ 1)(a—ﬁ).

The form of the coefficient
p22(z) = (2 + 1)(c22% + da2)
of the derivative f” implies
rp=b=th=§=0, s==1,
Q: =Ki, @z)=wz)=cpz+ds.

(Note that wy(1) = 0 or wy(—1) = 0 for some values of the parameters ¢;,
;. However, in the former case, nothing essentially new is brought in, while
in the latter case, the third derivative of f, which is a constant multiple of

F. ‘P1+3,<P2+3,(P3+3 1+z
T2\ 1 +3,92+3 2 )

does not fulfil a condition analogous to (4.35), which precludes the uniform
convergence of the Jacobi series for this function.)
Using again the formulae (4.2)—(4.6), we get

Pif=Pyf — Qu(q2f) = (enz +dn)f' + crof,

where
c1t = e —(B+3)e2a, diy :=dyy —(B+1)d2a —2¢22, €10 := c30—(B+1)ca2,
and
a(z)=pu(z)=cenz+dn, n=&-=1,
s1=6=t1=6=0, Q=
Finally, we have
Poo:=co—c1n, Qo:=I, ¢o:=poo.
Making use of the formulae (4.13)—(4.24), we obtain:
N=020,={1,2,3}, N;=0; v, =0, =2, wu=1;
m=1, r=r3=0; e.1=d_1=0, e =dy=1;
g=l1: e=d=1; P=P1(1)D, w =1 (WD = p);
n=71=1, 71=0;
Zi=Y1=A, Z=Y=A0", Z=Y,=APRD;
Mo = M1 =1, M=p"KE, Ms=pVKk)Ax(k)I.
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By Theorem 4.1, the Jacobi coefficients of the function (4.34) obey the
recurrence relation of the third order:

Lbi[f]=10
where
L=APRD M + R Mygp(X) + A 01 (X) + qo P
The obtained result is equivalent to the one obtained in [4], using another
approach.

5. Recurrence relation for the Gegenbauer coefficients. In the
special case a = f of the Jacobi series (1.1), it is more convenient to deal
with the Gegenbauer series expansion

(5.1) =Y a10c (v>-1/2)
k=0
of f, where C}:') is the kth Gegenbauer polynomial,

oW . (2v)k P(v—lev 1/2) (v £0),

(5.2) SR O S V) Ml
Cio) := lim v1C{).
v—0

The coefficients g }[f] are

\r'(v 1
Fendervm | (- @,

The case ¥ = 0, distinguished in (5.2), is closely connected with the
Chebyshev series expansion

(53) oM =

(5.4) f=14[f1To/2+ Z tk[f1T
k=1
of f, where T} is the kth Chebyshev polynomia.l of the first kind,
K o(-1/2,-172) _ 2 (0)
(5.5) Ti= (1/2) =P Ck ;

and where the Chebyshev coefficients ti[f] of f are
1
(56)  tlfl== [ -V T)f(@)de (k=0,1,..).
-1

We will call the quantities
(57) Ck[f] = ck )[f] o 2(k g 2)b(v -1/2,v—-1/2) [f]
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the Gegenbauer coefficients of the function f. They are related to the coef-
ficients (5.3) and (5.6) in the following way:

= Ty v #0),

O11= Y2u1.

A recurrence relation for the Gegenbauer coefficients can be constructed
by a method analogous to that used in Section 4. However, in the present
section we obtain neater looking results.

First of all, the basic identities (3.1), (3.2) may be replaced by

(5.8)

(5.9) Xelf] = ex[zf(2)],

(5.10) Dei[Df] = exlf],

where X and D are the following difference operators:

(5.11) X = 2(k+ )(kE +(k+2v)E),
A . E-1_

(5.12) D := 2(k+v)( E).

Further, the differential operators (3.19), (3.20) take the following somewhat
simpler forms:

(5.13) U:=(z2-1)D+(2v+1)zI, J:=UD,

(5.14) V.:=(z+&)D+(v+1/2)I, K,:=V.D (c==1).

DEFINITION 5.1 ([5]). For any m = 0,1,... and ¢ € {—1,1} we define
the difference operator AV et by

(2k 4+ 2v + 1),

AQ =1 -ern(k)E, where 7(k):= @k+2wt+m+1),

Further, let

o I (1<)
(e) ._ " ’
Si = { fa{f)S;{iJl,j (1>2320),

P =8 =010
Finally, introduce the sequence {u;} C S;at by
pi(k):=2"“2k+2v+1); (i=0,1,..),
where w := [(i + 1)/2].
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It can be verified that
cx[Uf] = »(k)Dek[f]
ck[J f] = x(k)ex[f]
PO ei[V.f] = m (k)P el f]
Per[K.f] = pa(k) Eerl ]
(cf. (3.30)—(3.33)).

DEFINITION 5.2. For any m = 0,1,... and ¢ € {—1,1} we define the
difference operator R'S) € £ by :

R := (2k 4+ 20) 1 E~! 4 epnm(k),

(se(k) := k(k + 2v)),
(5.15)

(e = £1)

where
om(k) = (2k+ 2v 4+ 2m + 1)/(2k + 2v + m), .
Further, let
2 I (2> 3),
) I [,
Tyt = { ROTS, ; (0<i<y),
§O =T ., (h=0,1,.).

It can be checked that all the identities and lemmata given in Section 3
may be repeated here with obvious modifications. Also, the results of Section
4 remain true for the Gegenbauer coefficients provided 1° the symbols U,
J, V., K, in (4.4), (4.8), (4.10)—(4.12) are defined by (5.13), (5.14), 2° the
symbols P{?, D, T{), U, 8%) in (4.18)(4.22), (4.24) are replaced by
the appropriate symbols with hats, and 3° in (4.24), the factor ,u.ﬁ,’f‘)(k) is
replaced by p., (k). In particular, the following theorem is true.

THEOREM 5.1. Let f be a solution of the equation (4.25), and suppose
(™ can be ezpanded in a Gegenbauer series which is uniformly convergent
in [—1,1]. Then the Gegenbauer coefficients of f obey the recurrence relation

Lck[f] = w(k)a
where L€ L,w € S,

L:= E Zlqu:(X) ’ w(k) = Pck[q] ’

i=0
and the operators P,Z;,M; € L and the polynomials q; are defined as in
Section 4, with the modifications indicated above.

Notice that Remark 4.5 and Conjecture 4.1, suitably modified, remain
valid in the considered case. The latter can be proved in the case n = 2,
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using the apparatus introduced in [2]; the proof is based on the equation

Py f = Qa(g2f) + Qu(a1f) + Qo(0 f)

(cf. (4.1"), in which Q; is either J, K, or D? (cf. (4.11)). The first and
the last case can be treated easily (it suffices then to use (5.15) and [an
equivalent of] Lemma 3.1), while the case where Q; = K, for ¢ = 1 or
€ = —1 needs longer considerations.

ExAMPLE 5.1. We construct a recurrence relation for the Chebyshev
coefficients £;[f] of the function f(z) = ze®, using the fact that f is a
solution of

Paf = (2 - 1)f" — (s - 3z — 1)f" — (42 = 1)f' = 3f = 0.
This example was first studied by Paszkowski in connection with the problem
of minimizing the order of the recurrence relation for the Jacobi coefficients
of f via a preliminary transformation of the differential equation (1.5) (see

Section 1).
Now, according to the second part of (5.8) one should put v = 0 in the
used formulae. Thus we have, in particular,

o -~ 1
R=3(B+E), D= (E'-F), I=("-1)D*+2D.

It can be checked that P3f = Qaf — Q2(f) — Q1(3zf), where Q; := DJ,

Q; :=J, Q; := D. We may easily deduce from (5.10), (5.15) and (5.9) that

the pair (P, L) given by
| P:=D, L:=kI-Drr-3x

belongs to IT(P3). Thus we obtain the second-order recurrence relation

Lti[f] = 0, or, in scalar form,

(K + b+ Dtca[f] - 26850001 — (K =k + Dt f] = 0,
which is identical with Paszkowski’s result [8].

Acknowledgement. The author would like to thank Professor S. Pasz-
kowski for his stimulating comments and discussions on this problem.
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