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PRINCIPLE OF CONSERVATION OF MOMENTUM,
ANGULAR MOMENTUM AND ENERGY FOR
A DEFORMABLE CONTINUUM
IN AN ELECTROMAGNETIC FIELD

1. Introduction. The question of exchange of energy, momentum and
angular momentum for a material deformable continuum has not been sat-
isfactorily solved yet. Various authors do not agree to define the mechanical
quantities for an electromagnetic field [4] or the electromagnetic ones for
a material continuum (see, e.g., [8]-[10]). This is due to the fact that in
the relativistic theory of electromagnetic field there is no criterion uniquely
defining the energy and momentum tensor of an electromagnetic field. The
choice of a suitable tensor remains an open question. Various authors favour
different forms of the so-called Maxwell stress tensor of an electromagnetic
field [4], [5].

Among the attempts of explanation of difficulties due to the problem of
energy and momentum of an electromagnetic field one should mention Fock’s
paper [2], in which the author completes the electromagnetic field equations
with an additional postulate and shows that then the momentum-energy
tensor of an electromagnetic field is uniquely defined up to two constants.

For the case of material continua (and all the more for the deformable
ones) placed in an electromagnetic field the definition of a quantity such
as the four-tensor of momentum-energy (three-dimensional stress tensor)
requires great care, for discrimination between the electromagnetic and me-
chanical quantities is to some extent a matter of convention [4].

In the present paper, making use of the four-dimensional tensor notation,
we deal with the problem of formulating the principle of momentum-energy
conservation for a deformable continuum in an external electromagnetic
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field. We should separate the conditions which relate to all coupled mechan-
ical and electromagnetic fields from those pertinent to the chosen model of
interaction between the material continuum and the electromagnetic field
(generalized constitutive relations).

A generalized form of the four-dimensional momentum-energy tensor of
an electromagnetic field is postulated. It is composed of the four-tensor of
deformations and stresses of an electromagnetic field defined previously [7].
Our formulae generalize the traditional form of the Lorentz force vector and
the form of the momentum-energy tensor.

Assuming moreover linear equations of polarization of a material contin-
uum (dielectrics, diamagnetics) one can obtain the formulae in their usual
form.

The traditional stress tensor of a deformable continuum has to be gen-
eralized as well since the presence of an electromagnetic field causes the
antisymmetric part of this tensor to be not zero also for the case of classical
media, as is shown here.

In the present paper a mathematical formalism presented in [7] to de-
scribe coupled mechanical and electromagnetic fields by means of linear
differential operators is used. The formulation proposed here has its origin
in Drobot’s paper [1], in which a method of describing purely mechanical
interactions for statical problems has been given.

Space-time equilibrium equations obtained in [7] are interpreted here
through the use of a projection procedure on a three-dimensional subspace
[9], [6], and next the influence of electromagnetic effects on the equations
of motion of the deformable continuum as well as on the first principle of
thermodynamics for the case of coupled fields is analysed.

2. Principle of conservation of momentum and angular momen-
tum for a deformable medium in an electromagnetic field. The prin-
ciple of conservation of momentum for a deformable medium is usually (see
[3]) written as

(1) DfP,-d'uz fFidv= fT_{fnjds,
n 2 an

where P;, Fj, T{ denote the tensors of volume density of momentum, of
mechanical mass-forces and the deformable medium stress tensor, resp., and
D(---) denotes the so-called material derivative with respect to time.

The condition (1) which holds for any region {2 of variability of the
so-called Lagrange coordinates leads to the known equations of motion of a
deformable medium in Lagrange’s description:

(2) V,T’% + F; = DP;.
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Considering a material deformable continuum in an external electromag-
netic field one should write the principle of momentum conservation taking
into account the additional forces of electromagnetic nature, or, without in-
troducing any new forces, one has to treat this case as a system composed of
a material continuum and an electromagnetic field and write the principle
of conservation of momentum for such a system.

Using the stress tensor of an electromagnetic field eT_":{M), which is to be

interpreted as the Maxwell tensor, and the momentum of an electromagnetic

field . P; we replace equation (2) by

(3) Vj(T.{“}'er{(M)) +F£ = D(Pi +ePg).

Therefore the principle of conservation of momentum should be fulfilled by

the total momentum and the total stress tensor of the system. It is a separate

question how to express eTf;(M) and . F; in terms of quantities describing the

electromagnetic field such as the four-tensor of deformations and stresses [7).
Let us now recall that the principle of conservation of angular momentum

for a deformable medium without any electromagnetic field may be written
in the form

(4) D f.’.vb-Pk] dv = fm[ij] dv + fx[jfﬂc]ng ds,
n ] an

where [ | denotes the antisymmetric part of a tensor.
Integrating by parts and transforming the surface integral into a volume-
type one we obtain

[ 2iDPydv = [ (zy;(Fig + ViTly) + 65T dv.
Q )

Applying the motion equation (2) to the above formula we get a condition
equivalent to equation (4) to express the balance of the angular momentum
of a material continuum as follows:

Note that our considerations concern classical continua and the condition
(5) includes the fact that spins do not appear in the balance (4).

It is easy to guess that formula (4) for the system consisting of a de-
formable medium and an electromagnetic field should read

D f x[j(P“i"eP)k] dv = f z(j Fy dv+ f :(;U(T_}.eT(M))fk]n‘. ds,
- 2 80
and together with the motion equation (3) it takes the equivalent form

(6) (T + eT(M))[j K = 0.
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The last equation shows that the interaction of an electromagnetic field
with a material medium may cause the antisymmetric part of the three-
dimensional stress tensor of a deformable continuum to be non-zero.

3. Momentum-energy tensor of an electromagnetic field in a
material medium. Now we shall extend the Maxwell stress tensor ei’“g\'{)
of an electromagnetic field to the four-tensor .7T),, of momentum-energy;
that is, we shall define additional components Ty and Tpy; which, as will
be seen, represent the density of electromagnetic energy and momentum,
respectively. As mentioned in the introduction, this topic remains to be con-
troversial in mechanics. Various authors do not agree to define mechanical
quantities for an electromagnetic field, particularly for the material medium
case. '

As an example let us compare different formulae for the electromagnetic
field momentum (P favoured by various authors [5]:

(7a) P =DxB,
(7b) eP=EX'H,
(7c) P =ExB.

It should be remarked that the formulae do not differ in fact if we deal
with an electromagnetic field in a vacuum. In this case the vectors of electric
intensity E and magnetic intensity B and the suitable vectors of electric in-
duction D and magnetic induction H are coupled by the following relations:

(8) D =gE, H=(1/m)B,

where €, lio are universal constants and represent the electric and magnetic
permittivity of the vacuum, respectively [5].

In the case of electromagnetic field in a material medium the question
which of the formulae (7a)—(7c) should be chosen is now crucial due to the
necessity to add constitutive relations (polarization laws) for the consid-
ered material. For dielectrics and diamagnetics polarization laws are lin-
ear. However, in the case of ferroelectrics and ferromagnetics the constitu-
tive relations take a more complicated functional form due to the electric
or magnetic hysteresis and therefore formulae (7a)-(7c) differ fundamen-
tally. '

In our opinion, if one distinguishes the stress tensor of an electromagnetic
field from the deformation tensor, then the problem of a unique formula for
the electromagnetic momentum-energy tensor can be removed.

As has been seen in [7] the antisymmetric deformation tensor Gog of an
electromagnetic field can be built up with the aid of the vectors of electric
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field intensity E; and magnetic field intensity B; as follows:

0 E E, Es
—El 0 —BS B2
—Eg BQ 0 —Bl
—FE3 —B;, By 0

(the vector B; is usually called the magnetic induction vector).

In a similar way, with the use of the three-vectors of electric and magnetic
induction D* and H* we construct an antisymmetric four-tensor F*° called
the stress tensor of an electromagnetic field in the following matrix form:

0 -D' -D? -D?3
D' 0 -H® H?
D? H3 0 -H!
D3 -H? H! 0

(9) Gap =

(10) Fob =

The four-tensor T';° of momentum-energy of an electromagnetic field is
defined by means of the above tensors in the following way:

(11) TE = HForG"P - Gor FoF),
where the dual tensors F va, é:,g are given by
ﬁyﬁ = %Eyﬁqaﬁwés gcw = %say.u.gguga

and £“P7® is the usual four-dimensional permutation symbol.
Raising and lowering of tensorial indices is performed by means of the
following metric tensor (pseudoeuclidean metric with index 3):

1 0 0 0
lo -1 0 o
9eB=10 0 -1 0
0 0 0 -1

We postulate here that formula (11) is valid regardless of the constitutive
relations combining the stresses @ and the deformations Gap-

Now we present arguments for adopting the above form of the electro-
magnetic field momentum-energy tensor.

In the case of electromagnetic field in a vacuum one may take .T.° =
0.8, where

(12) eg;:.ﬁ = %(gavgyﬁ =: gavgaﬁ) .

It is easy to verify that 60%° = .0%%. Note that for the material medium
case the discrimination between the tensors G, F*? leads in general to
the condition

eTiap) # 0.
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Using the formula

ki...k2

Eklkz...rl...?‘ﬂ_
81...8m ?

is;s:...r;...rn_m = (ﬂ - m)!6

where m < n, n denotes the dimension of the space (n = 4), we can write
(11) in the form '

(13) eTuﬁ = -’Faugyﬁ + %gaﬁfpvgpv .

In the case of electromagnetic field in a vacuum formula (12) leads to
the known symmetric form of the momentum-energy tensor [5]:

(14) 0% =G3G"P + 19%AG,.,G" .

Now let us compute the four-divergence of the momentum-energy tensor
(11). Using the Maxwell equations which may be written in the form [7]

(15a) VoF* =1",

(15b) VoG =0,

we get

(16) Va oI = GPL, + 1G*VPF,, — 1 F,\ VPG,

Note that in the case of electromagnetic field in a vacuum and of the
momentum-energy tensor 39““6 we get

(17) Va 8* = g*°L, = -1,

since the last two components in (16) vanish due to (8).

The right side of (17) presents the known Lorentz force with which an
electromagnetic field acts on currents and charges. Therefore we can treat
the right side of (16) as a definition of the Lorentz force in the general case
i.e., for an electromagnetic field not in the vacuum but in a material medium.
Let us admit therefore the formula

(18) eFP = GPI, + {FaVPGH — 1GMAVPF,, .
Now (16) may be written with the use of the Lorentz force as
(19) Vo oI = — FP,

This is the principle of conservation of momentum and energy of an elec-
tromagnetic field; we shall show that by interpreting the components of the
tensor .7*%. From (19) we get in particular for the covariant space compo-
nents . F; of the Lorentz force

(20) Vo eI%+ V; T} = —oF;.
Using the relations
FO = — D, Gok = Ej,

fks = == Ek”Hn Oks = —€ksr BT,
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the components .F; may be represented in the inertial laboratory frame as
(21) eFi = -Eg - EikPB‘pIh = %(Ekv.gﬂk = D"ViEk)
-2(HxViB* - B*V,Hy),

where I* is the three-vector of electric current and g is the charge density.

Note that the traditional formula for the Lorentz force does not include
the terms with derivatives of the electromagnetic field vectors. For such
continua as dielectrics and diamagnetics, the additional terms vanish.

Let us return to the interpretation of formula (20). The space compo-
nents (T of the electromagnetic field momentum-energy tensor (T define
the general form of the so-called Maxwell stress tensor, which describes the
stresses acting on surface elements of a material medium in an electromag-
netic field. We take

i (M) _ i
(223-) eT.J; = _eT.j .
That implies
(22b) TIM — E,DI 4 H; B’ — 16, (E,D* + HyB*),

which is easy to verify using (13).

Note that the Maxwell stress tensor does not satisfy in general the
condition of symmetry. This may result in the antisymmetric part of the
three-dimensional stress tensor of a deformable continuum being non-zero
and at the same time

= (M)
T = _eT{ij} )
as required by the principle of conservation of angular momentum expressed

by (6). ,

In the case of constitutive relations of piezoelectrics the antisymmetric
part of the stress tensor is non-zero, as will be shown in a separate paper.
Here we only note that constitutive relations for stresses and deformations
of a material medium should be formulated in such a way that the principle
of conservation of angular momentum represented by (6) should be satisfied.

The components (7" of the momentum-energy tensor define the momen-
tum P; of the electromagnetic field. By (20) we have

(23) P = T% = -.T% = —(D x B) = (D x B);,

which agrees with formula (7a).

Equation (20) may be interpreted as the principle of conservation of the
electromagnetic field momentum because of the above interpretation of the
tensorial quantities appearing there.

For the components 7% of the momentum-energy tensor we have

(24) I = T% = (E x H),
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which agrees with the definition of electromagnetic field momentum accord-
ing to (7b). We interpret here the above components as the Poynting vector,
representing the energy flux of the electromagnetic field.

Note that in the case of momentum«energy tensor in a vacuum we have

(25) 6% = ¢ = (E x H)},
which is consistent with formula (7c).
Now let us consider the explicit form of the component 7% = T = T,? of

the electromagnetic momentum-energy tensor. That component represents
the energy of the electromagnetic field in a material medium, that is,

(26) J®=-L(E-D+B-H).
In the case of electromagnetic field in a vacuum we get
(27) 0% = 1(E? + B?).

Admitting the above definition of mechanical quantities for an electro-
magnetic field we may interpret the first equation (19) for 8 = 0 as the
principle of electromagnetic field energy conservation.

It is easy to verify that the component F° of the Lorentz force is of the
form

(28) F° = ExJ* + L(ExVoD* — D*V(Ey) + L(HkVoB* — B*VoHj),

and represents the density of the electromagnetic field power. Additional
components involving time derivatives of the vectors of the electromagnetic
field do not vanish in the case of the constitutive relations of piezoelectricity.

4. Interpretation of the space-time equilibrium equation of a
material deformable medium in an electromagnetic field. As has
been shown in [7], the space-time equilibrium equations of a deformable
medium have the form

(29) V.FL =F,+.F,,

where F,, . F,,, F%, denote the four-vector of external mass force, the Lorentz
force and the stress four-tensor of a deformable medium, respectively.
Equations (29) represent the principle of conservation of momentum (v =
k) and energy (v = 0) for the system consisting of a deformable medium
and an electromagnetic field.
With the aid of the electromagnetic momentum-energy tensor (I7, (13)
and using (19) system (29) may be written equivalently as

(30) V,(F% +.T*)=F,.

Notice that equations (29) and (30) are coupled with the Maxwell equa-
tions (15) by formulas (18) and (13), respectively.
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Now we present the considered equilibrium equations in terms of three-
tensors commonly used in continuum mechanics.

We adopt here the nonrelativistic point of view when describing interac-
tions between an electromagnetic field and continuous matter. The Galilean
transformations and their extension to the group G [6] of space-time-trans-
formations preserving absolute time are taken here as the admitted coordi-
nate transformations. The nonrelativistic point of view and nonrelativistic
transformations of electromagnetic field are here sufficiently good approx-
imations of the relativistic formulae based on Lorentz transformations for
the velocity v of the deformable medium is small compared with the speed
c of light in vacuo (v/ec < 1).

As is known the Maxwell equations are invariant with respect to Lorentz
transformations between any two inertial frames. In nonrelativistic formu-
lation, however, the Galilean transformations do not preserve the form of
the Maxwell equations and thus prefer some frame—the rest frame in the
medium.

The transformation formulae for the electromagnetic field vectors and the
vector of electric current I obtained as approximation from the relativistic
formulae for v/c < 1 (where v denotes the velocity of a material particle in
the laboratory frame) are of the form

E=E+vxB,
H=H-vxD,
(31) D'=D,
B'=B,
I'=1-pv,

where the primed quantities relate to the rest frame in a medium whereas
the nonprimed ones to the laboratory frame.

The space and time coordinates are connected by means of the Galilean
transformations

z,=z;—vt, t =t.
Hence for the suitable derivatives we obtain
Valess)=Valsa)s
Vol-++) = Vol(.. ) +9*Vi(...) = D(...).
It follows from (9), (10) that the Maxwell equations (15a), (15b) in the

local rest frame of a material medium described by the three-tensors take
the form

(32)

rotH' —8D'/ot' =T, divD' =p,

(33) ; j :
rotE'+0B'/ot =0, divB'=0.
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Note that in the case of moving material medium the constitutive rela-
tions for an electromagnetic field preserve the usual form in the rest frame
of a material particle.

Formulae (21)-(28) relate to the laboratory frame. We have to use the
transformation rules (31), (32) to express the suitable quantities in the rest
frame of a material medium. For example for the space components (F; of
the Lorentz force (21) we obtain in the local rest frame of a material particle

Fi= —Elp— (I xB'); + (B’ x D) V0"
- Y(E,V.D" - D'*DE}) - 1(H,V,B" — B*V,H}).

Note that the additional term . P/ V/v* vanishes when the material medium
moves as a rigid body.

For later use, observe that by (21), (28) and (31), the invariant .F,v*,
where v# = (1, v*), satisfies

eFuv* = By It + (ov x B')xv* + L(E, DD — D*DE})
+ Y(H.DB;, — B*DH;) + (B' x D). Dv*.

Note that the additional term Py Dv* vanishes when the material point
moves with a constant velocity, as required by Galilean transformations.

In [9] a projection procedure on a three-dimensional subspace has been
presented. In this way it is possible to obtain three-quantities in the lo-
cal rest frame of a material particle interpreted as three-tensors commonly
used in continuum mechanics. Making use of the decomposition scheme of
four-tensors we now write (29) in terms of three-tensors. We obtain the fol-
lowing form of the equation of continuum motion (v = k), which represents
the principle of conservation of momentum for a deformable medium in an
electromagnetic field:

(35) V;T% + F; + .F; = DP;,

where T‘l denotes the three-dimensional stress-tensor of a material medium,
P; denotes the momentum vector of a body, and the Lorentz force (F; in
the rest frame of a material particle is given by (34a).

We obtain the principle of conservation of energy for the considered
system through the use of the projection procedure and putting » = 0 in
(29). We get

(36) P,Dv' —TiV;v +V;¢’ + De — F + F v =0,

where ¢ denotes the density of internal energy, F' the density of thermal
power, ¢’ the heat flux vector. The invariant (F*v, is defined in the local
rest frame by formula (34b).

Equations (35), (36) coupled with the Maxwell equations (33) are valid
for any deformable medium in an electromagnetic field. A separate question

(342)

(34b)
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is the problem of formulating the constitutive relations for stresses and de-
formations of the deformable medium and of the electromagnetic field and
thus of adopting some interaction models between electromagnetic field and
continuous matter. For the piezoelectric case these topics will be discussed
in a separate paper.
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