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FINDING AN -OPTIMAL REGRESSION SUBSET

1. Recall of a branch and bound algorithm. In [1] we presented an
algorithm for finding an optimal subset of size k out of p predictor variables
Z1,...,Z, by use of a branch and bound method. Instead of considering all
(2) subsets to find the best one for predicting a variable y we proposed an
algorithm which proceeds stepwise in the following manner:

All possible (i) subsets are divided into parts called branches. For each
branch a bound B; (i = 1,...,k) for RSS;, the residual sum of squares (a
criterion of “prediction goodness” of a subset ;,,...,;, ) is established. No
subset belonging to the ith branch can yield a smaller value of RSS than
the established bound B;.

The bounds By,..., B for branches 1,..., k satisfy the inequalities

Bi>By>...2 B;.

For i = k, k—1,...,1 we investigate all subsets belonging to the ith
branch. Suppose that after investigation of branches k, k — 1,...,%, 7 > 1,

we found the optimal subset among those branches to be {z},, ..., z}, }, with
residual sum of squares RSS° satisfying the inequality

RSS° < B;_;.
Then we conclude that in branches i —1,...,1 there is no better subset, i.e.

yielding a smaller RSS.

2. The notion of an e-optimal subset. Let P = {S,...,5;} be the
set of all [ = (ﬁ) combinations {z;,,...,%;, } of length k constructed from
the predictor variables i, ...,z, in a regression problem.

DEFINITION 1. A subset S, € P is called an optimal regression subset if
(1) RSS®) < RSS®) |
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for any subset Sg € P, Sg # S«, where RSS™ and RSS are the residual
sums of squares when considering the regressions of the variable y from the
variables in S, and Sg, respectively.

An optimal subset need not be unique.

DEFINITION 2. Let € > 0 be a given small number. A subset S, is called
an g-optimal regression subset if its residual sum of squares is within ¢ of an
optimal subset Sg, i.e.

(2) 0 <RSS™M —RSS <¢.
For a given € there may be several, one or no g-optimal subsets.

THEOREM. Suppose that € > 0 is a given small number. Suppose further
that we are seeking for an optimal regression subset (in the sense of (1))
using the branch and bound algorithm introduced in Section 1. Suppose that
we have already examined branches k, k —1,...,%, ¢ > 1, and that we have

foungi}u subset S5 to be optimal so far, yielding a residual sum of squares
RSS®).

(a) If

(3) RSS® < B;_,,

where B;_1 is the bound established for branch i — 1, then S5 is optimal.
(b) If |

(4) 0<RSS® _B; ;<e

then Ss 1s either optimal or e-optimal.

Proof. (a) The set S5 is the best subset found so far and its residual sum
of squares satisfies (3). From the method of allotting the subsets to branches
and establishing the bounds it follows that every subset Sg belonging to
branches i —1,...,1 yields an RSS greater than or equal to B;_;. Therefore

(5) RSS® < B;_; <RSS¥W,

and we conclude that S5 is optimal.
(b) Suppose now that S5 satisfies (4), i.e.

Bi_1 <RSS® < B; ; +¢.
Consider the set S of all subsets S, in branches i — 1,...,1 satisfying
B;_1 < R.SS(T) < RSS(SJ i

If S = 0, i.e. all subsets S, in branches i —1,...,1 satisfy RSS(") > RSS®),
then clearly S; is optimal.
Otherwise one of the sets in S, say S,, is optimal. Since

B;_1 < RSS™ < RSS®)
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and, from (4),
RSS® < B;_; +¢,
we conclude that
0 <RSS® —RSS@™ < ¢,
i.e. S is e-optimal.

3. The algorithm. It is a straightforward implementation of the The-
orem presented in Section 2. For a fixed value of k (size of the subset) we
establish the bounds By > ... > B for subsequent branches. Next for
m =k, k—1,...,1 we perform evaluations of the RSS (residual sum of
squares) for subsets belonging to the mth branch. Let RSS®) be the small-
est RSS found after investigating the mth branch. If RSS® satisfies (3) or
(4) then' we have found either the optimal or the e-optimal subset and we
stop our search; otherwise we have to continue the investigations for the
next value of m.

The algorithm can be modified by considering instead of RSS (the resid-
ual sum of squares) the ratio RSS/SST, with SST = >, (v: — 7). The
ratio RSS/SST is connected with R?, the square of the multiple correla-
tion coefficient R? = R? .. . .z, between the variable y and the predictor
variables 1, ...,z by the following formula :

RSS/SST =1— R?.

In this case the constant € (0 < € < 1) can be interpreted in terms of the mul-
tiple correlation coefficient R: Our algorithm finds a subset {z;,,...,z;}

yielding a multiple correlation coefficient R such that
|R? — Rly| <e,

where Ropt is the optimal (maximal) multiple correlation coefficient which
can be established for the considered regression with k predictor variables.

4. Simulation examples and practice with the algorithm. We
have checked the performance of the algorithm on 60 artificially generated
sets of data, the same which were used for checking the performance of the
branch and bound algorithm described in [1]. These are data with p = 8,
12 and 16 predictor variables. 30 of the sets were such that the predicted
variable y was defined as a linear function of p/2 predictor variables only
and an additional error term e:

y=bg+b1x1+...+bp/2:cp/g+e.

Other 30 data sets were obtained assuming a specific dependence structure
of y from z;,...,z,: The covariance matrix of the considered variables was
constructed from Helmert matrices with an additional condition that the
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TABLE 1
Mean CPU times (in minutes) for finding an e-optimal or optimal regression subset
of size k out of p variables recorded on an ODRA 1305 computer.
e-opt: time needed by the e-optimal algorithm
opt bb:  time needed by the branch and bound algorithm [1]
opt tr: time needed by the traditional all-subset search [2]

P k 1+4 5+7 8+11 12 + 15
A. Data sets obtained by the first method (sum of p/2 variables)

p=28 £-opt 0.019 0.021 - -
opt bb 0.018 0.017 - -
opt tr 0.030 0.030 - =

p=12 g-opt 0.106 0.037 0.055 -
opt bb 0.110 0.045 0.047 -
opt tr 0.110 0.330 0.210 =

p=16 e-opt 0.452 0.748 0.152 0.145
opt bb 0.521 1.309 0.411 0.134
opt tr 0.370 4.390 9.130 3.020

B. Data sets obtained by the second method (Helmert matrices)

p=28 g-opt 0.026 0.021 - -
opt bb 0.026 0.018 - -
opt tr 0.030 0.030 - -

p=12 g-opt 0.141 0.220 0.055 —
opt bb 0.142 0.320 0.052 -~
opt tr 0.110 0.330 0.210 -

p=16 e-opt 0.615 3.029 1.551 0.145
opt bb 0.613 3.454 2.943 0.148
opt tr 0.370 4.390 9.130 3.020

importance of subsequent predictors 1,...,p decreases with : (1 < 1 < p),
the number of the predictor. (For details see [1].)

In our evaluations we assumed & = 0.05. Moreover, we have used the ratio
RSS/SST as the criterion. The algorithm was implemented as a procedure
in Algol 1900 and imbedded into a general program contained in the SABA
package [2] working on ODRA 1305 computers. The times of run are shown
in Table 1. We show there the average time needed in 10 (similar in size)
data sets to reach an e-optimal subset. For comparison we also show in Table
1 the mean times needed in the same data sets to obtain optimal subsets
using the branch and bound algorithm described in [1]. We also show the
times needed when using a classical algorithm evaluating RSS for all subsets.
The times shown in Table 1 are CPU times picked up from standard output
obtained on the ODRA 1305 computer when using the GEORGE 3 operating
system.

One can see that, generally, for subsets of size k = 1+ 4 the gain, if any,
is not big. One might say that in this case the algorithm works very fast and
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the difference in the performance of the optimal and e-optimal algorithm is
not clearly visible.

When considering subsets of size k = 5 + 7 we should additionally take
into account p, the number of predictor variables. For p = 8 and p = 12
still both algorithms work very fast and'the run times of both algorithms
are practically the same-(especially, after taking into account the accuracy
of the time count). We note in set A for p = 12 a very remarkable differ-
ence between the two branch and bound algorithms as compared with the
traditional all subset search. For p = 16 we note a remarkable gain of time,
especially for subsets of size k =5+ 7 and k = 8 + 11.

An example of application of the e-optimal algorithm in the context of
a discriminant analysis carried out in medical data may be found in [3].
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