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ON THE BASIC CONTRASTS IN PBIB DESIGNS

Abstract. The notion of an association scheme for the basic contrasts
is introduced. A necessary and sufficient condition is given for the basic
contrasts to determine a certain association scheme.

1. Introduction. This paper presents a new approach to the problem
of basic contrasts in a PBIB design. The novelty consists in defining an as-
sociation scheme by the basic contrasts. In the literature the basic contrasts
have been discussed only in the analysis of variance corresponding to the
design.

The main results are contained in Section 3. They are: Definition 1 of
an association scheme of the basic contrasts, and Theorem 1. This theorem
provides a necessary and sufficient condition for given basic contrasts to de-
termine a certain association scheme. This yields very interesting corollaries,
given in Sections 3 and 4.

2. Preliminaries. Let v, n;, p};, 1,5,k = 1,...,m, be the parameters
of an association scheme with association matrices Ag, Aq,...,A,,, where
m is the number of associate classes. The above matrices are all symmetric,
linearly independent and satisfy the following conditions:

m m
(1) Ao = I, ZA,@ = 11‘, A,:]. = n,-l, A_;,:A.k = ZP;kAi!
i=0 i=0
where I and 1 are the unit v X v matrix and the column vector of v ones,
respectively.
Let N = (n;;) be the incidence matrix of a PBIB design in which each of
v treatments (¢ = 1,...,v) occurs r times and each of b blocks (7 = 1,...,b)
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is of size k. Then the matrix NN’ can be expressed as
(2) NN’ =3 " \A,,
i=0

where the A; are called the coincidence numbers of the PBIB design.
It is known (see, for example, [1]) that NN’ can be equivalently ex-
pressed as

m
(3) NN’ =) pA¥,
i=0
where A¥ and p; are orthogonal idempotent matrices and the latent roots
of NN’ with multiplicities a; = tr(A¥), respectively.
It is also known that there is a relation between A? and A; given by

(4) A¥ =) A i=0,1,...,m,
i=0

where the (m + 1) x (m + 1) matrix of real coefficients z7* is nonsingular.

3. Main results. Let
(5) Pij, t=1,....m; g=1,...,0,

be v —1 = 1" o; orthonormal column vectors satisfying the condition
pi_,-l = 0 for every i, j. We introduce

DEFINITION 1. We say that the vectors p;; in (5) determine an as-
sociation scheme with m associate classes if there exist symmetric binary
matrices A;, j =0,...,m, which satisfy (1) and

oy m
(6) > PPl =Y FA;, i=1..,m,
J=1

j=0
where 27¢ are scalar constants.

Note that the matrices A; in (6) are the association matrices of the
above scheme.

Let 4 be the column vector of the treatment parameters; then the func-
tions pgj"y will be called the basic contrasts.

It can be seen that if ¢; = r — p;/k # 0, then the contrasts p;j'y are

estimable with the same variance Var(];-:-?y) =02/¢;for j =1,...,04, where
o? denotes the error variance of the intra-block analysis.

Now we are going to give a method for finding matrices Kj satisfying
(6) for given p;;, which is useful in practical applications of Definition 1.
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From (4) and (6) we have
(7) Aszpijp;j, i=1,...,m.

Of the matrices Af, let Af‘ be one with the greatest number, say I*, of
different elements.

If I* > m+1 then the vectors p;; cannot determine an association scheme
with m associate classes.

If I* = m+1 then the matrix A} has m+1 different elements z%,...,Z™.
We construct matrices A ; by putting one in the place where 27! occurs, and
zero in the remaining places.

If I* < m+ 1 then we first construct [* matrices 11} as above. If one of
the matrices A¥ has s > 2 different elements in places of ones in K}, then
we divide K} into s matrices corresponding to those s elements. If it is not
possible to construct m + 1 matrices ILJ- in this way, then the vectors p;;
cannot determine an association scheme with m associate classes.

After determining the matrices EJ- we must check the conditions (1),
according to Definition 1. It turns out that satisfying the first two conditions
implies the fulfilment of the other ones, which is expressed in Theorem 1.

THEOREM 1. The vectors (5) determine an association scheme with m
associate classes if and only if there erist binary matrices A;, 1 =0,...,m,
which satisfy

(a) Ap=I, > A;=11,

where A¥ are defined by (7) and 7% are scalar constants. The matrices A;
are the association matrices of the above scheme.

Proof. The necessity is obvious: take A; = A
_ Sufficiency. According to Definition 1 we must prove that the matrices
A; are symmetric and satisfy the third and fourth conditions of (1). We
first represent the matrices A as linear combinations of the matrices A#
and AY =11 '/v. Since these matrices are linearly mdependent the matrix
Z1= (z7%), where 27* denotes the jth element of Ai , is nonsingular. Hence
A; = Y i 'ZHAf&, where zj; is the ([,i)th element of Z. It follows that
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Al =A;, A1 =7;1and AjA; = Y7, 5l A, where 7i; = Zo; and

m
(8) Pho=)_@iwz", 4ik=0,1,...,m.
1=0
This completes the proof.
This useful theorem gives criteria for the vectors (5) to determine an
association scheme. The following corollaries are also helpful:
COROLLARY 1. Let p;; = (f5,...,f5) fori=1,....m; j =1,...,0;.
If there exist i, s and s’ such that either
(i) f5=0forj=1,...,04, or
@) 1f5] 2 1f5] for 5 = L,...,e4 and |f5] > |5}, for some jo €
{1,...,04}, or
(111) Q; = 1 and lfflt 7& |f’£81|1
then the vectors (5) do not determine an association scheme with m associate
classes.

Proof. Assume that (5) determines an association scheme. Then from
(7) we have A¥ = (25*'), where 23* = e f% and, in particular,

) 2= ().

Conditions (a) and (b) of Theorem 1 imply that z$* are all equal, for s =
1,...,v. From this and (i) it follows that p;;j, j = 1,...,;, are the null
vectors, which is impossible. In cases (ii) and (iii) the values 2{° defined
by (9) are not equal for fixed 4, which is also impossible. This completes the
proof.

From condition (iii) we get a very interesting conclusion:

COROLLARY 2. If, in a PBIB design, a; = 1 for some i € {1,...,m},
then the number of treatments v must be even.

4. Examples
4.1. Let
wil=1, wi=(s-1,-1,...,-1),
wg) = (0,8 —2,=1,00ny=1)y 2oy wEi)—l =(0,...,0,1,-1)’

be s; x 1 vectors, where s; > 2fori=1,...,p. Assume there are m = 2P —1
associate classes, which are denoted by (ci,...,cp), where ¢; is 0 or 1 and
P
i=1¢i > 0.
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We define W, . ., as the set of all vectors of the form
(10) (W{l) ®...® w(p))/"w(l} ®...® W(p)”

where ||w|| = vVW'w, e; = 0if ¢; =0 and ¢; isone of 1,...,8; — 1 if ¢; = 1.
The operator “®” always denotes the Kronecker product of some matrices
or vectors. Let

P

W:{weWcl___cp ce;=00rl, i=1,...,p, Zq>0}
t=1

be the same vectors as in (5) with m = 27 — 1.
COROLLARY 3. The vectors w € W determine an association scheme

with 2P — 1 associate classes. The association matrices of the above scheme
are of the form

(11) a; ap — ®A(s)

i=1
wherea; =0 orl,i=1,...,p, A‘(Ji) =1 and Agi) = 11" -1 are 8; X s;
matrices.

Proof. Substituting w € W,, ., in place of p;; on the left hand side of
formula (6) we get

(12) Ac"@'i___c]p = Z ww’ —®A#()
weWe) . .cp

where A#(.) =11'/s; and A#(11 =I-11'/s; are s; x s; matrices. Note that
AT (A‘ Dt AY/s; and AFD = ((s; — DAY — AD)/s;, thus

# s a1...8p,C1...Cp
AC].‘.C,, e 2 Aﬂq.‘.ap ]

Q1,03 8p

where

14

zroneints — o1 [ {(U-a)(s— 1 —a}, v=][s
i:ci=1 i=1

on the other hand, the matrices A,, .. o, are defined by (11). In this way we

have proven that each of the matrices (12) is a linear combination of the

matrices (11). Thus the matrices (11) satisfy condition (b) of Theorem 1.

Since (a) is clear, this ends the proof.

Assume now that there are v = []5_, s; treatments, and p factors at
81,...,8p levels, respectively. The treatments are denoted by ¢(Bi,...,08p),
where 3; = 0,1,...,8; — 1; i = 1,...,p. In the literature (see [4], p. 197)
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the following notion of association scheme is called an F}, type association
scheme with 2P — 1 associate classes:

DEFINITION 2. Two treatments ¢(B,...,08,) and ¢(By,...,0B;) are
(@1,...,ap)-th associates when B; = B, if a; = 0, and B; # f; if a; = 1.

After numbering the v treatments in lexicographical order, we find that
the association matrices occurring in the above definition of association
scheme are the same as in (11). In this way Corollary 3 is a new defini-
tion of an F), type association scheme. It is worth noticing that w € W, .,
are the contrasts belonging to the interaction between the factors iy, ..., 14,
where ¢;; = ... =¢;, = 1 and E:’:l ¢; = q. If in the above ¢ = 1 then we
call these vectors the contrasts of the main effects of the factor %;.

4.2. Let W; = |J; W,,...c,, where | J; denotes the sum over all cy,...,c,
with ¢; + ... + ¢, = 4, and W,,_ ., is defined by (10). Let W* be the set
{weW,;:i=1,...,p} withs; =... =3, = s.

COROLLARY 4. The vectors w € W* determine an association scheme
with p associate classes. The association matrices of this scheme are of the
form

(13) A[} = I, A£ == Z’ Aa;..‘ap ]

where Z: is the sum over all ay,...,a, satisfying a1 + ... +ap = i.

Proof. Substituting w € W; in place of p;; on the left hand side of (6)

we get
"
Af=) ww=3 A% .,
weW; i
where E:’ is the sum over all ¢;,...,¢p with ¢; + ... + ¢, = 4. Hence,

and from (12), we get A = Yy Z7*A;, where A; is defined by (13),
2t = v Y {(s — 1)9(—1)*"9} for every ay,...,ap With ay + ...+ ap = 4,
q is the number of zeros in {a; : ¢; = 1,4 = 1,...,p} and v = sP. So,
condition (b) of Theorem 1 is satisfied by the matrices in (13). Since (a) is
clear, this ends the proof.

In the literature (see [4], p. 203, [2], p. 572, and [3]) a C,, type association
scheme or hypercubic association scheme is known as a special case of an
F, type association scheme. If we assume that there are v = s” treatments
é(B1y-+PBp), Bi=0,1,...,8=1;i=1,...,p, then a C} association scheme
among these treatments with m = p associate classes is defined as follows:

DEFINITION 3. Two treatments ¢(f1,.-.,Bp) and ¢(Bi,...,B,) are i-th

associates if Y h_, €(Br — Br) = &, where e(z) = 0if z = 0 and ¢(z) = 1
otherwise.
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After numbering the s” treatments in lexicographical order, we find that

the association matrices occurring in the above definition are the same
as in (13). Therefore Corollary 4 is another definition of a C}, association
scheme.
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