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COUPLED FIELDS IN A PIEZOELECTRIC BODY

1. Introduction. Piezoelectricity in a material deformable continuum
represents a conjugation of mechanical fields (deformations, stresses of a
body) with an electric field. Under the effect of mechanical stress in a piezo-
electric body an electric polarization appears, and conversely, an external
electric field applied results in a deformation of the piezoelectric body.

Piezoelectric effects have found a large practical application but lack a
complete theoretical description. The theory of piezoelectricity elaborated
by W. Voight [8] has some drawbacks. According to this theory the piezo-
electric effects cannot occur in an isotropic body or in crystals with central
symmetry. Nevertheless experimental investigations show that the piezo-
electric effect can occur in centrosymmetric crystals. Some other anomalies
occur which are not anticipated by the theory and which are disclosed by
the experiments of Mead [4]. Some of them are explained by the gradient
theory of R. Mindlin [5].

In the present paper we give a description of coupled fields in a piezoelec-
tric based on a general method of conjugation of mechanical and electromag-
netic fields in a deformable body which are generated by some differential
operators, as was shown in [2], [3]. The essential new assumptions of the pre-
sented method are a generalized formula for the Lorentz force (which may
be non-zero in the absence of free currents and electric charges in the body)
and the omission of the symmetry condition for the deformation and stress
tensors, the condition that may be violated in the case of mutual action of
an electromagnetic field and a material deformable continuum.

2. A deformable body in an electric field. Now, using the results of
(2], [3] where a general method of conjugation of mechanical and electromag-
netic fields generated by differential operators is presented we discuss the

1991 Mathematics Subject Classification: Primary 73R05.
Key words and phrases: deformable continuum, electromagnetic field, piezoelectricity.



362 M. Kopisz

case of a deformable continuum in a constant electric field. By the Maxwell
equations the electric and magnetic phenomena can only be considered sep-
arately in the electrostatic (0E /0t = 0) or magnetostatic (8B/8t = 0) case.
Here piezoelectricity is understood as a non-trivial conjugation of mechani-
cal and electrostatic fields in a material deformable body.

The antisymmetric stress tensor F*#(D, H) (of an electromagnetic field
introduced in [2] has now the simplified form

0 -D' -D? -D3

af _ D!
(1) }- D2 0 *

where D' denotes the electric induction vector, whereas the magnetic induc-
tion vector H* = 0.

The antisymmetric deformation tensor G,5(E, B) of an electromagnetic
field reduces to
0 E E, Es
_ | £
2 Go=|"20 o |
—Es
where E; denotes the electric field vector, whereas the magnetic field vector
B; =0. ;
Let us remark that throughout the paper the Greek indices of tensor
functions vary in {0, 1,2, 3}, whereas the Latin ones in {1,2,3}.
In [2], it was shown that the space-time equilibrium equations for a
deformable medium in an electromagnetic field have the form

(33) VuF,Fp = Fv +er’

where (F,, denotes the Lorentz force, F, the external mass force acting on
the body and F¥, the stress four-tensor of the material continuum.

Equations (3a) should be completed by the Maxwell equations for the
tensors F*# and G, as follows:

(3b) Vo FeB =P,
(3c) va aaﬂ - 0 ¥

where 6""6 is the dual tensor to Gap and IP denotes the four-tensor of
current.

Let us indicate that equation (3c) becomes an identity if
(4) Gop = Via4p|,

where [ ] denotes the antisymmetric part of a tensor.
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Conjugation of equations (3a) and (3b) is done by means of the formula
for the Lorentz force . F,. It is the force of an electromagnetic field affecting
the matter, especially currents and charges. By tradition [1] the formula
takes the form

(5a) FP=GP1I,.

The Lorentz force (5a) and the resulting form of conjugation was assumed
in [2]. In [3] a more general form of the formula for the Lorentz force was
adopted and some arguments for it were presented. Similarly, in the present
paper we take

(5b) oFP =GPV, + 1F,\VPGH: — 1GMVPE,, .

Formula (5b) shows that some material media may exist for which the con-
stitutive relations (polarization laws) for the tensors F*#, G,z are such that
(5b) becomes (5a). Also, let us remark that two new terms of (5b) describe
the force with which the electromagnetic field acts on the matter without
free charges and currents but with the possibility of polarization. Here we
consider precisely that medium (I” = 0) in the electrostatic field.

Taking the traditional form (5a) of the formula for the Lorentz force
as for example in [5], [6] we conclude that the equilibrium equations (3a)
are not conjugated with equations (3b) describing the electromagnetic field,
since (FP = 0 when no external charges and currents occur. Therefore, in
the traditional approach the electric and magnetic effects are conjugated in
the case of piezoelectric only in the constitutive relations.

In the classical Voight theory (8] we take the algebraic linear material
relations of the form

(6a) Ti; = cijri€rt — Mkij Ex
(6b) D; = nigien + sk By, .

In the above formulas T;j, €;; denote the three-tensors of stresses and defor-
mations of the body, respectively; 7;x; are the piezoelectric constants,
the dielectric constants, and ¢;;x; the elasticity constants.

In the case of an isotropic body the tensors of material constants should
be of the form

(7a) cijkt = p(6ixbj1 + 6abjk) + Aijbri,
(7b) Mkij = €€kij ,
(7‘:) Hij = xé,-j s

where e; is the antisymmetric Ricci tensor.

Consequently, based on (6),.(7) we conclude that there is no piezoelec-
tric effect in an isotropic body because the term eey;; Ex must vanish as a
result of the symmetry of the stress tensor T;; postulated in the classical
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theory. This conclusion of the symmetric Voight theory of piezoelectricity is
contradicted by experiment [4].

The use of the symmetric stress tensor Tj;, and consequently of the
symmetric deformation tensor ¢;;, is traditionally based on conservation
laws, of angular momentum in particular.

In [3] the principle of conservation of momentum, angular momentum
and energy for a deformable medium in an electromagnetic field was dis-
cussed and it was proved that the validity of those principles for a system
composed of an electromagnetic field and a deformable body implies only
the condition
(8) T +eTiy =0,

1

where T;; denotes the so-called Maxwell stress tensor of the electromagnetic
field.

In [3] the four-tensor of momentum-energy ¢T:;° of an electromagnetic
field is introduced by

(9a) TP = FouG*P + L16.PFu G™ .

This tensor is related to the generalized Lorentz force .F* in the following
way:

(9})) Vu (—:Tm9 —_— —eFﬂ 4

The space components of the momentum-energy tensor (77 determine the
Maxwell stress tensor eTi(JM) with

(9(:) eTg?{) — —eT,;j .

Let us remark that the validity of condition (8) does not imply necessar-
ily that the antisymmetric parts of each tensor appearing in that formula
vanish. As was pointed out in [3] the Maxwell stress tensor eTg\n of an
electromagnetic field is not symmetric in general, and as a consequence the
stress tensor T;; of a deformable body need not be symmetric either, in order
that the principle of conservation given by (8) be satisfied.

In the present paper we give a simplest example of piezoelectric with al-
gebraic material relations, and those relations together with the generalized
Lorentz force formula result in the conjugation of equations (3a), (3b) and
the appearance of a non-vanishing non-symmetric part of the stress tensors
ETS\‘), Tij-

We derive the displacement equations for such piezoelectric. Those equa-
tions constitute a generalization of the classical theory of Voight yielding the
existence of an isotropic piezoelectric but they are different from those of
the gradient theory of Mindlin [5] where different constitutive relations are
introduced. :
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Now, we consider the simplest case of an isotropic piezoelectric. Without
the traditional restriction on the stress and deformation tensors T;; and
€i; to be symmetric we assume the following constitutive relations for an
isotropic piezoelectric:

(10a) Ti; = peij + agji + Mijerkr — e€imnEmnEj ,
(IOb) D; = eeik;jEk; + xE;.

Let us remark that formulae (10a), (10b) as well as the constitutive
relations (6), (7) of Voight theory preclude the piezoelectric effect in an
isotropic body if the symmetry of stresses and deformations is required.

Further, we show that formulae (10a), (10b) imply the validity of the
angular momentum conservation principle in the sense of condition (8) for
the antisymmetric parts of the stress tensors of the material body and the
electromagnetic field. We give the explicit form of engM): Ts;-

A generalization of (10a), (10b) to non-isotropic bodies leading to the
validity of (8) for the angular momentum is

(11a) Tij = cjyki€rt + Me(ij) Ex — BimnEmn Ej — #ix E;E;
(1 lb) -Di — ﬂimnemn + xikEk ’

where () denotes the symmetric part of a tensor.

The above formulae constitute a generalization of the constitutive re-
lations (6a), (6b) of Voight theory. Let us also remark that (10a) can be
completed by a completely symmetric term »xE;E; for an isotropic piezo-
electric without violation of condition (8).

3. Displacement equilibrium equations of an isotropic piezo-
electric. Here we consider an isotropic piezoelectric on which no external
charges or current are grouped, that is, I, = 0. As was shown in [2] the mo-
tion equations of a deformable continuum in an electromagnetic field have
the form

(12) V;T’ +.F; + F, = DP;,

where .F; denotes the generalized Lorentz three-force and where formula
(5b) for the four-vector (F), is postulated. D(...) is the so-called material
derivative with respect to time.

Hence, after some easy transformations using the form of the tensors
F2B, Gop describing the electromagnetic field [3] we obtain a general formula
for the space component of the Lorentz force F;:

(13) oFi = — pE; — e, BPI* + 1(EyV,D* — D*V,E})
+ L(HyV:B* - B*V;H,).
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In the considered case of no external sources we have
(14) Fi = 2(ExV;D* — D*V,Ey).

Substituting (14) into (12) results in equations of motion for a deformable
continuum in an electric field of intensity Ej and electric induction D*.
Taking into account the constitutive relations (11a), (11b) we obtain the
description of motion for a piezoelectric in terms of deformations. Assuming
the constitutive relations (10a), (10b) we obtain the deformation equations
of motion for an isotropic piezoelectric. In that case the Lorentz force oF;
can be written as follows:

(15) oF; = 3€ekmn(ExViemn — EmnViEp) .

The deformation tensor &,,, appearing in (15) should be defined sepa-
rately, assuming in that way a certain measure of deformation. Neither a
specific form nor the symmetry of €,,, will be assumed.

Equations (12) should be completed by the conjugated Maxwell equa-
tions (3b) for an electromagnetic field described by the stress tensor F*,
which leads, in the case of an electrostatic field, to the condition

(16) V:D'=0.

The no sources Maxwell equations (3c) for the deformation tensor Gu.g
are identically satisfied if (4) holds, with

Aﬂ = (‘P, Ai) )

which, in the case of an electric field and the simplified form (2) of the
tensor Gup, is equivalent to the representation of the electric field E; by the
gradient of a potential:

(17) E,‘, = Vﬂo.

Equations (12), (15), (16), (17) and the material relations (10a), (10b)
represent the equations of an isotropic piezoelectric. Let us underline right
now that in the framework of the presented method we obtain equations
more general than in the classical Voight theory [8] and different from those
of [5], [6].

The deformation form of the equations for an isotropic piezoelectric in
an electrostatic field described by a potential ¢ is

(18a) uViei; + aViej + Abi;Viekr — €CimnEmn Vi
+%e3kmn(vk‘PVj5mﬂ = emnvjk‘P) + F; = DP;,
(].Sb) ee;mnvf'.Emn + xV,-.-rp =0.

In the above equations five mass constants appear: the elasticity con-
stants p, @, A, the dielectric constant s and the piezoelectric constant e.



Coupled fields in a piezoelectric body 367

The unknowns are the piezoelectric deformations ¢;; and the electric poten-
tial ¢ in the piezoelectric. Now, equations (18a), (18b) may result in different
forms of displacement equations in dependence on the adopted deformation
measure of a deformable body.

Let us remark that adopting the constitutive selations (10a) we delete
the symmetry condition for the stress tensor T;; of the piezoelectric. It is
natural, in that case, to adopt as measure of deformation of the body the
following quantity obtained from the displacement vector u;:

(19) &ij = Viu;,

also without the symmetry condition for that tensor. As a result, the gen-
eralized Lorentz force F; does not vanish also for an isotropic piezoelectric
without external charges and currents as formula (15) indicates. Conse-
quently, the non-symmetric part of the Maxwell tensor ET( does not van-
ish according to (9a)—(9c). The antisymmetric parts of t.he stress tensor T;

of the piezoelectric and of the Maxwell stress tensor T( ) satisfy identi-
cally condition (8), which is the conservation principle for the angular mo-
mentum; one can easily notice that

(20) eﬂ(‘-’.M) = D[iEj] = eemnemn[iEj] )
(21) T[ij] = _eemnemln[iEj] =g (M) .

Assuming the deformation measure of a body according to-(19) equations
(18a), (18b) now take the form

(22a) (2p+ ) - grad; divu + 2aV?u; + £eVipV;(rot u)x
—%ev_ﬂc(p(rot u); + Fj = DP;,
(22b) wWWip=0 & Vip=0.

The first term of equation (18b) vanishes because divrot(...) = 0. Thus
we have obtained four second order differential equations for the determina-
tion of the displacements u; of a piezoelectric and of the electric potential
@ in the piezoelectric.

Let us remark that besides some elasticity constants only the piezoelec-
tric constant e occurs in equations (22a), (22b). The dielectric constant 3¢
is used for the determination of the electric induction D* from the material
relation (10b). Thus, it is used for the determination of the polarization
vector Pj of the body, which is usually defined as follows:

Dy = 5y Ey + Py,

where 3¢y is the vacuum dielectric constant.
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Assuming the constitutive relation (10b) for an isotropic piezoelectric we
express the polarization vector Pi as follows:

Py = e(rotu)g + (3¢ — 30)Ey, .

Let us notice that in Mindlin’s paper [5] the polarization vector P is
an unknown function introduced in the theory independently of the anti-
symmetric part of the deformation tensor €;; because there the traditional
symmetry condition is assumed.

In the present paper the polarization Py is related to the rotation of the
displacement vector ug, which results in vanishing of one material constant
in equation (22). Some analogies with the theory of the so-called Cosserat
pseudocontinuum (7] can be observed where the rotation (spin) vector of a
body is not independently introduced but it is related to the rotation of the
displacement vector.

Nevertheless, in the considered body no momentum stresses occur. The
appearance of a non-symmetric part of the piezoelectric stress tensor is re-
lated to the presence of an electromagnetic field and to the non-vanishing
of the antisymmetric part of the Maxwell stress tensor of that field as is
indicated by (20) and (21).

The approach presented here enables the description of an isotropic
piezoelectric based on the algebraic constitutive relations. In the symmet-
ric theories of a deformable body in an electromagnetic field developed by
Nowacki [6] and Mindlin [5] no piezoelectric effect in isotropic bodies with
algebraic constitutive relations is obtained. Thus, it is necessary to intro-
duce in the constitutive relations the gradients of polarization, as in the
paper of Mindlin [5], and this increases the order of differential equations
and complicates the problem.

A specific initial-boundary value problem together with an attempt to
explain the Mead anomalies with the help of the method here presented will
be treated elsewhere.
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